Generalized Chebyshev Inequalities and Semidefinite Programming

Lieven Vandenberghe

Electrical Engineering Department University of California Los Angeles

joint work with Stephen Boyd, Stanford University, Katherine Comanor, UCLA

Outline

- probability bounds via SDP
- proof from SDP duality
- geometrical interpretation
- examples and applications

Generalized Chebyshev inequalities

lower bounds on

$$\mathbf{Prob}(X \in C)$$

- ullet $X \in \mathbf{R}^n$ is a random variable with $\mathbf{E} X = a$, $\mathbf{E} X X^T = S$
- $C \subseteq \mathbf{R}^n$ is defined by quadratic inequalities

$$C = \{x \mid x^T A_i x + 2b_i^T x + c_i < 0, \ i = 1, \dots, m\}$$

cf. the classical Chebyshev inequality on R

Prob
$$(X < 1) \ge \frac{1}{1 + \sigma^2}$$

if
$$\mathbf{E} X = 0$$
, $\mathbf{E} X^2 = \sigma^2$

Probability bound via SDP

$$\begin{array}{lll} \text{minimize} & 1 - \sum_{i=1}^m \lambda_i \\ \text{subject to} & \mathbf{Tr} \, A_i Z_i + 2 b_i^T z_i + c_i \lambda_i \geq 0, & i = 1, \dots, m \\ & \sum_{i=1}^m \begin{bmatrix} Z_i & z_i \\ z_i^T & \lambda_i \end{bmatrix} \preceq \begin{bmatrix} S & a \\ a^T & 1 \end{bmatrix} \\ & \begin{bmatrix} Z_i & z_i \\ z_i^T & \lambda_i \end{bmatrix} \succeq 0, & i = 1, \dots, m \end{array}$$

- ullet an SDP with variables $Z_i \in \mathbf{S}^n$, $z_i \in \mathbf{R}^n$, $\lambda_i \in \mathbf{R}$
- optimal value is a sharp lower bound on $\mathbf{Prob}(X \in C)$
- can construct a distribution with $\mathbf{E} X = a$, $\mathbf{E} X X^T = S$ that attains the lower bound

The dual SDP

$$\begin{array}{ll} \text{maximize} & 1 - \mathbf{Tr}\,SP - 2a^Tq - r \\ \text{subject to} & \left[\begin{array}{cc} P & q \\ q^T & r - 1 \end{array} \right] \succeq \tau_i \left[\begin{array}{cc} A_i & b_i \\ b_i^T & c_i \end{array} \right], \quad i = 1, \ldots, m \\ & \tau_i \geq 0, \quad i = 1, \ldots, m \\ & \left[\begin{array}{cc} P & q \\ q^T & r \end{array} \right] \succeq 0 \\ \end{array}$$

- variables $P \in \mathbf{S}^n$, $q \in \mathbf{R}^n$, $r \in \mathbf{R}$, $\tau \in \mathbf{R}^m$
- optimal value is (the same) sharp lower bound on $\mathbf{Prob}(X \in C)$

Proof

classical proof: combine results derived in the 60s (by Isii, Marshall & Olkin, Karlin & Studden) with the S-procedure

SDP duality based proof

- dual SDP: maximizes a lower bound on $\mathbf{Prob}(X \in C)$, valid for all distributions with $\mathbf{E} X = a$, $\mathbf{E} X X^T = S$
- primal SDP: minimizes $\mathbf{Prob}(X \in C)$ over a set of discrete distributions with $\mathbf{E} X = a$, $\mathbf{E} X X^T = S$
- by strong duality, the optimal values are equal

Interpretation of dual SDP

dual feasibility: $P \in \mathbf{S}^n$, $q \in \mathbf{R}^n$, $r \in \mathbf{R}$, $\tau \in \mathbf{R}^m$ satisfy

$$\begin{bmatrix} P & q \\ q^T & r \end{bmatrix} \succeq 0, \quad \begin{bmatrix} P & q \\ q^T & r-1 \end{bmatrix} \succeq \tau_i \begin{bmatrix} A_i & b_i \\ b_i^T & c_i \end{bmatrix}, \quad \tau_i \geq 0, \quad i = 1, \dots, m$$

interpretation: $f(x) = x^T P x + 2q^T x + r$ satisfies $f(x) \ge 0$ and

$$x \notin C \Longrightarrow x^T A_i x + 2b_i^T x + c_i \ge 0 \text{ for some } i \Longrightarrow f(x) \ge 1$$

therefore $\mathbf{Prob}(X \not\in C) \leq \mathbf{E} f(X) = \mathbf{Tr} SP + 2a^Tq + r$

$$\mathbf{Prob}(X \in C) \ge 1 - \mathbf{Tr}\,SP - 2a^Tq - r$$

the dual SDP maximizes this lower bound

A result from linear algebra

if $Z \in \mathbf{S}^n$, $z \in \mathbf{R}^n$ satisfy

$$Z \succeq zz^T$$
, $\operatorname{Tr} AZ + 2b^T z + c \ge 0$

then there exist $v_1, \ldots, v_K \in \mathbf{R}^n$, $\alpha_1, \ldots, \alpha_K \geq 0$ such that

$$v_i^T A v_i + 2b_i^T z + c_i \ge 0, \quad \sum_{i=1}^K \alpha_i = 1, \quad \sum_{i=1}^K \alpha_i v_i = z, \quad \sum_{i=1}^K \alpha_i v_i v_i^T \le Z$$

interpretation (with $z = \mathbf{E} X$, $Z = \mathbf{E} X X^T$): if

$$\mathbf{E}(X^T A X + 2b^T X + c) \ge 0$$

then there is a discrete random variable Y with

$$Y^TAY + 2b^TY + c \ge 0$$
, $\mathbf{E}Y = \mathbf{E}X$, $\mathbf{E}YY^T \le \mathbf{E}XX^T$

constructive proof

- if $z^TAz + 2b^Tz + c \ge 0$, choose K = 1, $v_1 = z$, $\alpha_1 = 1$
- if $\lambda = z^T A z + 2b^T z + c < 0$, define w_i , μ_i as

$$\sum_{i=1}^{n} w_{i} w_{i}^{T} = Z - z z^{T}, \qquad \mu_{i} = w_{i}^{T} A w_{i}$$

with $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_r > 0 \ge \mu_{r+1} \ge \cdots \ge \mu_n$

choose K = 2r, and for $i = 1, \ldots, r$,

$$v_{i} = z + \beta_{i}w_{i} \qquad \alpha_{i} = \mu_{i}/((1 - \beta_{i}/\beta_{i+r})(\sum_{i=1}^{r} \mu_{i}))$$

$$v_{i+r} = z + \beta_{i+r}w_{i} \qquad \alpha_{i+r} = -\alpha_{i}\beta_{i}/\beta_{i+r}$$

where β_i , β_{i+r} are the two roots of

$$\mu_i \beta^2 + 2w_i^T (Az + b)\beta + \lambda = 0$$

Interpretation of primal feasibility

 $Z_i \in \mathbf{S}^n$, $z_i \in \mathbf{R}^n$, $\lambda_i \in \mathbf{R}$ satisfy

$$\operatorname{Tr} A_i Z_i + 2b_i^T z_i + c_i \lambda_i \ge 0, \quad \begin{bmatrix} Z_i & z_i \\ z_i^T & \lambda_i \end{bmatrix} \succeq 0, \quad i = 1, \dots, m$$
 (1)

$$\sum_{i=1}^{m} \begin{bmatrix} Z_i & z_i \\ z_i^T & \lambda_i \end{bmatrix} \preceq \begin{bmatrix} S & a \\ a^T & 1 \end{bmatrix}$$
 (2)

• from (1): if $\lambda_i > 0$, can construct a random variable Y_i with

$$\mathbf{E} Y_i = z_i / \lambda_i, \qquad \mathbf{E} Y_i Y_i^T \leq Z_i / \lambda_i, \qquad Y_i^T A_i Y_i + 2b_i^T Y_i + c_i \geq 0$$

• from (2): define X with $\mathbf{E}X = a$, $\mathbf{E}XX^T = S$

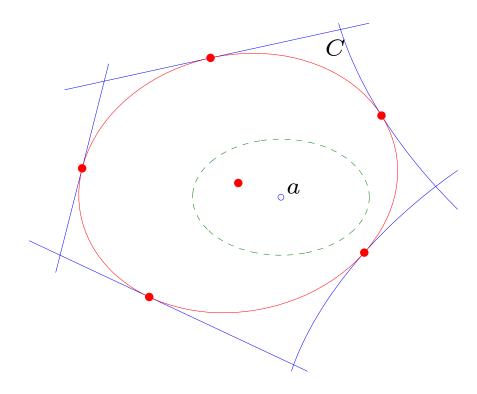
$$X = Y_i$$
 with probability $\lambda_i \implies \mathbf{Prob}(X \not\in C) \ge \sum_{i=1}^m \lambda_i$

Interpretation of primal SDP

$$\begin{array}{lll} \text{minimize} & 1 - \sum_{i=1}^m \lambda_i \\ \text{subject to} & \mathbf{Tr} \, A_i Z_i + 2 b_i^T z_i + c_i \lambda_i \geq 0, & i = 1, \dots, m \\ & \sum_{i=1}^m \begin{bmatrix} Z_i & z_i \\ z_i^T & \lambda_i \end{bmatrix} \preceq \begin{bmatrix} S & a \\ a^T & 1 \end{bmatrix} \\ & \begin{bmatrix} Z_i & z_i \\ z_i^T & \lambda_i \end{bmatrix} \succeq 0, & i = 1, \dots, m \end{array}$$

interpretation: minimize $\mathbf{Prob}(X \in C)$ over discrete distributions that satisfy $\mathbf{E}\,X = a, \; \mathbf{E}\,XX^T = S$

Complementary slackness



- $a = \mathbf{E} X$; dashed line shows $\{x \mid (x-a)^T (S-aa^T)^{-1} (x-a) = 1\}$
- lower bound on $\mathbf{Prob}(X \in C)$ is 0.3992, achieved by distribution shown in red
- ellipse is defined by $x^T P x + 2q^T x + r = 1$

Geometrical interpretation of dual problem

for a=0, S=I, dual problem is equivalent to

minimize
$$\operatorname{Tr} P + x_c^T P x_c$$
 subject to $\mathcal{E} \subseteq \operatorname{cl} C$ $P \succ 0$

where ${\cal E}$ is the ellipsoid

$$\mathcal{E} = \{x \mid (x - x_c)^T P (x - x_c) \le 1\}$$

an extremal ellipsoid enclosed in a (possibly nonconvex) set C

Two-sided Chebyshev inequality

$$C = (-1, 1) = \{x \in \mathbf{R} \mid x^2 < 1\}, \qquad \mathbf{E} X = a, \qquad \mathbf{E} X^2 = s$$

primal SDP (variables λ , Z, $z \in \mathbb{R}$)

minimize
$$1-\lambda$$
 subject to $Z \geq \lambda$
$$0 \preceq \begin{bmatrix} Z & z \\ z & \lambda \end{bmatrix} \preceq \begin{bmatrix} s & a \\ a & 1 \end{bmatrix}$$

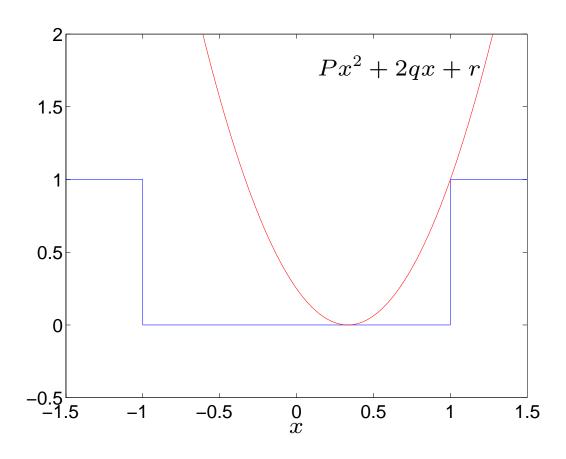
optimal value

$$\inf \mathbf{Prob}(X^2 < 1) = \begin{cases} 0 & 1 \le s \\ 1 - s & |a| \le s < 1 \\ (1 - |a|)^2 / (s - 2|a| + 1) & s < |a| \end{cases}$$

reduces to two-sided Chebyshev inequality if a=0

example: $a = \mathbf{E} X = 0.4$, $s = \mathbf{E} X^2 = 0.2$: $\mathbf{Prob}(X^2 < 1) \ge 0.9$

achieved by distribution $X = \left\{ \begin{array}{ll} 1 & \text{with probability } 0.1 \\ 1/3 & \text{with probability } 0.9 \end{array} \right.$



Extension to R^n

$$C = \{x \in \mathbf{R}^n \mid x^T x < 1\}, \qquad a = \mathbf{E} X, \qquad S = \mathbf{E} X X^T$$

primal SDP (variables λ , $Z \in \mathbf{S}^n$, $z \in \mathbf{R}^n$)

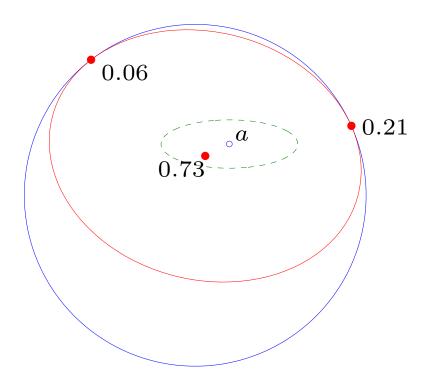
$$\begin{array}{ccc} \text{minimize} & 1-\lambda \\ \text{subject to} & \mathbf{Tr}\,Z \geq \lambda \\ & 0 \preceq \left[\begin{array}{cc} Z & z \\ z & \lambda \end{array} \right] \preceq \left[\begin{array}{cc} S & a \\ a^T & 1 \end{array} \right]$$

dual SDP (variables $P \in \mathbf{S}^n$, $q \in \mathbf{R}^n$, $r \in \mathbf{R}$, $\tau \in \mathbf{R}$)

$$\begin{array}{ll} \text{maximize} & 1 - \mathbf{Tr} \, SP - 2a^T q - r \\ \text{subject to} & \left[\begin{array}{cc} P - \tau I & q \\ q^T & r + \tau - 1 \end{array} \right] \succeq 0, \qquad \left[\begin{array}{cc} P & q \\ q^T & r \end{array} \right] \succeq 0, \qquad \tau \geq 0 \\ \end{array}$$

example

$$C = \{x \in \mathbf{R}^n \mid x^T x < 1\}, \qquad a = \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix}, \qquad S = \begin{bmatrix} 0.20 & 0.06 \\ 0.06 & 0.11 \end{bmatrix}$$



distribution achieves lower bound $\mathbf{Prob}(X^TX < 1) \geq 0.73$

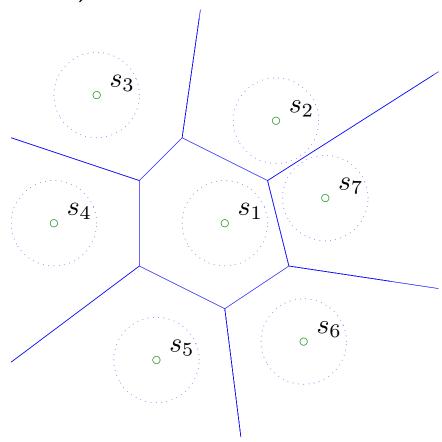
Detection example

$$x = s + v$$

- $x \in \mathbf{R}^n$: received signal
- s: transmitted signal $s \in \{s_1, s_2, \dots, s_N\}$ (one of N possible symbols)
- v: noise with $\mathbf{E} v = 0$, $\mathbf{E} v v^T = \sigma^2 I$

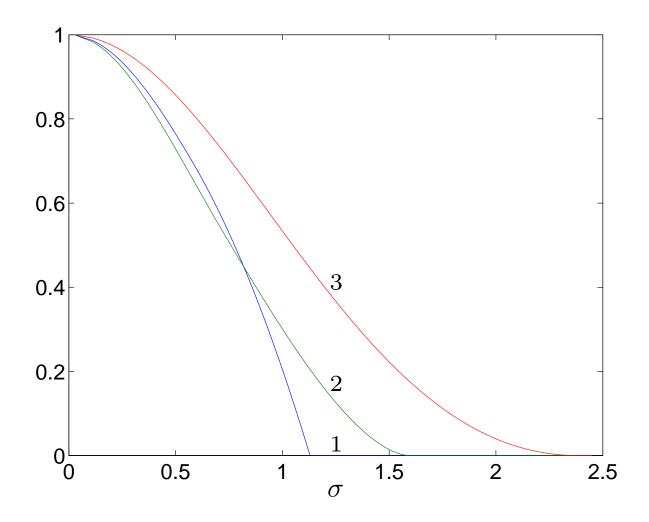
detection problem: given observed value of x, estimate s

example (n=2, N=7)

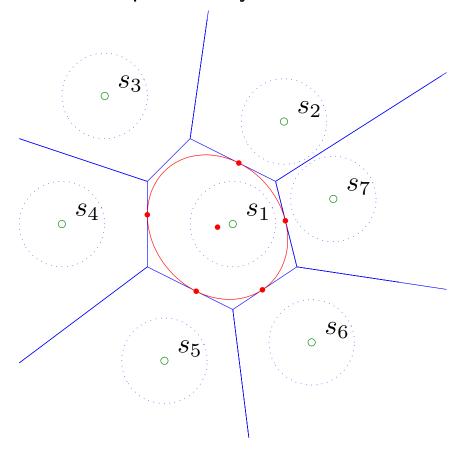


- ullet detector selects symbol s_k closest to received signal x
- ullet correct detection if s_k+v lies in the Voronoi region around s_k

SDP lower bounds on probability of correct detection of s_1 , s_2 , s_3



example ($\sigma = 1$): bound on probability of correct detection of s_1 is 0.205



- ullet solid circles: distribution with probability of correct detection 0.205
- ullet ellipse is defined by $x^TPx + 2q^Tx + r = 1$

Detection with unequal noise covariances

$$x = s + v$$

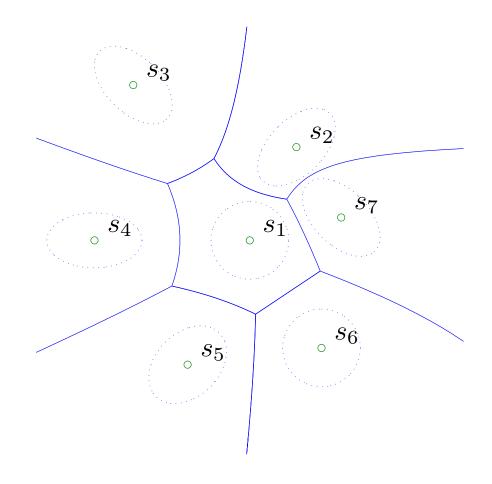
- $x \in \mathbf{R}^n$: received signal
- transmitted signal $s \in \{s_1, s_2, \dots, s_N\}$
- v: noise with $\mathbf{E} v = 0$, $\mathbf{E} v v^T = \Sigma_k$ if symbol s_k was sent

detector: given observed value of x, choose s_k if

$$(x - s_k)^T \Sigma_k^{-1} (x - s_k) < (x - s_j)^T \Sigma_j^{-1} (x - s_j), \qquad j \neq k$$

- ullet a set of N-1 indefinite quadratic inequalities
- ullet maximum-likelihood detector if v is Gaussian

example (n=2, m=7)



dashed ellipses are the sets $\{x \mid (x - s_k)^T \Sigma_k^{-1} (x - s_k) = 1\}$

lower bound on probability of correct detection of s_1 is 0.145



- ullet solid circles: distribution with probability of correct detection 0.145
- ullet ellipse is defined by $x^TPx + 2q^Tx + r = 1$

Hypothesis testing based on moments

based on observed value of $X \in \mathbf{R}^n$, choose one of two hypotheses:

1.
$$\mathbf{E} X = a_1, \ \mathbf{E} X X^T = S_1$$

2. **E**
$$X = a_2$$
, **E** $XX^T = S_2$

randomized detector: a function $t: \mathbf{R}^n \to [0,1]$; if we observe x, we choose hypothesis 1 with probability t(x), hypothesis 2 with probability 1-t(x)

worst-case probability of error

- 1. false positive: $P_{\text{fp}} = \sup \{ \mathbf{E} t(X) \mid \mathbf{E} X = a_2, \ \mathbf{E} X X^T = S_2 \}$
- 2. false negative: $P_{\text{fn}} = \sup\{1 \mathbf{E} t(X) \mid \mathbf{E} X = a_1, \ \mathbf{E} X X^T = S_1\}$

minimax detector: t that minimizes $\max\{P_{\rm fp}, P_{\rm fn}\}$

upper bounds on P_{fp} , P_{fn} : suppose

$$f_1(x) = x^T P_1 x + 2q_1^T x + r_1, \qquad f_2(x) = x^T P_2 x + 2q_2^T x + r_2$$

satisfy $f_1(x) \leq t(x) \leq f_2(x)$

$$P_{\text{fp}} = \sup \{ \mathbf{E} t(X) \mid \mathbf{E} X = a_2, \ \mathbf{E} X X^T = S_2 \}$$

$$\leq \mathbf{Tr} S_2 P_2 + 2a_2^T q_2 + r_2$$

$$P_{\text{fn}} = \sup \{ 1 - \mathbf{E} t(X) \mid \mathbf{E} X = a_1, \ \mathbf{E} X X^T = S_1 \}$$

$$\leq 1 - \mathbf{Tr} S_1 P_1 - 2a_1^T q_1 - r_1$$

minimax detector design (variables t(x), P_1 , P_2 , q_1 , q_2 , r_1 , r_2)

minimize
$$\max\{\mathbf{Tr}\,S_2P_2+2a_2^Tq_2+r_2,1-\mathbf{Tr}\,S_1P_1-2a_1^Tq_1-r_1\}$$
 subject to
$$x^TP_1x+2q_1^Tx+r_1\leq t(x)\leq x^TP_2x+2q_2^Tx+r_2$$

$$0\leq t(x)\leq 1$$

after eliminating t:

minimize
$$\max\{\mathbf{Tr}\,S_2P_2+2a_2^Tq_2+r_2,1-\mathbf{Tr}\,S_1P_1-2a_1^Tq_1-r_1\}$$
 subject to
$$x^TP_1x+2q_1^Tx+r_1\leq x^TP_2x+2q_2^Tx+r_2\\ x^TP_1x+2q_1^Tx+r_1\leq 1\\ x^TP_2x+2q_2^Tx+r_2\geq 0$$

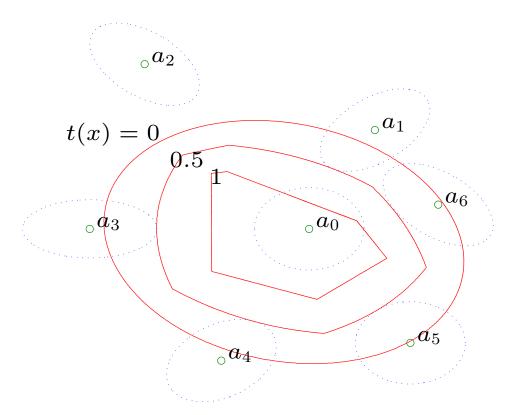
and choose t such that $\max\{0, f_1(x)\} \le t(x) \le \min\{1, f_2(x)\}$ an SDP with variables γ , P_1 , P_2 , q_1 , q_2 , r_1 , r_2 :

$$\begin{array}{ll} \text{minimize} & \gamma \\ \text{subject to} & \mathbf{Tr}\, S_2 P_2 + 2a_2^T q_2 + r_2 \leq \gamma \\ & 1 - \mathbf{Tr}\, S_1 P_1 - 2a_1^T q_1 - r_1 \leq \gamma \\ & \begin{bmatrix} P_2 - P_1 & q_2 - q_1 \\ (q_2 - q_1)^T & r_2 - r_1 \end{bmatrix} \succeq 0 \\ & \begin{bmatrix} P_1 & q_1 \\ q_1^T & r_1 - 1 \end{bmatrix} \preceq 0, \quad \begin{bmatrix} P_2 & q_2 \\ q_2^T & r_2 \end{bmatrix} \succeq 0 \\ \end{array}$$

example: two hypotheses

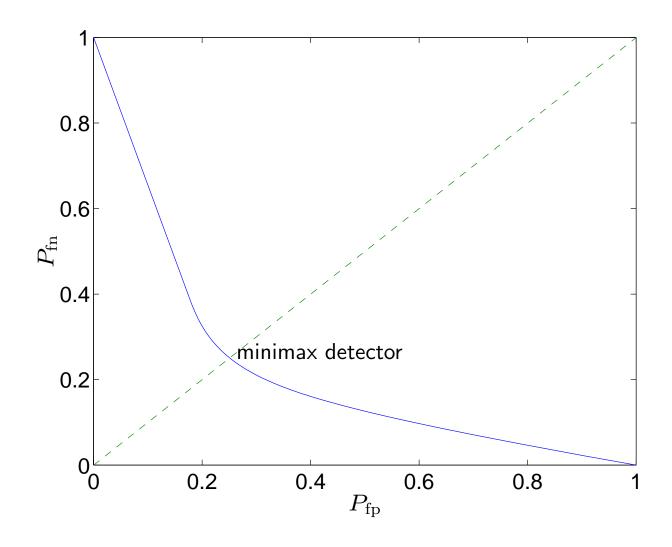
1.
$$\mathbf{E} X = a_0$$
, $\mathbf{E} X X^T = S_0$

2.
$$(\mathbf{E} X, \mathbf{E} X X^T) \in \{(a_1, S_1), \dots, (a_6, S_6)\}$$



contour lines of a minimax detector t(x) ($P_{\rm fn}=P_{\rm fp}=0.251$)

trade-off curve between P_{fp} and P_{fn}



Bounding manufacturing yield

manufacturing yield

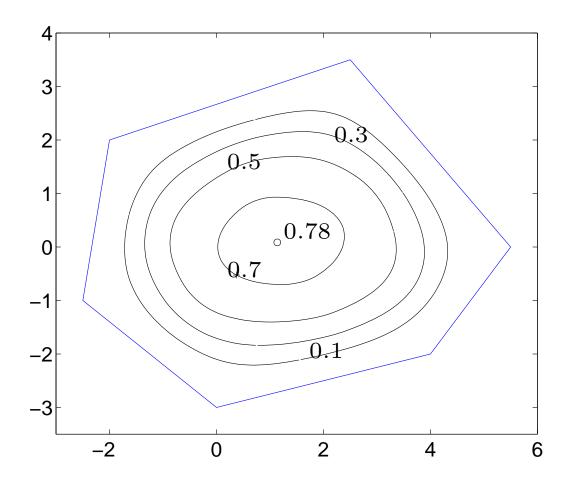
$$Y(a) = \mathbf{Prob}(a + w \in C)$$

- $a \in \mathbf{R}^n$: nominal or target value of design parameters
- $w \in \mathbb{R}^n$: manufacturing errors; zero mean random variable
- $C \subseteq \mathbf{R}^n$: specifications; set of acceptable values

lower bound on yield via SDP

- given $\mathbf{E} ww^T = \Sigma$
- C described by (possibly non-convex) quadratic inequalities

example $(\mathbf{E} ww^T = I)$



plot shows contour lines of lower bound on $Y(a) = \mathbf{Prob}(a + w \in C)$

Design centering

lower bound on yield Y(a),

$$\inf\{\mathbf{Prob}(a+w\in C)\mid \mathbf{E}w=0, \mathbf{E}ww^T=\Sigma\},\$$

is the optimal value of

$$\begin{array}{ll} \text{maximize} & 1 - \mathbf{Tr} \, \Sigma P - a^T P a - 2 a^T q - r \\ \text{subject to} & \left[\begin{array}{cc} P & q \\ q^T & r - 1 \end{array} \right] \succeq \tau_i \left[\begin{array}{cc} A_i & b_i \\ b_i^T & c_i \end{array} \right], \quad i = 1, \ldots, m \\ & \tau_i \geq 0, \quad i = 1, \ldots, m \\ & \left[\begin{array}{cc} P & q \\ q^T & r \end{array} \right] \succeq 0 \end{array}$$

- for fixed a, an SDP in variables P, q, r, τ
- can alternate maximization over P, q, r, τ and maximization over a (i.e., set $a=-P^{-1}q$)

Conclusion

- lower bounds on $\mathbf{Prob}(X \in C)$ where
 - $\mathbf{E} X$, $\mathbf{E} X X^T$ are given
 - C is defined by quadratic inequalities
- bounds are sharp; distribution that achieves may be unrealistic
- applications in classification and detection, design centering, . . .