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Generalized Chebyshev inequalities

lower bounds on
Prob(X € O)

e X ¢ R"is arandom variablewith EX =a, EXX?T = 8§

e C' C R" is defined by quadratic inequalities

C={x|ztAx+2b]2+¢;<0,i=1,...,m}

cf. the classical Chebyshev inequality on R

Prob(X < 1) > o2

ifEX =0, EX? =07



Probability bound via SDP

minimize  1—> " A
subject to Tr A;Z; +2b! z; + ¢ A >0, i=1,....,m

SEPHEN

e an SDP with variables Z; € S™, 2z, € R", \; € R
e optimal value is a sharp lower bound on Prob(X € C)

e can construct a distribution with EX = a, E XX? = S that attains
the lower bound



The dual SDP

maximize 1 —TrSP — 20 g —r

~ T; =1,...
subject to _qT r—l]_%[b’f Cz‘]’ 1=1,....m
7'7;20, 221, ,
P
-
s T]‘O

e variables P S", ¢ R", re R, T € R™

e optimal value is (the same) sharp lower bound on Prob(X € C)



Proof

classical proof: combine results derived in the 60s (by Isii, Marshall &
Olkin, Karlin & Studden) with the S-procedure

SDP duality based proof

e dual SDP: maximizes a lower bound on Prob(X € C), valid for all
distributions with EX =a, EXX!T =S

e primal SDP: minimizes Prob(X € (') over a set of discrete
distributions with EX = a, EXXT =S

e by strong duality, the optimal values are equal



Interpretation of dual SDP

dual feasibility: P € S", ¢ € R", r € R, 7 € R™ satisfy

[]; q]t(), [1; ! ]tn[Ai b] >0, i=1,...,m

T

qQ T qg r—1
interpretation: f(x) = 2! Px + 2¢’ xz + r satisfies f(z) > 0 and

v C =z Ajx +2b] x + ¢; > 0 for some i = f(x) > 1
therefore Prob(X ¢ C) < E f(X) = Tr SP + 2a’q+r

Prob(X ¢ C)>1—-TrSP —2a'q—r

the dual SDP maximizes this lower bound



A result from linear algebra

if Ze€S", z e R" satisfy
Z = zz21 Tr AZ +2b1z+¢>0

then there exist v1,...,vx € R", a1,...,ax > 0 such that
K K K
’U;FAUi + Qbfz +c; > 0, Z a; =1, Zaivi = 2, Zaiviv:f < Z

interpretation (with z =EX, Z=EXX7): if
E(XTAX +2b"X +¢) >0
then there is a discrete random variable Y with

YTAY +2b'Y +¢ >0, EY =EX, EYYT <EXX?



constructive proof

o if 2T A2+20T24+¢>0,choose K=1,v1 =2, a1 =1

o if \=2"Az+2b"2 + c <0, define w;, 1; as
n
Z wzw;r =7 — 221 L = w;.rsz-
1=1

with gy > po 2 - 2 pr > 02 ppy1 2+ 2 iy

choose K =2r,and fort=1,...,r,
vi = 2+ Biw; a; = pi /(1= Bi/Bitr)(Xizy 12))
Vitr = 2+ 6’i—|—rw7j O A _Oéiﬁi/ﬁi—i—r

where (3;, B;1, are the two roots of

13 + 2w (Az + )3+ X =0



Interpretation of primal feasibility
Z; €8S", z; € R", \; € R satisfy

>[4 i]=a ] 2)

i=1
e from (1): if A\; > 0, can construct a random variable Y; with

EY, = z;/ )\, EY,Y" =< Z;/ )\, YIAY; +20] Y +¢; >0
e from (2): define X with EX =q, EXXT =S

X =Y, with probability A; = Prob(X ¢ C) > Z



Interpretation of primal SDP

minimize  1—> " A
subject to Tr A;Z; + 2szZ +cA >0, 1= )

=355

interpretation: minimize Prob(X € (') over discrete distributions that
satisfy EX =q, EXX!T =S
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Complementary slackness

a = E X; dashed line shows {z | (z — a)!(S — aa’) "}z —a) =1}

lower bound on Prob(X € C) is 0.3992, achieved by distribution
shown in red

ellipse is defined by ' Pz + 2¢7x +r =1

11



Geometrical interpretation of dual problem

for a =0, S = I, dual problem is equivalent to
minimize Tr P + 2! Pz,
subjectto &£ CclC
P>0

where £ is the ellipsoid

E=1{z|(x—2)"'Plx —x.) <1}

an extremal ellipsoid enclosed in a (possibly nonconvex) set C
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Two-sided Chebyshev inequality

C=(-1,1)={zeR|z* <1}, EX=a EX°’=s
primal SDP (variables )\, Z, z € R)

minimize 1 — A
subject to Z > A

J =z S
o= 2 3]=[2

3

0 1 <s
inf Prob(X* <1)=<{ 1-s la] < s <1
(1 —laD?/(s = 2[a| + 1) s <]d]

optimal value

reduces to two-sided Chebyshev inequality if a =0
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example: a = EX =04, s=EX?=0.2: Prob(X?<1)>0.9

1 with probability 0.1

achieved by distribution X = { 1/3  with probability 0.9

2

Px? + 2qx +r
1.5+

0.5¢

0.5 1 1.5

Kot
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Extension to R"

C={zecR"|z'z <1}, a=EX,
primal SDP (variables A\, Z € S", z € R")

minimize 1 — A
subject to TrZ > A

Z z S
< <
2 3L
dual SDP (variables P € S", q € R", r € R, 1 € R)
maximize 1—TrSP —2a'q—r

. P—r7I q P
>_
subject to 7 1 ] >~ 0, [ T

S=EXX7T

3

15



example

C={rcR"|z'z <1}, azlg'gl, S:[

distribution achieves lower bound Prob(X1X < 1) > 0.73

0.20 0.06
0.06 0.11

|
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Detection example

r=S8S—+v

e r € R": received signal
e s: transmitted signal s € {s1,2,...,Sn} (one of IV possible symbols)

e v: noise with Ev =0, Evv! = 2]

detection problem: given observed value of z, estimate s
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example (n =2, N =7)

e detector selects symbol s closest to received signal x

e correct detection if s; + v lies in the Voronoi region around s;
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SDP lower bounds on probability of correct detection of sq,

52, S3

2.5
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example (0 = 1): bound on probability of correct detection of s7 is 0.205

e solid circles: distribution with probability of correct detection 0.205

e ellipse is defined by 2! Px + 2¢'z +r =1
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Detection with unequal noise covariances

r=S8—+v

e r € R": received signal
e transmitted signal s € {s1,52,...,SN}
e v: noise with Ev = 0, Evv! = 3, if symbol s;, was sent

detector: given observed value of x, choose s, if
(. —sp)' S Nz —s1) < (z — sj)TEj_l(x — S5), j#£k

e a set of N — 1 indefinite quadratic inequalities

e maximume-likelihood detector if v is Gaussian
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example (n =2, m =7)

dashed ellipses are the sets {z | (x — s3)T%; (7 — s3) = 1}
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lower bound on probability of correct detection of sy is 0.145

e solid circles: distribution with probability of correct detection 0.145

o ellipse is defined by 2/ Pz 4+ 2¢ 'z +r =1

23



Hypothesis testing based on moments

based on observed value of X € R", choose one of two hypotheses:

1. EX=0a, EXXT =5

2. EX =ap, EXXT =5,

randomized detector: a function ¢t : R” — [0, 1]; if we observe x, we

choose hypothesis 1 with probability ¢(x), hypothesis 2 with probability
1 —t(x)

worst-case probability of error
1. false positive: Py, = sup{E#(X) | EX = a3, EXX' = S5}
2. false negative: Py, =sup{l —Et(X)| EX =a;, EXXT =5}

minimax detector: ¢ that minimizes max{ P, P, }
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upper bounds on P, Py,: suppose
fi(x) = x! Pix + 2q1Tx + 71, fa(x) = ! Pyx + 2q2T:1: + 7y

satisfy f1(z) < H(z) < fo(2)

P, = sup{Et(X)| EX =as, EXX' =S,}
< TrS,P + 2a§q2 + 79

P, = sup{l-Et(X)|EX =qa;, EXX'T =5}
< 1-TrS P —2a g —r

minimax detector design (variables t(z), Py, P, q1, q2, 71, 72)
minimize  max{Tr So P, + 2aqu +1r9,1 —Tr 51 P — Qa{ql —7r1}

subject to ' Pz +2¢ix + 1 < t(z) < 2l Pox 4+ 2¢ix + 1o
0<t(x)<1
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after eliminating t¢:

minimize  max{Tr SoP; + 204t gy + 19,1 — Tr S1 P, — 2alqy — ri}
subject to 21 Pix +2¢ix +r < alPyx+2¢ix+ 1o

! Pix + 2q1T:13 +r <1

!l Por + 2quc +17r9 >0

and choose t such that max{0, fi(z)} < t(x) < min{l, fo(x)}
an SDP with variables v, P;, P, q1, g2, 71, 72!
minimize 7y
subject to Tr SoPs + zang + 79 < 7y
1 —TI'Slpl —2a1Tq1 — T S’}/
[ PB—-P @—q
>0
(22 —C]1)T ro—T1 |

Py qo
: ~ 0
[C];‘F 7“2]_

Py q1
<0
¢ -1 |~
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example: two hypotheses

1. EX =ap, EXXT = S,
2. (EX,EXXT) € {(a1,51),...,(as,56)}

contour lines of a minimax detector t(x) (P = Py, = 0.251)
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trade-off curve between P4,

1 T

and an

0.8

0.6

an

0.4

0.2 -

T
\

0.8
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Bounding manufacturing yield

manufacturing yield
Y(a) = Prob(a+w € C)

e a € R": nominal or target value of design parameters
e w € R"™: manufacturing errors; zero mean random variable

e C C R": specifications; set of acceptable values

lower bound on yield via SDP
o given Eww! =3

e (' described by (possibly non-convex) quadratic inequalities
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example (Eww! = TI)

2 0 2 4 6
plot shows contour lines of lower bound on Y (a) = Prob(a +w € C)
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Design centering

lower bound on yield Y (a),

inf{Prob(a+w € C) | Ew =0, Eww’

— Z},
is the optimal value of

maximize 1—TrXP —a'Pa—2alq—r

subject to R A b =1

unj _qT r — bT C; ) t=1,...,M
7, > 0, 1
P
g 7“] ’

e for fixed a, an SDP in variables P, g, v, T

e can alternate maximization over P, g, r, 7 and maximization over a
(i.e., set a = —P~1q)
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Conclusion

e lower bounds on Prob(X € C) where

— EX, EXXT are given
— (' is defined by quadratic inequalities

e bounds are sharp; distribution that achieves may be unrealistic

e applications in classification and detection, design centering, . . .
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