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Abstract

We describe a potential reduction method for convex optimization problems involving matrix
inequalities. The method is based on the theory developed by Nesterov and Nemirovsky and
generalizes Gonzaga and Todd's method for linear programming. A worst-case analysis
shows that the number of iterations grows as the square root of the problem size, but in
practice it appears to grow more slowly. As in other interior-point methods the overall
computational e�ort is therefore dominated by the least-squares system that must be solved
in each iteration. A type of conjugate-gradient algorithm can be used for this purpose, which
results in important savings for two reasons. First, it allows us to take advantage of the
special structure the problems often have (e.g., Lyapunov or algebraic Riccati inequalities).
Second, we show that the polynomial bound on the number of iterations remains valid even
if the conjugate-gradient algorithm is not run until completion, which in practice can greatly
reduce the computational e�ort per iteration.

We describe in detail how the algorithm works for optimization problems with L Lya-
punov inequalities, each of size m. We prove an overall worst-case operation count of
O(m5:5L1:5). The average-case complexity appears to be closer to O(m4L1:5). This esti-
mate is justi�ed by extensive numerical experimentation, and is consistent with other re-
searchers' experience with the practical performance of interior-point algorithms for linear
programming.

This result means the computational cost of extending current control theory that is
based on the solution of Lyapunov or Riccati equations to a theory that is based on the
solution of (multiple, coupled) Lyapunov or Riccati inequalities is modest.

Key words: interior point algorithms, linear matrix inequalities, positive-de�nite program-
ming.
Abbreviated title: Primal-dual method for matrix inequalities.
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1 Introduction

1.1 Motivation

Many problems in systems and control theory can be formulated (or reformulated) as op-
timization problems involving linear matrix inequalities, i.e., constraints requiring an a�ne
combination of symmetric matrices to be positive semide�nite. Reference [9] gives a broad
survey of such problems.

These matrix inequalities are usually highly structured. One typical example is the
(convex) Lyapunov inequality which has the form

APB +BTPAT +D � 0;

where the square matrices A, B and D are given, D is symmetric, and the symmetric matrix
P is the optimization variable. Another important example is the (convex) algebraic Riccati

inequality:
ATP + PA+ PBR�1BTP +Q � 0;

where A, B, Q and R are given, Q is symmetric, R is positive de�nite, and the matrix P is
the optimization variable. This quadratic matrix inequality can be recast as a linear matrix
inequality which is very similar in form to the Lyapunov inequality:

"
�ATP � PA�Q PB

BTP R

#
= �AP �B + �BTP �AT + �D � 0;

where

�A =

"
I

0

#
;

�B =
h
�A B

i
;

�D =

"
�Q 0
0 R

#
:

Lyapunov and Riccati inequalities arise, for example, in stability analysis of dynamical sys-
tems.

1.2 A typical problem

In this paper we describe a potential reduction method for general convex optimization
problems involving matrix inequalities such as Lyapunov or Riccati inequalities. We give
complete details for the typical problem of minimizing a linear functional of an m � m

matrix P subject to L Lyapunov inequalities:

minTr EP; AkPBk +BT
k PA

T
k +Dk � 0; k = 1; : : : ; L; (1)
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where E, Ak, Bk, Dk, k = 1; : : : ; L, are m�m matrices with E and Dk symmetric.
We will show that, in the worst case, the algorithm we describe takes O(m5:5L1:5) op-

erations to solve the optimization problem (1). The average case complexity appears to
increase much more slowly with m, as O(m�L
), with � � 4 and 
 � 1:5. To appreciate
these numbers, consider the following. A single Lyapunov equation APB+BTPAT +D = 0
(which is just a set of m(m + 1)=2 linear equations for the m(m + 1)=2 variables in P )
can be solved in O(m3) operations by exploiting the special structure of the equations (see,
e.g., [20]). Therefore, it takes O(m3L) operations to solve L independent Lyapunov equa-
tions. Comparing this operation count to O(m4L1:5), we see that the relative cost of solving
L coupled Lyapunov inequalities, compared to solving L independent Lyapunov equations,
is only a factor of mL0:5. A similar statement holds for Riccati inequalities.

Much of modern control theory involves the solution of Riccati and Lyapunov equations.
Our results show that the computational cost of extending current control theory to a theory
based on the solution of (multiple, coupled) Lyapunov or Riccati inequalities is modest.
(Extensive discussion of this topic can be found in [9].)

We also note that the problem (1) includes linear programming as a special case. When
E, Ak, Bk, Dk, k = 1; : : : ; L are all diagonal matrices, the problem reduces to minimizing a
linear function subject to a set of linear inequalities.

1.3 A brief historical overview

A fairly complete history of matrix inequalities arising in control theory can be found in [9].
Problems of this type also occur in statistics [35, 12, 13] and structural analysis and design [7,
31, 32]. In a very early paper, Bellman and Ky Fan [6] discuss matrix inequalities from
an optimization viewpoint, and describe optimality conditions, duality, and theorems of
alternatives.

Interest in interior-point polynomial time methods for more general nonlinear convex
problems, and problems involving matrix inequalities in particular, started soon after the
publication of interior-point methods for linear programming. Initial e�orts were directed to-
wards generalizing the method of centers and other central path-following methods [30, 8, 10,
24]. More recently, potential reduction methods have been extended to problems involving
matrix inequalities. Nesterov and Nemirovsky [30, Ch.4] describe three potential reduc-
tion algorithms for problems involving matrix inequalities: a generalization of Karmarkar's
method, a projective method, and a generalization of the method of Ye [36]. In [3, 2],Alizadeh
describes several potential reduction methods for problems involving matrix inequalities, em-
phasizing their similarity to the analogous methods for linear programming. These potential
reduction methods all share an important advantage over the earlier path-following meth-
ods: they allow so-called \large steps," i.e., the use of (computationally cheap) line search
procedures to reduce the potential function at each iteration by an amount that is often
substantially more than is guaranteed by the complexity analysis.

The algorithm that we describe in this paper involves two important extensions beyond
the methods described by Nesterov, Nemirovsky, and Alizadeh. First, it takes advantage
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of the special structure of the matrix inequalities we encounter, e.g., Lyapunov or Riccati.
Second, it allows the use of approximate search directions, which can be computed by a
conjugate gradient algorithm.

The algorithm can also be considered as extending Gonzaga and Todd's primal-dual
algorithm for linear programming [22] in two ways: to handle problems involving linear
matrix inequalities, and to use approximate search directions. The use of approximate search
directions is related to the \relaxed version" of Karmarkar's method for linear programming,
as described by Goldfarb and Mehrotra [17, 18].

1.4 Outline

In section 2 we describe the problem and the algorithm in general terms, deferring proofs
and further details to the appendix or later sections. In section 3 we give the details of
computing a suitable search direction via an appropriate conjugate gradient method. This
is the key to exploiting the special structure of the matrix inequalities as well as reducing
the computational e�ort per iteration by using approximate search directions. In section 4
we describe an e�cient plane search technique for computing step lengths at each iteration.

In section 5 we return to the speci�c problem (1) of minimizing a linear function of a
matrix subject to a set of Lyapunov inequalities, giving details of the conjugate gradient
algorithm. In section 6 we present the results of some numerical experiments that support
our claim that the average number of operations needed to solve problems like (1) increases
only as O(m4L1:5).

1.5 Notation

{ The integer n determines the size of the general problem. When it is not relevant or
not varying, we will suppress the dependence on n in notation.

{ S will denote the space of symmetric n � n matrices. When we need to be speci�c
about n, we will write it as Sn.

{ P will denote the cone of symmetric n� n positive-semide�nite matrices.

{ I will denote the identity matrix, with size determined from context.

{ The inner product of two matrices in S is de�ned as hX;Zi = Tr (XZ). The corre-

sponding norm is the Frobenius norm, denoted kXk = (Tr X2)
1=2

.

{ X1=2 denotes the symmetric square-root of X 2 P.
{ The direct sum of two matrices X and Z is written as

X � Z =

"
X 0
0 Z

#
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Similarly, if L1 and L2 are subspaces in S we write

L1 � L2 = fX � Z j X 2 L1; Z 2 L2g � S2n:

{ The orthogonal complement of a subspace L � S will be denoted L?, i.e., L? =
fZ 2 Sj hX;Zi = 0 for all X 2 Lg.

2 Algorithm: general formulation

2.1 Conic formulation

We will express the general problem using the conic formulation of Nesterov and Nemirovsky
[30, x4.1]:

minhC;Xi; X 2 P \ (L +D): (2)

Here C, D are given elements in S and L is a subspace of S. The associated dual problem
is:

minhZ;Di; Z 2 P \ (L? + C): (3)

Matrices X and Z will be called (primal and dual) feasible if they belong to P \ (L+D)
and P \ (L? +C), and strictly feasible if in addition they lie in Int P. For a pair of feasible
matrices X, Z, the quantity hX;Zi is the duality gap for the primal and dual problems. We
note the following facts:

{ Since X, Z 2 P, hX;Zi � 0 and hX;Zi = 0 if and only if XZ = 0.

{ The duality gap is actually a�ne in X;Z, and not a bilinear form as it appears at �rst
sight:

X 2 L+D; Z 2 L? + C =) hX;Zi = hC;Xi + hZ;Di � hC;Di: (4)

{ hX;Zi is an upper bound on the di�erence between the value of the primal objective
with X and the optimal value of the primal problem, i.e.,

hC;Xi � inffhC; ~Xij ~X 2 P \ (L+D)g � hX;Zi:

Similarly,
hZ;Di � inffh ~Z;Dij ~Z 2 P \ (L? + C)g � hX;Zi:

(These follow immediately from the two preceding observations.)

We make the following assumption about the pair of problems (2) and (3):

Assumption 1 We are given strictly feasible primal and dual matrices X(0) and Z(0).

4



This is precisely the assumption made by Nesterov and Nemirovsky in their potential reduc-
tion algorithms [30, Ch.4]. It has the following implications [30, x4.2]:

{ The feasible sets P \ (L+D) and P \ (L? + C) have nonempty relative interiors.

{ The primal and dual objective functions are bounded below on the feasible sets.

{ The primal and dual problems are solvable. X solves (2) if and only if there exists a
dual feasible Z with hX;Zi = 0. Similarly, Z solves (3) if and only if there exists a
primal feasible X with hX;Zi = 0.

Several methods are known to circumvent this assumption. The easiest is to precede the
algorithm with a phase I algorithm to �nd feasible initial points (see, e.g., [30, x4.3.5]). In
other approaches both phases are combined; see, e.g., [28, 26, 14, 4].

Problems (2) and (3) together are therefore equivalent to a linear optimization problem
with known optimal value zero:

minhX;Zi; X 2 P \ (L+D); Z 2 P \ (L? + C):

2.2 Central path

The material of this section is not needed either in the description of the algorithm or in
the proofs. We present it because it allows us to give important interpretations and useful
insight.

For X 2 Int P we de�ne
F (X) = log detX�1:

F is strictly convex and converges to 1 as X approaches the boundary of P, i.e., F is a
barrier function for the positive de�nite cone Int P. This function has very simple �rst and
second derivatives. The gradient at a point X 2 Int P is

rF (X) = �X�1:

The Hessian r2F (X), when considered as a mapping from S to S, is given by a congruence
operation: for H 2 S,

r2F (X)H = X�1HX�1: (5)

For � > 0 consider the set of strictly feasible pairs X;Z with hX;Zi = �. Since hX;Zi =
� is an a�ne constraint on X;Z, this set is the intersection of Int P � Int P with an a�ne
set. It can be shown that under Assumption 1 this set is nonempty and bounded. The
analytic center of this set is the minimizer of F (X)+F (Z), or equivalently, the matrix with
maximum determinant. We denote the analytic center as X�(�); Z�(�):

(X�(�); Z�(�)) = argmin
X 2 P \ (L+D)
Z 2 P \ (L? + C)

hX;Zi = �

F (X) + F (Z): (6)
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(Since the feasible set here is bounded, F (X) + F (Z) is bounded below.) Thus, among all
feasible pairs X;Z with the duality gap �, the pair X�; Z� maximizes det(XZ). Roughly
speaking, we can consider (X�; Z�) as the pair with duality gap � that is \most feasible".

The curve given by (X�; Z�) for � > 0 is called the path of centers for the problems (2)
and (3). Evidently (X�; Z�) converge to a primal and dual optimal pair as � ! 0. The
central pair (X�; Z�) has many important properties. For our purposes here we need:

Theorem 1 X�(�)Z�(�) = (�=n)I. Conversely, if X and Z are a feasible pair and XZ =
(�=n)I then X = X�(�) and Z = Z�(�).

In other words, centrality is characterized by X and Z being inverses of each other, up to a
constant. The proof is given in the appendix.

Now consider a feasible pair (X;Z), and de�ne � = hX;Zi. Then (X�(�); Z�(�)) is the
central pair with the same duality gap as X;Z. Therefore

F (X) + F (Z) � F (X�(�)) + F (Z�(�)) = � log det(X�Z�) = n log n� n loghX;Zi
with equality holding only when X;Z are central. We will see that the di�erence between
F (X) + F (Z) and F (X�(�)) + F (Z�(�)) can be interpreted as a measure of the deviation
of (X;Z) from centrality. This di�erence is:

 (X;Z) = F (X) + F (Z) + n loghX;Zi � n log n:

We have already observed that  (X;Z) � 0 for all feasible X;Z and  (X;Z) = 0 only if
X;Z is on the central path. Moreover,  approaches 1 as the pair (X;Z) approaches the
boundary of P�P. Therefore  satis�es some basic requirements for a measure of deviation
from centrality. We will see below a much more speci�c interpretation of  as a measure of
deviation from centrality.

We note that  is not convex or quasiconvex (except of course when restricted to hX;Zi
constant). We also note that  depends only on the eigenvalues �1; : : : ; �n of XZ:

 (X;Z) = n log
(
Pn

i=1 �i) =n

(
Qn

i=1 �i)
1=n

:

Thus  (X;Z) is n times the logarithm of the ratio of the arithmetic to geometric mean of
the eigenvalues of XZ. (From which we see again that  is nonnegative, and zero only when
XZ is a multiple of the identity.) We can also think of  as a smooth measure of condition
number of the matrix XZ since

log �� 2 log 2 �  (X;Z) � (n� 1) log �

where � = �max=�min is the condition number of XZ.
We can give a nice interpretation of  using Nesterov and Nemirovsky's theory. We

consider the problem of computingX�; Z� givenX;Z. In [30, x2.2] Nesterov and Nemirovsky
give a very simple damped Newton algorithm for computing X�; Z� that has the following
properties:
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{ Until the region of quadratic convergence is reached, the objective F (X) + F (Z) de-
creases at least by the absolute constant 0:3068 at each Newton step. (By absolute
constant we mean it does not depend on n, the problem data, or the required accuracy
of computing X�; Z�.)

{ Once the region of quadratic convergence is reached, at most a constant number c of
Newton steps is required to compute X�; Z� to a given accuracy. (The constant c does
not depend on n or the problem data, but only on the required accuracy �. Since the
convergence is quadratic in this region, c grows as log log 1=� if � decreases.)

As a consequence we see that the number of Newton steps required to computeX�; Z� given
X;Z can be bounded in terms of F (X) + F (Z)� F (X�)� F (Z�) =  (X;Z):

#Newton steps � c+ 3:26 (X;Z) (7)

where c depends only on the required accuracy of computing X�; Z� and grows extremely
slowly. In other words:  (X;Z) is, up to a constant, an upper bound on the computational
e�ort required to \center" (X;Z) (meaning, compute the central pair with the same duality
gap).

2.3 Potential function

Let � � 1. For strictly feasible X and Z, we de�ne the primal-dual potential function as

�(X;Z) = �
p
n loghX;Zi +  (X;Z) (8)

= (n+ �
p
n) loghX;Zi + F (X) + F (Z)� n log n (9)

= (n+ �
p
n) log

nX
i=1

�i �
nX
i=1

log �i � n log n (10)

where �i are the eigenvalues of XZ.
We can interpret the two terms in (8) as follows. The �rst term, �

p
n loghX;Zi, depends

only on the duality gap, and decreases to �1 as the duality gap approaches zero. Therefore,
a �xed decrease in the �rst term corresponds to a �xed fractional reduction of the duality
gap.

We have already noted that the second term,  (X;Z), can be interpreted as a measure of
deviation from centrality of the pair X Z, and increases from zero on the central path to +1
as X or Z approach the boundary of P. A �xed decrease in the second term corresponds to
a �xed amount of \centering" in the following sense: up to a constant, it is the reduction in
the (bound on) computational e�ort required to \center" the current pair. Note that along
the central path, �(X�(�); Z�(�)) = �

p
n log� which decreases to �1 as � converges to

zero.
The constant � evidently determines the relative weight of the two terms, which measure

the duality gap and the deviation from centrality. Using our interpretation (7) we can be
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more speci�c. If  decreases by one, the new pair is 3.26 Newton steps closer to centrality
than the original pair (or more precisely, the upper bound on the number of Newton steps
required to center the new pair is 3.26 smaller than the upper bound for the original pair).
If the other term, �

p
n loghX;Zi, decreases by one, then the duality gap is reduced by the

factor exp(�1=�pn) � 1� 1=(�
p
n). In other words,

�
p
n fewer Newton steps to center � 31% duality gap reduction

where � means that the left and right-hand sides result in an equal decrease in �.
By minimizing the smooth function �, we solve the primal and dual problems (2) and (3).

Indeed since  (X;Z) � 0 for feasible X and Z, we have

hX;Zi � exp
�(X;Z)

�
p
n

(11)

which shows that small potential implies small duality gap.
For notational convenience we will often use W = X � Z, and �(W ) to denote �(X;Z).

For future reference we give the gradient of �:

r�(X;Z) =
 
n+ �

p
n

hX;Zi C �X�1

!
�
 
n+ �

p
n

hX;Zi D � Z�1
!
= �(C �D) �W�1

where we de�ne � as

� =
n+ �

p
n

hX;Zi : (12)

2.4 Algorithm

The basic idea of the primal-dual algorithm is to generate iterations of primal and dual
feasible matrices satisfying

�(X(k+1); Z(k+1)) � �(X(k); Z(k))� �; (13)

for some absolute positive constant �. By (11) we therefore have:

hX(k); Z(k)i � exp
�(X(0); Z(0))� k�

�
p
n

= hX(0); Z(0)ic0ck1 (14)

where

c0 = exp
 (X(0); Z(0))

�
p
n

; c1 = exp
��
�
p
n
:

We can interpret the result (14) as follows: the duality gap converges to zero at least expo-
nentially at a rate given by the constant c1. The constant c0 depends only on the centrality
of the initial pair, and is one if the initial pair is central.

In other words, we have polynomial convergence:
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Theorem 2 Assume that (13) holds with some � > 0 that does not depend on n or �, where

0 < � < 1. Then for

k � �
p
n log(1=�) +  (X(0); Z(0))

�

we have hX(k); Z(k)i < �hX(0); Z(0)i.
Roughly speaking, we have convergence in O(

p
n) steps, provided the initial pair is su�-

ciently centered.
The key task, then, is to show how to update (X(k); Z(k)) into (X(k+1); Z(k+1)) such

that (13) holds.
The algorithm depends on three parameters: � � 1 (which is used in the de�nition of the

potential function), � > 0 is the value of the duality gap used to terminate the algorithm,
and � is a parameter satisfying 0 < � � 0:35. (We shall see later that � trades o� numbers
of iterations versus work per iteration.) De�ne � = � � log(1 + �).

Primal-dual algorithm

given W = X � Z with X 2 Int P \ (L +D) and Z 2 Int P \ (L? + C)

repeat

1. Find a suitable search direction.
Compute a �W = �X � �Z 2 L �L? that satis�es

h�W;r�(W )i
kW�1=2�WW�1=2k � �: (15)

2. Plane search.
Find p, q 2 R such that X � p�X 2 P, Z � q�Z 2 P, and

� (X � p�X;Z � q�Z)) � �(X;Z)� �: (16)

3. Update W .
Set W = X � Z := (X � p�X) � (Z � q�Z).

until hX;Zi � �.

We must clarify two points: �rst, how do we �nd a �W satisfying the condition (15), and
second, how do we �nd p and q satisfying (16).

We �rst consider the search direction problem. It turns out that we can compute the
direction �W 2 L � L? that maximizes the ratio on the left-hand side of (15) by solving a
least squares problem. De�ne

�WN = argmin
�W 2 L �L?




W 1=2r�(W )W 1=2�W�1=2�WW�1=2





= argmin
�W 2 L �L?




�W 1=2(C �D)W 1=2 � I �W�1=2�WW�1=2



 : (17)

Then we have:
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Theorem 3

max
�W 2 L � L?

h�W;r�(W )i
kW�1=2�WW�1=2k =

h�WN ;r�(W )i
kW�1=2�WNW�1=2k =




W�1=2�WNW�1=2



 � �:

(This theorem is proved in the appendix.) Therefore we can always �nd a suitable search
direction as required in step 1 of the algorithm by solving the least squares problem (17).

The direction �WN can be interpreted as a Newton direction for a modi�ed potential
function. From (9) we see that � is the sum of the convex function F (X) + F (Z)� n log n
and the concave function (n+ �

p
n) loghX;Zi. We �rst modify � by linearizing the concave

term at the point W . For strictly feasible ~W we de�ne

'( ~W ) = (n+ �
p
n) loghX;Zi + �h ~X �X;Zi + �hX; ~Z � Zi + F ( ~X) + F ( ~Z)� n log n

(X and Z, and therefore �, are �xed here). This modi�ed potential function is convex.
Moreover, since we have replaced a concave term by its linearization, we have '(W ) = �(W )
and '( ~W ) � �( ~W ) for all feasible ~W . It follows that an update that reduces the modi�ed
potential ' will reduce the potential � even more.

Now consider the Newton step for ' at the point W , i.e., the minimizer of the quadratic
model of ' at the point W :

argmin
�W 2 L � L?

�
'(W ) + hr'(W ); �W i+ 1

2
h�W;r2'(W )�W i

�
: (18)

Since r'(W ) = r�(W ) and r2'(W ) = r2F (W ), we have, using (5), r2'(W )�W =
W�1�WW�1. Therefore (18) becomes:

argmin
�W 2 L � L?

�
hr�(W ); �W i+ 1

2




W�1=2�WW�1=2



2�

= argmin
�W 2 L � L?

1

2




W 1=2r�(W )W 1=2+W�1=2�WW�1=2



2 :

Comparing this expression to (17) we see that this Newton step is precisely ��WN .
We can also give a geometric interpretation of the search direction condition (15) in terms

the angle between �W and the Newton direction �WN in an appropriate metric. We can
rewrite (17) as

�WN = argmin
�W 2 L � L?




W�1=2 (Wr�(W )W � �W )W�1=2





i.e., �WN is the projection of Wr�(W )W onto L � L? in the norm kW�1=2( � )W�1=2k.
From this we see that

h�W;r�(W )i = hW�1=2�WW�1=2;W 1=2r�(W )W 1=2i
= hW�1=2�WW�1=2;W�1=2�WNW�1=2i: (19)
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Therefore,
h�W;r�(W )i

kW�1=2�WW�1=2k =
hW�1=2�WW�1=2;W�1=2�WNW�1=2i

kW�1=2�WW�1=2k
which is the norm of �WN times the cosine of the angle between �W and �WN , using the
inner product hW�1=2( � )W�1=2;W�1=2( � )W�1=2i. Evidently, the maximum value of this
ratio is kW�1=2�WNW�1=2k, obtained by choosing �W = �WN . Therefore, in order to prove
Theorem 3, we will need to show kW�1=2�WNW�1=2k � �.

Now we turn to the question of plane search.

Theorem 4 Suppose �W satis�es (15). De�ne

p = q =
�

(1 + �) kW�1=2�WW�1=2k:

Then X � p�X 2 P, Z � q�Z 2 P, and

� (X � p�X;Z � q�Z)) � �(X;Z) � �:

(This theorem is proved in the appendix.) We note that this choice of p and q is only used in
the complexity analysis. In practice, an approximate minimization of the potential function
over p and q typically yields a much larger reduction in � than � (see section 4).

3 Search direction via conjugate gradients

In this section we show how to use a conjugate gradient algorithm to solve the least squares
problem (17). Perhaps more importantly, the conjugate gradient algorithm we describe has
the following properties:

{ The iterates �Wk generated by the conjugate gradients algorithm are all feasible, i.e.,
�Wk 2 L � L?.

{ �Wk converges to �WN .

{ The ratio
h�Wk;r�(W )i

kW�1=2�WkW�1=2k
is known during the conjugate gradient process, and increases monotonically to its
maximum value (which by Theorem 3 exceeds �).

An immediate consequence is that we can stop the conjugate gradient process as soon con-
dition (15) holds.

The least squares problem (17) requires us to project the matrix

B = �W 1=2(C �D)W 1=2 � I

11



onto the subspace W�1=2(L � L?)W�1=2. This subspace has dimension n(n + 1)=2 so it
can be represented as the range of a linear function A which maps Rn(n+1)=2 into S � S.
Equivalently, we pick a basis for W�1=2(L � L?)W�1=2, with Ay 2 W�1=2(L � L?)W�1=2

corresponding to coordinates y 2 Rn(n+1)=2.
Then W�1=2�WNW�1=2 = Aŷ where ŷ is the solution of the least-squares problem

ŷ = argmin kAy �Bk : (20)

Let A� be the adjoint of A, i.e., the mapping from S�S intoRn(n+1)=2 de�ned by hH;Ayi =
(A�H)Ty for all H 2 S � S and all y 2 Rn(n+1)=2. Then (20) can be solved via the normal
equations

A�Ay = A�B: (21)

The solution of this linear set of equations forms the main computational e�ort of the algo-
rithm. It can be solved by a variety of direct or iterative methods, but as in implementations
of interior-point methods for linear programming, the conjugate gradient method is a good
choice [16, 1, 27, 25]. This method has the desirable property of only involving consecutive
evaluations of the linear mappings A and A� at given points. In particular, there is no need
to form the matrix A�A which is of size n(n + 1)=2.

The following is the outline of the conjugate gradient algorithm as it can for instance be
found in [33]. Alternatively, one might prefer to use the LSQR-method [33]. LSQR is theo-
retically equivalent to the conjugate gradient method, but has better numerical properties.

The residual rk = A�B � A�Ayk is calculated recursively. Criteria for termination will
be discussed below.

Conjugate gradient algorithm

k = 0; y0 = 0; s0 = B, r0 = A�B
until convergence

k = k + 1
if k = 1
p1 = r0

else

�k = rTk�1rk�1=r
T
k�2rk�2

pk = rk�1 + �kpk�1
end

qk = Apk
�k = rTk�1rk�1=q

T
k qk

yk = yk�1 + �kpk
sk = sk�1 � �kqk
rk = A�sk

end

�W = W 1=2 (Ayk) W 1=2

This conjugate gradient algorithm �nds the solution in n(n+1)=2 steps. We note that in
practice a suitable preconditioner should be used. A good preconditioner can considerably

12



speed up convergence, especially in the presence of roundo� error. The choice of a precon-
ditioner depends on the speci�c structure of the problem, so we will postpone this topic to
section 5.

In the rest of this section we discuss termination criteria for the conjugate gradient
algorithm. We have:

Theorem 5 Let �Wk = W 1=2(Ayk)W 1=2 be the approximation of �WN obtained after k

iterations of the conjugate gradient algorithm. Then �Wk is a feasible direction with the

property

h�Wk;r�(W )i
kW�1=2�WkW�1=2k =




W�1=2�WkW
�1=2




 =
 

kX
i=1

�2i p
T
i A�Api

!1=2

: (22)

Proof. The directions pk are conjugate:

hApj ;Apki = 0; j = 1; : : : ; k � 1:

Since we have yk =
Pk

i=1 �ipi, it follows that

hW�1=2�WkW
�1=2;W�1=2�WkW

�1=2i = hAyk;Ayki =
kX

i=1

�2i hApi;Apii;

which proves the second equality. In order to prove the �rst one, let ŷ be the solution of the
normal equations (21) and observe that

hW�1=2�WkW
�1=2;W�1=2�WNW�1=2i = hAyk;Aŷi = hAyk;Ayki+ yTk rk:

The assertion now follows from (19) and from the orthogonality of the kth residual rk and
the directions pj , j = 1; : : : ; k (see [19]). 2

This theorem has the interesting consequence that the ratio needed in (15) is readily
known, and is easily computed since hApk;Apki has to be computed anyway. It suggests
basing a stopping criterion for the conjugate gradient algorithm on the quantity (22). One
possibility is to terminate as soon as condition (15) is satis�ed. The parameter � however is
usually a very conservative lower bound for kW�1=2�WNW�1=2k, and often a much larger re-
duction in potential function can be obtained by continuing the iteration after condition (15)
is satis�ed. Running the algorithm to completion on the other hand usually requires an ex-
cessive number of iterations, but one typically observes that the quantity (22) levels o� long
before the end of the algorithm. Preliminary experience therefore suggests terminating as
soon as the relative increase in (22) becomes su�ciently small and condition (15) is satis�ed.

4 Step lengths via plane search

Instead of the damped Newton step of Theorem 4 it is in general more e�cient to make a
plane search, i.e., to look for scalars p and q that minimize �(X � p�X;Z � q�Z). This can

13



be done very e�ciently if we �rst compute the eigenvalues �1; : : : ; �n of X�1=2�XX�1=2 and
the eigenvalues �1; : : : ; �n of Z�1=2�ZZ�1=2. The potential function can then be written as

�(p; q) = (n+ �
p
n) log(c1 + c2p+ c3q) + f(p; q) � n log n

where
c1 = hX;Zi; c2 = �hZ; �Xi; c3 = �hX; �Zi

and f is the restriction of the barrier term to the plane, i.e.,

f(p; q) = F (X � p�X) + F (Z � q�Z)

= �
nX
i=1

log(1� p�i)�
nX
i=1

log(1� q�i)� log det(XZ):

The derivatives of these functions are straightforward to compute. We will need the �rst
derivatives of �(p; q)

@�(p; q)

@p
=

c2(n+ �
p
n)

c1 + pc2 + qc3
+

nX
i=1

�i

1� p�i
(23)

@�(p; q)

@q
=

c3(n+ �
p
n)

c1 + pc2 + qc3
+

nX
i=1

�i

1� q�i
(24)

and the second derivatives of f(p; q),

@2f(p; q)

@p2
=

nX
i=1

�2i
(1� p�i)2

;
@2f(p; q)

@q2
=

nX
i=1

�2i
(1� q�i)2

: (25)

Note that once we have computed the eigenvalues �i and �i, i = 1; : : : ; n, we can compute
these derivatives in O(n) operations.

In order to minimize � we apply damped Newton steps to a linearized approximation
of � (as is done in [29, 7]). At each iteration the concave term of the potential function is
linearized around the current (p; q) and one damped Newton step is applied to this modi�ed
potential. This involves the steps.

{ Compute the derivatives (23), (24) and (25),

{ Compute �p and �q from

�p =
@�

@p

,
@2f

@p2
; �q =

@�

@q

,
@2f

@q2
;

{ De�ne � as

� =

 
@2f(p; q)

@p2
�p2 +

@2f(p; q)

@q2
�q2

!1=2

14



{ Then the next iterates of p and q are

p := p� 1

1 + �
�p; q := q � 1

1 + �
�q:

It can be shown that with this choice of step length, X � p�X and Z � q�Z remain feasible
and p; q converge to the values that minimize �(p; q).

There is no need to calculate the minimum of �(p; q) very accurately. Ben Tal and
Nemirovsky [7] suggest taking a �xed number of steps. An alternative is to continue the
iteration until � becomes su�ciently small.

The main cost of this scheme is in the initial computation of the eigenvalues �i and �i.
Once these are known, each step in the plane search can be carried out at a cost of O(n)
operations.

5 Algorithm for Lyapunov inequalities

We now return to the more speci�c problem (1). We will need to make a technical assump-
tion: there is at least one index j, 1 � j � L for which the mapping

H ! BjHAj +AT
j HB

T
j

is invertible. This is true if and only if the matrix pencil Bj��AT
j is regular and its spectrum

� is disjoint from its neqative, � \ (��) = ; (see [15]). The assumption is justi�ed, because
in most applications of (1) P also has to be positive semide�nite itself. One can ensure this
by adding an inequality with Ak = 0:5I, Bk = I and Dk = 0, which of course gives us an
invertible mapping.

Problem (1) can be written in the conic form (2) as:

min
LX

k=1

hCk;Xki; Xk = AkPBk +BT
k PA

T
k +Dk � 0; k = 1; : : : ; L;

which is of the form (2) with X = X1 � � � � �XL 2 LL
k=1 Sm, n = mL, and

L =

(
LM

k=1

AkPBk +BT
k PA

T
k

�����P 2 Sm
)
; D =

LM
k=1

Dk; C =
LM

k=1

Ck:

In this conversion one is free to choose the matrices Ck as long as

LX
k=1

BkCkAk +AT
kCkB

T
k = E: (26)

This is an underdetermined set of equations. Its solution is in general not unique, but
it can be veri�ed that the choice of the Ck's has no e�ect on the algorithm. A general
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way to solve (26) is to apply the conjugate gradient algorithm, which would produce the
minimum norm solution. An easier but less general way is to select an index j for which
BjCjAj + AT

j CjB
T
j = E is solvable (we assumed above that such a j exists), compute this

Cj (by the algorithm in [20, 15]), and take Ck = 0, k 6= j.
For this problem it is more natural to take

LL
k=1 Sm as the ambient space instead of SmL.

The orthogonal complement of L then becomes

L? =

(
Z =

LM
k=1

Zk

�����
LX

k=1

AT
kZkB

T
k +BkZkAk = 0

)

and we have the dual problem

min
LX

k=1

hDk; Zki;
LX

k=1

AT
kZkB

T
k +BkZkAk = E; Zk � 0; k = 1; : : : ; L:

The total amount of work required to solve the problem (1) depends on two factors: the
number of iterations, and the number of operations required in one iteration. We have seen
that in the worst case the number of iterations grows with m and L as O(

p
mL), but in

practice it appears to increase much more slowly. This behavior will be observed in the
numerical experiments of the next section, and is consistent with the experience of other
researchers with potential reduction methods (see [30, 22]). Throughout this section, then,
we concentrate on the work per iteration.

The dominating part there is the solution of the least squares system (20), as discussed in
section 3. In section 3 the projections on L and L? were lumped together in a symmetrical
way. This is not a good idea computationally, since usually m � L and therefore the
dimension of L? (dimL? = (L � 1)m(m + 1)=2) is much larger than the dimension of L
(dimL = m(m+ 1)=2). A closer look however shows that the computational load of both
projections is of the same order.

5.1 Direct methods

We can �rst clarify why we prefer to solve (20) by the conjugate gradient method instead of
direct methods.

The least-squares problem (17) consists of two parts that can be solved independently:
�WN = �XN � �ZN with

�XN = argmin
�X 2 L




�X1=2CX1=2 � I �X�1=2�XX�1=2



 (27)

�ZN = argmin
�Z 2 L?




�Z1=2DZ1=2 � I � Z�1=2�ZZ�1=2



 : (28)

The primal step (27) amounts to solving

�P = argmin
P 2 Sm

LX
k=1




X�1=2
k

�
�XkCkXk �Xk �AkPBk �BT

k P
TAT

k

�
X
�1=2
k




2
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= argmin
P 2 Sm

LX
k=1




�X1=2
k CkX

1=2
k � I � ~AkP ~Bk � ~BT

k P
~AT
k




2 (29)

where the normalized data ~Ak = X
�1=2
k Ak and ~Bk = BkX

�1=2
k . From �P we can compute

the Newton step �XN = �XN
1 � � � � � �XN

L :

�XN
k = Ak�PBk +BT

k �PA
T
k ; k = 1; : : : ; L:

A direct way to solve the least squares problem would consist in writing (29) as

min
P 2 Sm

LX
k=1




 vec��X1=2
k CkX

1=2
k � I

�
�
�
~BT
k 
 ~Ak + ~Ak 
 ~BT

k

�
vec(P )




2 ; (30)

where A
B denotes the Kronecker product, and vec(X) is the column vector obtained by
appending the columns of the matrix X to one another. Problem (30) is an overdetermined
set of equations with O(m2L) equations and O(m2) unknowns and therefore requiresO(m6L)
operations to solve by a direct method.

The dual step (28) is equivalent to

�ZN = �ZN
1 � � � � � �ZN

L =

argmin

(
LX

k=1




 Z�1=2k (�ZkDkZk � Zk � �Zk)Z
�1=2
k




2
�����

LX
k=1

AT
k �ZkB

T
k +Bk�ZkAk = 0

)
:

This is the projection of the matrix �ZDZ �Z on L?, but in the metric associated with Z,
i.e., kZ�1=2( � )Z�1=2k. Since the dimension of L? is so much larger than the dimension of L
it is advantageous to compute this projection by subtracting from �ZDZ�Z its projection on
ZLZ (this is the orthogonal complement of L? in the metric induced by Z). The projection
on ZLZ amounts to calculating

�P = argmin
P 2 Sm

LX
k=1




 �Z
1=2
k DkZ

1=2
k � I � ~AkP ~Bk � ~BT

k P
~AT
k




2 (31)

where ~Ak = Z
1=2
k Ak and ~Bk = BkZ

1=2
k . From �P one can �nd �ZN = �ZN

1 � � � � � �ZN
L :

�ZN
k = �ZkDkZk � Zk � ZkAk �PBkZk � ZkB

T
k �PA

T
kZk; k = 1; : : : ; L:

Using Kronecker products, problem (31) can again be converted to an overdetermined set of
equations, analogous to (30). The computational cost is therefore O(m6L) as well.

The corresponding �gure if the least-squares system is solved by the conjugate gradient
method is derived in the next section and will turn out to be O(m5L).

17



5.2 Conjugate gradients

The direct method outlined above ignores two basic properties of the problem. It computes
an exact solution, which is more than needed in the algorithm. Secondly, it is hard to take
into account the Kronecker structure in the equations (30). With the conjugate gradient
algorithm this will be much easier. We make use of the fact that solving a Sylvester equation
AXB + BTXAT = C where all matrices are of order m only requires O(m3) operations
although the number of unknowns in the matrix X is of O(m2) (see [20, 15]).

The subspace L is of dimensionm(m+1)=2, its orthogonal complement L? of dimension
m(m+1)(L�1)=2. In the conjugate gradient algorithm we can therefore use a representation

A :
L�1M
k=0

Sm �!
2LM
k=1

Sm;

mapping each set of Lmatrices Y = Y0�Y1�� � ��YL�1 on an element ofW�1=2(L�L?)W�1=2.
This is more convenient than using one single parameter vector. De�ning Yp = Y0 and
Yd = Y1 � � � � � YL�1, we can write A as

AY = ApYp �AdYd

where the images of

Ap : Sm !
LM

k=1

Sm and Ad :
L�1M
k=1

Sm !
LM

k=1

Sm

are X�1=2LX�1=2 and Z�1=2L?Z�1=2, respectively.
From the description of the conjugate gradient algorithm it should be clear that no

explicit representation of these mappings is needed. It is su�cient to have an e�cient way
of evaluating them at any given point.

Evaluation of Ap and A�p. Let the scaled data matrices be ~Ak = X
�1=2
k Ak and ~Bk =

BkX
�1=2
k , k = 1; : : : ; L. If Y0 2 Sm then ApY0 = ~X1 � � � � � ~XL with

~Xk = ~AkY0 ~Bk + ~BT
k Y0

~AT
k ; k = 1; : : : ; L:

If ~X = ~X1 � � � � � ~XL 2 LL
k=1 Sm then

A�p ~X =
LX

k=1

~Bk
~Xk

~Ak + ~AT
k
~Xk

~BT
k :

Evaluation of Ad and A�d. Let the scaled data matrices be ~Ak = Z
1=2
k Ak and ~Bk = BkZ

1=2
k ,

k = 1; : : : ; L. Pick j, 1 � j � L for which the mapping

H ! ~BjH ~Aj + ~AT
j H

~BT
j
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is invertible. Let Yd = Y1 � � � � � YL�1, then the computation of

~Z = ~Z1 � � � � � ~ZL = AdYd

involves the following steps

1. Let ~C =
Pj�1

k=1( ~BkYk ~Ak + ~AT
k Yk

~BT
k ) +

PL
k=j+1( ~BkYk�1 ~Ak + ~AT

k Yk�1
~BT
k ),

2. Compute ~Zj from ~Bj
~Zj
~Aj + ~AT

j
~Zj
~BT
j = � ~C:

3. Set ~Zk = Yk for k 6= j.

If ~Z = ~Z1�� � � ~ZL 2 LL
k=1 Sm, then Y1�� � ��YL�1 = A�d ~Z can be computed as follows.

1. Solve ~Aj
~P ~Bj + ~BT

j
~P ~AT

j = ~Zj for ~P ,

2. Yk = ~Zk � ~Ak
~P ~Bk � ~BT

k
~P ~AT

k , k = 1; : : : ; j � 1 and k = j + 1; : : : ; L.

Each of these four mappings can be evaluated in O(m3L) operations. To estimate the
number of iterations needed in the conjugate gradient method observe that A�dAd is the
identity transformation plus a term with rank O(m2). Therefore the entire mapping A�A
is a rank-O(m2) modi�cation of the identity, which implies that the conjugate gradient
algorithm converges in O(m2) steps (see [19]). The overall complexity to run the conjugate
gradient algorithm to completion is therefore O(m5L). In other words, by exploiting the
Kronecker structure of the equations, the conjugate gradient method leads to a reduction
of the O(m6L) bound of the previous section by one order of magnitude. Moreover, several
researchers have reported that with a good preconditioner, the conjugate gradient algorithm
typically converges in much less than N iterations if N is the number of unknowns (e.g.,
O(
p
N) iterations, see [25]). In the present case, it is therefore not unreasonable to expect

that the number of iterations in the conjugate gradient algorithm can be reduced to O(m),
especially since there is no need to run it until completion. This would bring the overall
complexity down to O(m4L).

We conclude this section with some remarks concerning preconditioning. The mapping
A is not the only possible choice. Finding a good preconditioner is equivalent to selecting a
mapping A such that A�A is close to the identity matrix. A simple method is as follows.

Evaluation of Ap and A�p. We can precede the evaluation of Ap by a linear transformation
M : Sm ! Sm computed by solving an equation of the form

Y0 =M(MY0)N +NT (MY0)M
T :

A heuristic choice that seems to work well in practice is to take M = ~Aj and N =
~Bj where j is the index for which kX�1

k k is maximal. Then (ApM)�(ApM) can be
expected to be closer to the identity mapping.
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Evaluation of Ad and A�d. In a similar way one can force A�dAd to be close to the identity
transformation by selecting the index j in the evaluation of ~L? to be the index for
which kZkk is maximal.

We have no doubt that there are more sophisticated methods of preconditioning for this
problem. On the other hand, we will see that this method is e�ective enough to bring
the average number of conjugate gradient iterations required per iteration to O(m), which
roughly speaking is the square root of the number of variables.

6 Some numerical experiments

Here we will give the results of two numerical experiments that con�rm the complexity
estimate of O(m4L1:5) for the problem (1).

We consider two families of problems. Both are of the form

minTr EP; Xk = AkP + PAT
k +Dk � 0; k = 1; : : : ; L; (32)

with dual problem

min
LX

k=1

Tr DkZk;
LX

k=1

ZkAk +AT
kZk = E; Zk � 0; k = 1; : : : ; L: (33)

In the �rst family, the problem data are randomly generated. The second family of problems
is derived from an application from control theory.

6.1 A family of random problems

Random data were generated as follows. The Lth inequality is 2P � I, or in other words
AL = I, DL = �I. To get the other inequalities we �rst form a random positive de�nite
matrix Asym

k = V T
k �kVk. Here �k is a diagonal matrix with diagonal elements uniformly

distributed in the interval (0; 1). The matrix Vk is an orthonormal matrix drawn from a
uniform distribution on the m �m orthogonal matrices. To Asym

k we add a random skew-
symmetric matrix Ass

k = Sk � ST
k where Sk has elements normally distributed with zero

mean and standard deviation one. The matrix Ak is then obtained as Ak = Asym
k + Ass

k .
Furthermore we take Dk = 0, k = 1; : : : ; L � 1 and E =

PL
i=1(Ai + AT

i ). With this choice
one has obvious primal and dual feasible solutions

P = I; Xk = Ak +AT
k ; Zk = I; k = 1; : : : ; L:

The parameter � was chosen to be 0:35, but in fact the conjugate gradient iterations were
continued until in addition the ratio (15) was no longer increasing. The parameter � was set
to � = 100, although for this problem family, the value of � did not greatly a�ect the results
(see section 6.3). The stopping criterion was a reduction of the initial duality gap by a factor
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m L
Total no. of c.g.

iterations

No. of outer

iterations

Average no. of

c.g. iterations

5 10 25 6.3 4.4
5 30 33 7.0 4.7
5 50 33 7.0 4.6
5 70 35 7.1 4.9
10 10 74 11.7 8.0
10 30 67 7.1 9.4
10 50 79 7.5 10.6
10 70 79 7.7 10.3
15 10 92 7.0 13.2
15 30 114 7.4 15.3
15 50 153 8.0 19.1
15 70 142 8.0 17.7
20 10 124 7.0 17.7
20 30 153 8.3 18.6
20 50 208 8.0 26.0
20 70 159 8.2 19.5

Table 1: Results of the �rst experiment: total number of conjugate gradient iterations,
number of outer iterations of the primal-dual algorithm, and average number of conjugate
gradient iterations per step of the primal-dual algorithm. Each �gure is the average of ten
randomly generated problems.

21



100

101

102

100 101 102

*

*

**
* *

*
*

*

*
*
*

*
*

*

*

* ***
*

**
**

***
* **

*
* ****

*
**

*

*
*

*
* *

*

*

*

***

*

*
*
*

*

*
**

*
*

*

*
*

*
*

*

*
*

*

*

*

*
*

*

*

*
*

*

* *
*

*

*
**

*

*
*

**

*

*

*
** *

**

*

*

*

*

*
*

*
*

*

**

*

*
*

*
*

*
*

*

*
*

*

*
*

*

*

*
*

*

*

*

*
* *

*

*

* *

*

**

*

*

*

*

*

*

*

*
**

**

*

*
*

*

*

*

*

0:6m1:1 L0:1

A
v
er
a
g
e
n
u
m
b
er
o
f
c.
g
.
it
er
a
ti
o
n
s.

Figure 1: First experiment. Average number of conjugate gradient iterations versus
0:6 m1:1 L0:1.
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Figure 2: First experiment. Total number of operations (up to a constant factor) vs.
2:9 m4:2 L1:2.
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of 1000. The results are listed in Table 1. Each entry is an average over ten instances of the
problem. For the largest problem the number of unknowns is m(m+1)=2 = 210 and in each
iteration the least-squares problem has size 14700 � 210.

From table 1 several interesting conclusions can be drawn.

1. The number of outer iterations in the primal-dual method is almost constant or at
least growing very slowly. Similar observations have been made for other potential
reduction methods (see e.g., [30, 22]). This implies that the determining factor in the
overall complexity is the computational cost of one iteration.

2. The number of conjugate gradient iterations grows linearly withm, which is the square-
root of the number of variables in the least squares system that is solved. This is
consistent with results reported in [25].

A least squares �t of these points to a curve of the form �n�L
 results in � = 0:56,
� = 1:06 and 
 = 0:11. Figure 1 shows a scatter plot of the average number of conjugate
gradient iterations per outer iteration versus 0:6m1:1L0:1 over the 160 experiments.

3. Recall that the number of operations required per conjugate gradient iteration is
O(m3L). The total number of operations is therefore proportional to m3L times the
total number of conjugate gradient iterations. (Each conjugate gradient iteration re-
quires 4L m�m matrix multiplies and the solution of four m�m Sylvester equations,
so in fact the constant here is not too big, provided L is not very small.)

If we �t this number to a function of the form �m�L
 we obtain � = 2:9, � =
4:2 and 
 = 1:2. Figure 2 shows a scatter plot of m3L times the total number of
conjugate gradient iterations required for convergence versus 2:9m4:2L1:2 over the 160
experiments.

Note that 2:9m4:2L1:2 predicts the e�ort typically within �25%. Even in the worst
case, the error is only a factor of 2 or 3.

It is also interesting to compare this with the worst-case complexity of the ellipsoid
method when applied to the same problem. The number of iterations in the ellipsoid
method is O(m4) (i.e., the number of unknows squared, see [23]), and in this problem
the cost of each iteration is O(m3L). This results in an overall complexity of O(m7L),
much higher than in the interior-point method described here.

6.2 A family of problems from system theory

The same experiments are now repeated for a family of problems from system theory. We
�rst give some general background for the problems. We consider a time varying linear
system described by

dx

dt
= A(t)x(t); y = cTx (34)
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d2
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dp
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kp

mp

Figure 3: Mechanical system with p masses, springs and dampers. The masses and dampers
are constant with unit value. Some of the springs can vary arbitrarily over the range [0:9; 1:1];
the remaining springs are �xed with unit value.

where the m�m matrix A(t) is known to lie in the convex hull of L� 1 matrices:

A(t) 2 CofA1; : : : ; AL�1g (35)

for all t 2 R. (This is called a linear di�erential inclusion.)
We want to bound the maximum value of the output y given a bound on the norm of the

initial state, using a quadratic Lyapunov function. The following theorem is readily derived
from the results of [9]:

Theorem 6 Suppose that (34) and (35) hold, and in addition kx(0)k � 1. Then for all
t � 0, jy(t)j � � where

� = min
AiP + PAT

i � 0; i = 1; : : : ; L� 1
P � I

Tr ccTP:

(In fact, � is the best bound that can be obtained using a quadratic Lyapunov function.)
Therefore, the problem of computing � is of the form (32).

Now we can describe the speci�c family of problems we consider. Figure 3 shows a
mechanical system consisting of p masses, springs, and dampers. The masses and dampers
are constant with value one. Some of the springs, however, can vary arbitrarily with time,
between the limits 0:9 and 1:1. The remaining springs are �xed with value one. The output
y that concerns us is the displacement of the pth mass. For this problem, we have m = 2p
and L = 2r + 1, where r is the number of springs that vary.

In our experiments we compute the bound � for several values of p and r (which results
in several values of m and L). For these problems there are no obvious feasible solutions
that can be used to start the algorithm. In order to use initial points that could be fairly
compared across di�erent values of m and L, we take the primal and dual central pair with
duality gap equal to mL as the starting points, i.e., X(0) = X�(mL) and Z(0) = Z�(mL).
The stopping criterion is again a reduction of the initial duality gap by a factor of 1000 (i.e.,
� = 0:001mL).
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m = 2p L

Indices of the

time-varying

springs

Total no. of c.g.

iterations

No. of outer

iterations

Average no. of

c.g. iterations

4 3 1 79 9 8.8
4 5 1,2 93 10 9.3
6 3 1 163 11 14.8
6 5 1,2 224 12 18.7
6 9 1,2,3 230 12 19.2
8 3 1 200 12 16.7
8 5 1,2 259 12 21.6
8 9 1,2,3 377 13 29.0
8 17 1,2,3,4 641 16 40.1
10 3 1 213 13 16.4
10 5 1,2 320 14 22.9
10 9 1,2,3 489 14 34.9
10 17 1,2,3,4 1040 18 57.8
12 3 1 251 14 17.9
12 5 1,2 273 14 19.5
12 9 1,2,3 381 16 23.8
12 17 1,2,3,4 858 18 47.7

Table 2: Results of the second experiment: total number of conjugate gradient iterations,
number of outer iterations of the primal-dual algorithm, and average number of conjugate
gradient iteriations per step of the primal-dual algorithm.

For this family of problems, the parameter � has a greater e�ect on convergence than
for the randomly generated problems. Large values of � (e.g., � = 100) resulted in slower
convergence than smaller values. Table 2 give the results for the case � = 2. For this family
of problems, the best �t to the total number of operations is 9:8m4:0L1:7. Figure 4 shows
that this expression predicts the total number of operations very well: the average prediction
error is about 20%.

6.3 In
uence of the parameter �

In this section we study the in
uence of the parameter � on the primal dual algorithm. We
take an instance of the random problem of section 6.1 with m = 4 and L = 2, while varying
the parameter � and the initial pair. One of the initial points lies on the central path, while
the other four lie o� the central path at increasing distances.
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Figure 4: Second experiment. Total number of operations (up to a constant factor) vs.
9:8 m4:0 L1:7.

Figure 5 shows the trajectories of the primal dual algorithm in a two-dimensional plane
showing duality gap hX;Zi and the function  (X;Z). Thus the horizontal axis shows the
duality gap on a logarithmic scale, and the vertical axis shows the deviation from centrality
(measured in units of 3.26 Newton steps, from our interpretation (7)). From (8), the level
curves of � are straight lines in these plots, with a slope that depends on �. These are shown
with the dotted lines.

Some observations from these plots are:

{ After the �rst iteration, the potential function decreases quite linearly. The typical
reduction in � per iteration increases with �.

{ Increasing � places more weight on cost reduction (versus centering) and will at �rst
speed up convergence. (For large values of �, the algorithm behaves like Dikin's a�ne
scaling method [11]; convergence slows down again, because the iterates come too close
to the boundary.)

{ The paths approach a limiting value of  that depends on �. In other words, the
centrality of the iterates eventually remains nearly constant: for � = 1, the iterates
eventually remain in or very near the region of quadratic convergence surrounding the
central path; for � = 100, the iterates remain about 33 Newton steps away from the
region of quadratic convergence.
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Once this limiting value of  has been reached, the decrease in � at each iteration is
entirely due to decrease in duality gap. We do not entirely understand the mechanism
involved here, but it seems to be linked to the use of an almost exact plane search.
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Figure 5: Convergence of the algorithm for four values of �. Each plot shows the paths
followed by the algorithm for �ve di�erent initial points (full lines). The dashed line corre-
sponds to the central path,  (X;Z) measures the deviation from the central path and the
dotted lines are the level curves of the potential function �(X;Z).

7 Conclusions

7.1 Extension to Riccati inequalities

The ideas presented here can be extended to matrix inequalities other than those of the
Lyapunov type. As an example consider a problem constrained by L algebraic Riccati
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inequalities:

minTr EP; �AT
kP � PAk � PBkR

�1
k BT

k P �Qk � 0; k = 1; : : : ; L;

where E, Ak, Qk 2 Rm�m, Bk 2 Rm�l, Rk 2 Rl�l, k = 1; : : : ; L and Qk and Rk are
symmetric with Rk positive de�nite. As mentioned in section 1, we can express this problem
as

minTr EP; s.t. �AP �Bk + �BT
k P

�AT + �Dk � 0; k = 1; : : : ; L: (36)

where

�A =

"
I

0

#
;

�Bk =
h
�Ak Bk

i
;

�Dk =

"
�Qk 0
0 Rk

#
:

For this problem the forward mapping Ap is de�ned as

Ap
~P =

LM
k=1

~Ak
~P ~Bk + ~BT

k
~P ~AT

k

where ~Ak = X
�1=2
k

�A, ~Bk = �BkX
�1=2
k , k = 1: : : : ; L. The adjoint A�p is

A�p
LM

k=1

~Zk = ~AT
k
~Zk

~BT
k + ~Bk

~Zk
~Ak:

Problem (36) can now be converted into the conic form by taking as subspaces L and L?,

L =
n
Ap

~P
��� ~P 2 Smo ; L? =

(
~Z 2

LM
k=1

Sm+l

����� A�p ~Z = 0

)
:

One can choose for D

D =
LM

k=1

"
�Qk 0
0 Rk

#
;

and for C any matrix of the form C 2 LL
k=1 Sm+l for which A�pC = E.

We may assume that l � m. Then we see that both Ap and A�p can be computed at
given points in O(m3L) operations. An explicit representation Ad for the subspace L? can
be derived in similar way as we did for Lyapunov inequalities. Both Ad and its adjoint can
be evaluated in O(m3L) operations. This implies that one can solve optimization problems
over Riccati inequalities at the same low cost as problems with Lyapunov inequalities.

E�cient algorithms for problem (36) allow us to extend traditional, single-model LQR
(Linear Quadratic Regulator) controllers to the multiple model case. This will be the subject
of a forthcoming paper.
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We note that solving the optimization problem (36) requires the solution of Lyapunov
equations, but does not require the solution of any Riccati equations. In fact, by taking
E = I and L = 1, the solution P opt of the optimization problem (36) is the solution of the
algebraic Riccati equation ATP + PA + PBR�1BTP + Q = 0 for which A+ BR�1BTP is
stable,i.e., all eigenvalues have negative real part. The primal dual algorithm requires e�ort
O(m4) to compute P opt, which is only one order higher than conventional algorithms (see,
e.g., [5]). (See [9] for a complete discussion of the primal-dual matrix inequality formulation
of the classical LQR problem.)

7.2 Possible modi�cations of the method

The interior-point method itself can also be extended in several directions. One possibil-
ity is to combine the algorithm with Ye's method [36] and its dual. The directions used
in Ye's method can be computed from the Newton directions used in the present paper,
and the two-dimensional plane search would then be replaced by a four-dimensional search.
This algorithm coincides with the extension of Ye's method suggested by Nesterov and Ne-
mirovsky [30, Ch.4].

We have also already noted the important role the parameter � can play. The optimal
value of � is clearly problem dependent, so strategies for choosing it or adapting it during
the algorithm are certainly worth investigating (see, for example, [34]).

7.3 Extension to more general problems

In this section we make some brief remarks about how the algorithm presented in this paper
can be extended to the more general conic formulation of Nesterov and Nemirovsky [30]. In
this general context the cones in the primal and dual problems (2) and (3) are di�erent: the
cone in the dual problem is the dual of the cone in the primal problem. (We have not made
this distinction since P is self-dual.)

The primal-dual algorithm applies to cones admitting a �-logarithmically homogeneous
self-concordant barrier (see [30]). The parameter � of the barrier is equal to n in our case,
and determines the worst-case complexity (which is O(

p
�) in the general case).

If F and F � are the barriers for the cone and its dual, the primal-dual potential function
is de�ned as

(� + �
p
�) loghX;Zi + F (X) + F �(Z):

Again the term � loghX;Zi+F (X) +F �(Z) is bounded below, and attains its minimum for
points X;Z with Z = �(�=�)rF (X), X = �(�=�)rF (Z), which characterizes the central
path.

The complexity analysis of the algorithm given here remains valid in the general case.
The generalizations of the relevant results either follow immediately from the general theory
in [30] or can readily be extended from the results given in this paper.

29



8 Acknowledgments

We are indebted to Arkadii Nemirovskii, Florian Jarre, Michael Saunders, Michael Overton,
Jean-Pierre Haeberly, Gene Golub and Bart De Moor for useful discussions and comments
on an earlier version of this paper.

30



References

[1] I. Adler, M. G. C. Resende, G. Veiga, and N. Karmarkar, \An implementation of
Karmarkar's algorithm for linear programming", Mathematical Programming 44 (1989)
297{335.

[2] F. Alizadeh, \Combinatorial optimization with interior point methods and semi-de�nite
matrices", PhD thesis, University of Minnesota (October 1991).

[3] F. Alizadeh, \Optimization over the positive-de�nite cone: interior point methods and
combinatorial applications", in: P. Pardalos, ed., Advances in Optimization and Parallel
Computing (North-Holland, 1992).

[4] K. M. Anstreicher, \A combined phase I { phase II scaled potential algorithm for linear
programming", Mathematical Programming 52 (1991) 429{439.

[5] W. F. Arnold and A. J. Laub, \Generalized eigenproblem algorithms and software for
algebraic Riccati equations", Proceedings of the IEEE 72 (1984) 1746{1754.

[6] R. Bellman and K. Fan, \On systems of linear inequalities in Hermitian matrix vari-
ables", in: V. L. Klee, ed., Convexity, Volume 7 of The Proceedings of Symposia in
Pure Mathematics, (American Mathematical Society, 1963) pp. 1{11.

[7] A. Ben Tal and A. Nemirovskii, \Interior point polynomial time method for truss topol-
ogy design", Technical Report 3/92, Faculty of Industrial Engineering and Management,
Technion, Israel Institute of Technology (1992).

[8] S. Boyd and L. El Ghaoui, \Method of centers for minimizing generalized eigenvalues",
Linear Algebra and Applications (special issue on Numerical Linear Algebra Methods
in Control, Signals and Systems) 188 (1993) 63{111.

[9] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in
System and Control Theory, Volume 15 of Studies in Applied Mathematics (SIAM,
Philadelphia, PA, 1994).

[10] D. Den Hertog, C. Roos, and T. Terlaky, \A large-step analytic center method for
a class of smooth convex programming problems", SIAM Journal on Optimization 2
(1992) 55{70.

[11] I. Dikin, \Iterative solution of problems of linear and quadratic programming", Soviet
Mathematics Doklady 8 (1967) 674{675.

[12] R. Fletcher, \A nonlinear programming problem in statistics (educational testing)",
SIAM Journal on Scienti�c and Statistical Computing 2 (1981) 257{267.

31



[13] R. Fletcher, \Semide�nite matrix constraints in optimization", SIAM Journal on Con-
trol and Optimization 23 (1985) 493{513.

[14] R. M. Freund, \A potential-function reduction algorithm for solving a linear program
directly from an infeasible warm start", Mathematical Programming 52 (1991) 441{466.

[15] J. D. Gardiner, A. J. Laub, J. J. Amato, and C. B. Moler, \Solution of the Sylvester
matrix equation AXBT +CXDT = E", ACM Transactions on Mathematical Software
18 (1992) 223{231.

[16] P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright, \On projected
Newton barrier methods for linear programming and an equivalence to Karmarkar's
projective method", Mathematical Programming Studies 36 (1986) 183{209.

[17] D. Goldfarb and S. Mehrotra, \A relaxed version of Karmarkar's method", Mathemat-
ical Programming 40 (1988) 289{315.

[18] D. Goldfarb and S. Mehrotra, \A self-correcting version of Karmarkar's algorithm",
SIAM Journal on Numerical Analysis 26 (1989) 1006{1015.

[19] G. Golub and C. Van Loan, Matrix Computations (Johns Hopkins University Press,
Baltimore, 1989).

[20] G. Golub, S. Nash, and C. Van Loan, \A Hessenberg-Schur method for the matrix
problem AX + XB = C", IEEE Transactions on Automatic Control 24 (1979) 909{
913.

[21] C. C. Gonzaga, \Path-following methods for linear programming", SIAM Review 34
(1992) 167{224.

[22] C. C. Gonzaga and M. J. Todd, \An O(
p
nL)-iteration large-step primal-dual a�ne

algorithm for linear programming", SIAM Journal on Optimization 2 (1992) 349{359.

[23] M. Gr�otschel, L. Lov�asz, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Volume 2 of Algorithms and Combinatorics (Springer-Verlag, 1988).

[24] F. Jarre, \An interior-point method for minimizing the maximum eigenvalue of a linear
combination of matrices", SIAM Journal on Control and Optimization 31 (1993) 1360{
1377

[25] K. Kim and J. L. Nazareth, \Implementation of a primal null-space a�ne scaling method
and its extensions", Technical report, Department of Pure and Applied Mathematics,
Washington State University (1992).

[26] I. J. Lustig, \Feasibility issues in a primal-dual interior-point method for linear pro-
gramming", Mathematical Programming 49 (1991) 145{162.

32



[27] S. Mehrotra, \Implementations of a�ne scaling methods: approximate solutions of
systems of linear equations using preconditioned conjugate gradient methods, ORSA
Journal on Computing 4 (1992) 103{118.

[28] Renato D. C. Monteiro and Ilan Adler, \Interior path-following primal-dual algorithms.
part II: convex quadratic programming", Mathematical Programming 44 (1989) 43{66.

[29] Yu. Nesterov and A. Nemirovsky, Optimization over positive semide�nite matrices:
Mathematical background and user's manual, (USSR Acad. Sci. Centr. Econ. & Math.
Inst., 32 Krasikova St., Moscow 117418 USSR, 1990).

[30] Yu. Nesterov and A. Nemirovsky, Interior-point polynomial methods in convex pro-
gramming, Volume 13 of Studies in Applied Mathematics (SIAM, Philadelphia, PA,
1994).

[31] M. Overton, \On minimizing the maximum eigenvalue of a symmetric matrix", SIAM
Journal on Matrix Analysis and Applications 9 (1988) 256{268.

[32] M. Overton, \Large-scale optimization of eigenvalues", SIAM Journal on Optimization
2 (1992) 88{120.

[33] C. C. Paige and M. S. Saunders, \LSQR: An algorithm for sparse linear equations and
sparse least squares", ACM Transactions on Mathematical Software, 8 (1982) 43{71.

[34] J.-P. Vial, \Computational experience with a primal-dual interior-point method for
smooth convex programming", Technical report, D�epartement d'Economie Commerciale
et Industrielle, Universit�e de Gen�eve (1992).

[35] G. A. Watson, \Algorithms for minimum trace factor analysis", SIAM Journal on
Matrix Analysis and Applications 13 (1992) 1039{1053.

[36] Y. Ye, \An O(n3L) potential reduction algorithm for linear programming", Mathemat-
ical Programming 50 (1991) 239{258.

33



A Proofs

A.1 Proof of Theorem 1

The feasible sets in problem (6) are bounded and convex with nonempty relative interior.
Moreover the objective function F (X) + F (Z) is a strictly convex function, and therefore
the central points are the unique points that satisfy the optimality conditions

�X�1 + �C 2 L?; �Z�1 + �D 2 L;
or,

(1=�)X�1 2 L? + C; (1=�)Z�1 2 L+D;

for some value of the Lagrange multiplier �, along with the feasibility conditions

X 2 P \ (L+D); Z 2 P \ (L? + C); hX;Zi = �:

Now note that ifX;Z satisfy the above conditions, then so does the pair (1=�)Z�1; (1=�)X�1.
From uniqueness we conclude that

X�(�) = (1=�)Z�(�)�1; Z�(�) = (1=�)X�(�)�1;

and therefore � = n=�.
2

A.2 Proof of Theorem 3

Lemma 1 If x 2 Rn and kxk < 1, then
Pn

i=1 xi �
Pn

i=1 log(1 + xi) � �kxk � log(1 � kxk):
Proof. (see [21])

nX
i=1

xi �
nX
i=1

log(1 + xi) =
nX
i=1

xi �
nX
i=1

xi +
1X
k=2

(�1)k
k

nX
i=1

xki

�
1X
k=2

1

k

nX
i=1

(x2i )
k=2

�
1X
k=2

1

k
kxkk = � log(1� kxk)� kxk;

where the second inequality follows from the fact that
Pn

i=1 a
p
i � (

Pn
i=1 ai)

p if ai � 0,
i = 1; : : : ; n and p � 1. 2

Lemma 2 If � > 0 and X and Z are strictly feasible, then

(n=�)hX;Zi + F (X) + F (Z) � n+ n log(n=�):

If in addition k(n=�)X1=2ZX1=2 � Ik = � < 1, then

(n=�)hX;Zi + F (X) + F (Z) � n + n log(n=�) � �� log(1 � �) (37)
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Proof. Let �1; : : : ; �n be the eigenvalues of (n=�)XZ � I. Strict feasibility of X and Z

implies �i > �1, i = 1; : : : ; n. We have

(n=�)hX;Zi + F (X) + F (Z) = n+ n log(n=�) +
nX
i=1

�i �
nX
i=1

log(1 + �i)

� n+ n log(n=�);

because �i � log(1 + �i) � 0 if �i > �1. Inequality (37) is an immediate consequence of
Lemma 1 if k(n=�)X1=2ZX1=2 � Ik = (

Pn
i=1 �

2
i )

1=2 = � < 1. 2

Proof of Theorem 3. We will prove the theorem by showing that

max
n 


X�1=2�XNX�1=2




 ; 


Z�1=2�ZNZ�1=2



 o � �: (38)

where �WN = �XN � �ZN . From this it evidently follows that kW�1=2�WNW�1=2k � �.
The optimality condition for the least squares problem (17) is that

Wr�(W )W � �WN 2 W (L? � L) W:

From this one can see that

�X = (1=�) (Z�1�ZNZ�1 + Z�1) 2 L+D;

�Z = (1=�) (X�1�XNX�1 +X�1) 2 L? + C;

where � = (n + �
p
n)=hX;Zi. Assume that (38) is false, then both Z�1=2�ZNZ�1=2 + I 2

Int P and X�1=2�XNX�1=2 + I 2 Int P, because � < 1. Therefore �W = �X � �Z 2 Int P
and both �X and �Z are strictly feasible. Moreover

�Z1=2 �XZ1=2 � I = Z�1=2�ZNZ�1=2 �X1=2 �ZX1=2 � I = X�1=2�XNX�1=2;

which, from Lemma 2, implies

�hX; �Zi+ F (X) + F ( �Z) � n+ n log �� � � log(1� �) (39)

�h �X;Zi+ F ( �X) + F (Z) � n+ n log �� � � log(1� �) (40)

On the other hand, we also have (from the �rst part of Lemma 2)

�h �X; �Zi+ F ( �X) + F ( �Z) � n + n log �:

Subtracting this from the sum of (39) and (40) we get

�hX;Zi + F (X) + F (Z) � n+ n log �� 2� � 2 log(1� �)

�
p
n� log detXZ � n log(n+ �

p
n)� n loghX;Zi � 2� � 2 log(1� �): (41)
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Now �2� � 2 log(1� �) < 1=6 if � � 0:35 and therefore (41) would imply

 (X;Z) = n loghX;Zi � log detXZ � n log n

< n log(1 + �=
p
n)� �

p
n+ 1=6

� n(log(1 + 1=
p
n)� 1=

p
n) + 1=6

� �1

2
+

1

3
p
n
+ 1=6 � 0

where we made use of the fact that log(1 + x) � x� 1

2
x2+ 1

3
x3 for x > �1. The assumption

that (38) is false therefore leads to a contradiction because  (X;Z) � 0 for all strictly
feasible X, Z. 2

A.3 Proof of Theorem 4

We will show that
'(X � p�X;Z � q�Z) � '(X;Z)� �:

This will prove the theorem because, as we have seen, for all feasible ~W , �( ~W ) � '( ~W ),
with equality for ~W = W . This follows from the fact that ' is obtained from � by linearizing
the concave term around W . For s 2 R with W � s�W > 0, we have

'(W � s�W )� '(W )

= ��hZ �X; s�W i � log det(W � s�W ) + log detW

= �shr�(W ); �W i+ shrF (W ); �W i � log det(W � s�W ) + log detW

= �shr�(W ); �W i � shW�1; �W i � log det(W � s�W ) + log detW

= �shr�(W ); �W i � sTr (W�1=2 �WW�1=2)� log det(I � s W�1=2 �W W�1=2):

Let �1; : : : ; �2n be the eigenvalues of W�1=2 �W W�1=2, and de�ne � as

� = (
2nX
i=1

�2i )
1=2 =




W�1=2�WW�1=2



 :

Then from (15), we know that hr�(W ); �W i � ��, and hence

'(W � s�W )� '(W ) � �s��� s
2nX
i=1

�i � log
2nY
i=1

(1 � s�i)

� �s (� + 1)� � log(1 � s�)

where we have used Lemma 1 (hence the inequality is only valid for for �1=� < s < 1=�).

The upper bound is minimized for s = �
�(1 + �)

, which is precisely the value of p and q used

in the theorem. We therefore �nd with this value of s,

'(W � s�W )� '(W ) � �� + log(1 + �) = ��:
2
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