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Abstract-This paper shows that Lyapunov-based 
state feedback controller synthesis for piecewise-affine 
systems can he cast as an optimization problem subject 
to a set of LMIs analitically parameterized by a vector. 
Furthermore, it is shown that continuity of the control 
inputs at the switchings can be guaranteed by adding 
equality constraints to the problem without affecting 
its parameterization structure. Finally, it is shown 
that piecewise-affine state feedback controller synthesis 
to maximize the decay rate of a quadratic control 
Lyapunov function can be cast as a set of quasi-convex 
optimization problems parameterized by a vector. 

1. INTRODUCTION 
Piecewise-affine systems are multi-model systems that 
offer a good modeling framework for complex dynami- 
cal systems involving nonlinear phenomena. Piecewise 
affine systems are also a class of hybrid systems, Le, 
systems with a continuous-time state and a discrete 
event state. Piecewise-atliue systems pose challenging 
problems because of its switched structure. In fact, the 
analysis and control of even some simple piecewise- 
affine systems have been shown to be either an "P 
hard problem or undecidable 111. State and output 
feedback control of continuous-time piecewise-affine 
systems has received increasing interest over the last 
years [Z], 131, 141. Previous work of the authors has 
concentrated on Lyapunov-based controller synthesis 
methods for continuous-time piecewise-affine (PWA) 
systems 141, 121. In 141, controller synthesis was for- 
mulated as a bi-convex optimization problem. The bi- 
convexity structure arises because of the negativity 
constraint on the derivative of the piecewise-quadratic 
Lyapunov function over time. This constraint leads 
to a bilinear matrix inequality @MI) [SI. Bi-convex 
optimization problems are non-convex, NP-hard and, 
therefore, extremely expensive to solve globally from 
a computational point of view [SI. Although the 
general Lyapunov-based controller synthesis problem 
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for piecewise-affine systems using piecewisequadratic 
Lyapunov functions is non-convex, reference [Z] has 
shown that for the particular case of piecewiselinear 
state feedback without affine terms, globally quadratic 
stabilization could be cast as a convex optimization 
problem. Unfortunately, if affine terms are included in 
the controller, as stated in 121, "it does not seem that 
the condition for stahilkability can he cast as an LMI", 
which apparently destroys the convex structure of the 
problem, making it hard to solve globally. The current 
paper shows that piecewise-affine state feedback using 
a globally quadratic Lyapunov function can indeed be 
solved to a point near the global optimum in an efficient 
way by a set of parameterized LMls. In this paper four 
controller synthesis problems are formulated, relaxed 
to a finite set of optimization programs and solved. The 
paper starts by presenting the assumptions that are 
common to all controller design problems, followed by 
the statements of the four problems. Section IV formu- 
lates the controller synthesis problems as optimization 
programs and discusses its solution. Finally, after a 
numerical example, the paper presents the conclusions 

11. PROBLEM ASSUMPTIONS 

It is assumed that a PWA system and a corresponding 
partition of the state space with polytopic cells R,, i E 
2 = ( 1 , .  . . , M} are given (see [a] for generating such 
a partition). Following (31, 121, each cell is constructed 
as the intersection of a finite number (p,) of half spaces 

where H; = [hi1 h i l . .  . hip,], 5; = [5;1 3 ; ~ .  ..&,IT. 
Moreover the sets Ri partition a subset of the state 
space X c R" such that uEl% = X, Ri n Rj = 
0, i # j ,  where denotes the closure of Ri. Within 
each cell the dynamics are affine of the form 

S( t )  = Aiz( t )  + 6, + B,u(t), (2) 
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where x ( t )  E R" and u(t) E R". For system (2), 
we adopt the definition of trajectories or solutions 
presented in 131. Any two cells sharing a common facet 
will be called level-I neighboring cells. Let M; = {IeWr- 
1 neighboring cells of Ri}. It is also assumed that 
vectors cij E LR" and scalars dij exist such that the 
facet boundary between cells R; and Rj is contained in 
the hyperplane described by { x  E R" 1 c s x - d ; j  = 0}, 
for i = 1,. . . , M ,  j EN;. A parametric description of 
the boundaries can then he obtained as 121 

- -  
R. n c { X  = ijj + F , ~ S  I s E ~ " - l }  (3) 

for i = 1 , .  . . , M ,  j E N ,  where F,j E LRnX("-') 
(full rank) is the matrix whose columns span the 
null space of cij, and i ; j  E R" is given by i;j = 
cij (c$ci j ) - 'd , j .  It is also assumed that each R; can 
he outer approximated by a finite union of (possibly 
degenerate) ellipsoids ~ ; j  for j = 1,. . . , J;. To describe 
the ellipsoidal covering, it is assumed that matrices E;j 
and j j  exist such that 

Ri C u;:l&;j (4) 

where 
~ i j  = { X I  l l E . j ~ +  .ftjll 5 1) .  ( 5 )  

This covering is especially useful in the case where Ri 
is a slab because in this case the covering has only one 
degenerate ellipsoid E. and it is exact, Le., E ;  C Ri 
and R; C_ E,. More precisely, if R; = {z I dl 5 CTX 5 
dz} ,  then the degenerate ellipsoid is described by E, = 
ZcT/(dz - d1) and f; = -(dz + d l ) / ( d z  - d l ) .  Finally, 
it is assumed that the control objective is to stabilize 
the system to a given point X ~ I .  Setting z = x - xCl 
the problem is transformed to the stabilization of the 
origin of the system 

i ( t )  = A;z ( t )  + b, + Bju(t), (6) 

where bi = 6; + A i x , ~ .  The parametric description of 
the boundaries (3) is written as 

- _  
Ri nRj C { z  = lij + F,js l s  E R"-'} (7) 

where lij = ij - xCl for i = 1,.  . . , M, j E N,. The 
description of the polytopic cells is 

R, = {tl If.Tz-gi < O } ,  (8) 

where gi = 6, - HTx,~. With f;j = f;j + 
ellipsoidal covering elements ~ i j  are described by 

the 

~ i j = { r I ~ / E i j r + f i j ~ ~  5 1). (9) 

111. PROBLEM STATEMENT 

There are four Lyapunov-based controller synthesis 
problems that will he solved in this paper. For the 
four problems, the piecewise-affine state feedback input 
signal is parameterized by K ,  and m ,  in the form 

u = K , r + m , ,  z E R ,  (10) 

with -10 5 m, 5 lo where lo is a vector of upper 
bounds for the entries of m, ,  z = 1 , .  . . , M .  The glnh- 
ally quadratic candidate control Lyapunov function is 
parameterized by P = PT as 

V(2)  = 2PZ. (1 1) 

PROBLEM 1: Find a globally quadratic control Lya- 
punov function and a piecewise-affine state feedback 
controller that exponentially stabilizes the origin of@), 
PROBLEM 2: From the controllers that exponentially 
stabilize the origin, find the one that maximizes the 
decay rate of the control Lyapunov function, 
PROBLEM 3: The same as problem 1 with continuous 
input signals at the switching boundaries, 
PROBLEM 4 The same as problem 2 with continuous 
input signals at the switching boundaries. 

Iv. PROBLEM SOLUTION 

This section formulates mathematically the four prob- 
lems defined in section 111 and proposes two algorithms 
to solve them numerically. 

A .  Stabilization - Problem I 
The candidate control Lyapnnov function (11) becomes 
a Lyapunov function with decay raye a iffor fixed a t 
0, V > 0 and V < -aV. Using (6) and (IO), sufficient 
conditions for exponential stability are P = PT > 0, 

t E R, + 2 [ (A ,  + B&) r + (b, + Bim,)lT P r  + 
+Olr=pz < 0 ( 1 2 )  

For t E R,, this expression can be recast as 

where A; = A; + B;K,  and bi = b; + B,m,.  If we relax 
the condition z E Ri in (13) by r E ~ i j  for j = 1 , .  . . , J; 
and if we use expression (9) and the S -procedure in 
a similar way as it was done in 121 yields the following 
sufficient conditions for quadratic stabilization 

P = P T > O ,  X i j < O ,  i = l ,  ..., M , j = l , . _ . ,  J ,  

('I ] < 0, (14) 
ATP + PA; + x 

( P i ; + X i j E : f , j ) T  - A . .  .> (1 - f ? f . . )  ., ' I  
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where X = aP+ XijE:E;j. Using new variables Q = 
P-' ,  pij = A;' and a standard algebraic procedure 
171, 121 conditions (14) are equivalent to 

Q = Q T > O ,  p;j<O, i = l ,  ..., M , j = l ,  ..., Ji 

where Y = aQ+p;jbbf. Setting Ai = Ai+BiK; and 
introducing new variables U, = KiQ in (IS) yields 

Q = Q T > O .  p i j < o ,  i = l ,  ..., M, j = 1 ,  ..., J ,  

where W = B i U , + ~ T B T + a Q + p i j 6 i 6 T ,  b i = b ; +  
Bimi. 

DgFnirian 4,l: The piecewiseaffine state feed- 
back synthesis problem (problem 1) is: for fixed a > 0 

find Q, K ,  mi, pij 
s.t. Q = QT > 0, pij < 0, (16) 

-11 < U, + 1 1 ,  - l o  + mi < l o ,  
i = l ,  ..., M , j = l ,  ..., Jj 

where +, + mean component-wise inequalities and 
0 

Notice that it is clear from (16) that we cannot 
formulate this synthesis problem as one convex prob- 
lem because (16) is not an LMI if the parameters 
mi, i = 1 , .  . . , M are unknown. However, for fixed 
mi, i = 1 , .  . . , M, expression (la) is indeed an LMI 
and the problem is convex. Therefore, although the 
problem formulated in (16) cannot be cast as one 
convex program, it is an infinite set of convex problems 
involving an LMI or, equivalently, an infinite num- 
her of LMIs analitically parameterized by the vector 
y = (mT m r  . . . ms]'. The following algorithm is 
suggested to solve the state-feedhack problem: 

l o ,  11 are given vector bounds. 

Algorithm # 1 - Sampling Method 

I )  Define a grid for the domain of the vector y to 
sample it at N points, 

2) For fixed a > 0, solve the corresponding feasi- 
bility problem 4.1 for each of the points in the 
grid until a feasible point is found. 

3) If step 2 is successful or if the maximum num- 
ber of iterations was reached, stop. Otherwise, 
increase the grid density and go back to Step 2. 

Remurk I :  The feasibility problem 4.1 cun be iruns- 
formed into an optimizution problem if the Q wifh 
minimum condition number is sought. In thut case, for 
fired 6 > 0, the constraints 1) > 0, e l  < Q < vel 
should be added lo fhe problem (usuully z is selecfed to 

be unitary) and q should be minimized 171. Algorifhm # 
I can then be chunged to store for UN grid poinfs fhe 
one that yields the minimum value of q. The algorithm 
can be furfher improved i f fhe  derivufiw of fhe solufion 
with respect to 7 ut euch poinf is compufed In that 
cue,  for each selecfed sample poinf, the nexf sample 
point should be chosen in fhe direcfion opposife to the 
wcfor derivafiw This will reduce the number of points 
from the grid fhaf need IO be used, thus reducing fhe 
computational burden 0 

B. Stabilization - Problem 3 
To solve problem 3, similarly to what was done io 
[4], the boundary description (7) is used to yield 
the following constraints for continuity of the control 
signals 

(Ki - Kj)F,j = 0, (17) 
= 0, V j  E Ni. (18) 

These constraints for continuity cannot be directly used 
in the problem from definition 4.1 because Ki, i = 
1,. . . , M, are not variables in that problem. To be able 
to express coutraints (17Hla)  on the variables Y , ,  i = 
1,. . . , M, define the matrix X.j = [F;j Lj]. Note that 
X,j is invertible because Fij is full rank and lij does 
not belong to the column space of Fij by construction. 
Using Xtj, (17)-(18) can he written as 

(K. - Kj)l,j + (mi - mj) 

(K; - Kj)Xij = [OmX+1) mj -mi]. (19) 

Then, using (19), the change of variables Y, = K,Q 
and inverting Xij, we can write 

Y, = + [O,,,x(n-l) mj -mi]X,<'Q. (20) 

Definition 4.2: The stabilization problem 3 is: for 
f i xeda>n 

h d  Q. Y., mi, pij 
s.t. Q =QT > 0 ,  pij < 0 ,  (16), (20) 

-11 < U, < 1 1 ,  - 1 0  < mi < l o ,  
i = l ,  ..., M ,  j=l, ..., Ji 

where +, 4 mean component-wise inequalities and 
0 

Constraints (20) must be included in the optimization 
problem 4.1 to guarantee that the control signals are 
continuous at the switching boundaries. Note that for 
fixed mi and mi, the problem can still be formulated 
as an infinite set of convex optimization programs. 

C. Decay Rate Maximization 
In the problems of sections IV-A and IV-B the param- 
eter a was fixed. Let now a, the desired decay rate for 
the globally quadratic control Lyapunov function, be 

lo, l1 are vector bounds. 
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Fig. 1. Circuit with nonlinear resistor X i  

Fig. 2. Nonlinear resistor characteristic. 

a variable. Then, we define the performance criterion 
J = a. The controller design problem is now to find 
from the class of control signals parameterized in the 
form U = K,r +mi in each region R,, the one that 
maximizes J .  

Definition 4.3: The decay rate Optimization problem 
2 is: 

-11 4 K + 11, - l o  4 m, < l o ,  
I =  1 ,..., M ,  j = 13...> J, 

where t, < mean component-wise inequalities and 
l o ,  11 are vector hounds. 0 

If there is only one region in the partition of the state 
space, then A4 = 1, ml = 0, the system is linear and 
the decay rate maximization problem is a quasisonvex 
problem because of the product of variables aQ (see 
171 for details). Following the same reasoning as the one 
used in seetion N-A, for the general case of piecewise- 
affine systems, the decay rate maximization problem 
is an infinite set of quasi-convex programs analitically 
parameterized by the vector y. To formulate prohiem 
4, it suffices to include the continuity constraints (20) 
in the optimization 4.3 yielding a new optimization 
problem. 

Definition 4.4: The decay rate optimization problem 
4 is: 

max a 
s.t. Q = QT > 0, p,, < 0, a > 0, (16), (20) 

-11  < K < II, - l o  4 m, < l o ,  
z = 1 ,  ._ . ,  M ,  3 = 1 , . . _ ,  J, 

where +, < mean component-wise inequalities and 
l a ,  11 are vector hounds. 0 

To solve problems 4.3 and 4.4, note that if y is 
again sampled, for each fixed value of y there is one 
quasisonvex optimization problem to he solved. For 
each optimization, a lower hound to the corresponding 
maximum value of a can then he found, as tight as 
desired, using the familiar bisection algorithm. 

Algorithm # 2 - Bisection: 
I )  Set a = 0, and solve the corresponding convex 

stabilization problem 1 (or problem 3). If the 
problem is infeasible stop; there is no piecewise- 
affine state feedback controller that can quadrat- 
ically stabilize the system. If the problem is 
feasible, set atwcr = 0, a = 6 for small 6 and 
go to step 2. 

2) Solve stahilizntion problem 1 (or problem 3) with 
a + 10a until an infeasible solution is reported. 

3) Set crupper = a, where a is the one that made 
problem 1 (or problem 3) infeasible in step 2. 
Given the desired degree of e tightness of the 
lower hound, choose the tolerance to1 = 6. 

4) While supper - slower < to1 solve the convex 
stabilization problem 1 (or problem 3) with a + 
0.5at0,,, + 0.5a,p,,,. If the problem is feasible 
set elwer = a, otherwise set supper = a 

5 )  The c-tight lower bound is atouer and the E- 

optimal controller and control Lyapunov func- 
tion parameters are the ones that are provided 
as the solution to problem 1 (or problem 3) using 
a = Cr1owcr. 

V. EXAMPLE 
This example considers a circuit with a nonlinear 
resistor taken from 121 and shown in figure 1. With 
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Fig. 3. Piecewise-affine controller for a = lo-’ 

time in lo-” seconds, the inductor current in mA 
and the capacitor voltage in Volts, the dynamics are 

-30 -20 [::I = [0.05 0 ] [f:]+[-5:;x,,]+[”Rl~ 

Following 121, the characteristic of the nonlinear resis- 
tor ~ ( x z )  is defined to be the piecewise-affine function 
shown in figure 2 which generates the polytopic regions 

7-21 = { X € R 2 1  - L < x 2 < 0 . 2 } ,  
R z  = 
7-21 = 

{X E Rz I 0.2 < xz  < 0.6}, 
{X E R2 I 0.6 < xz < L},  

where L = 2 x lo4. The (exact) ellipsoidal covering is 

2 
e2, E3 = ~ 

2 E1 = ~ el, E2 = - 
0.6 - 0.2 L - 0 . 1 3 ~ ~  0.2 + L 

- L -  0.2 0.6 + 0.2 L + 0.6 
fl=- 2 = - -  3 = - -  

L + 0.2 ’ 0.6 - 0.2 ’ L - 0.6’ 

where el = e2 = e3 = (0 11. Assume that the affine 
terms of the control law have magnitude bounded by 
0.2 so that lo = [0.2 0.2 0.2jT. The objective is to 
design a piecewise-affine state feedback controller to 
stabilize the open-loop equilibrium point of 7-23 

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .  
. .  

o 2 I n I IO 12 II 16 18 m 

8i . . . . .  j . . . . . . . . . . . . . .  I . . : . . .  j ~ .. . ;  1 
. . . . .  . . . . .  . . . .  

o 2 4 s 8 io 12 14 16 $8 m 
Urn, 

Fig. 4. 
(a = 1.01) using a meah of 25 points 

Piecewise-afRne controller for optimal decay rate 

For region ‘Rs we then must have m3 = 0. We start by 
firing ml = 0 and n z  = 0.2. With these values for mz 
and mz, Algorithm #1 was then used (with only one 
point in the grid) enforcing continuity of the control 
signals and using (2 = 1 x lo-’, 11 = 10-13[8 ElT  to 
yield 

KI = [ -0.21 x -5.66 1 , mi =O.OO, 
K~ = [ -0.21 x 1 0 - ~  -5.21 ] , mz =o.zo 
K3 = [ -0.21 x -9.88 ] , m3 = 0.00, 

The simulation results are shown In figure 3 for the 
initial condition xy = 0.5, xp = 0.1 (inside region 
RI). If each of the affine terms mi and mz are now 
sampled in the interval [-0.2,0.2] with increments of 
0.1, a mesh is obtained for the domain o f 7  = [mi mzIT 
with 25 points. The optimal controller obtained as the 
solution to problem 4 using a loop with Algorithm #2 
inside Algorithm # 1 is described by (see figure 4) 

K~ = [ -0.19 x 1 0 - ~  -11.21 ] , mi =o.oo, 
K2 = [ -0.19 x -11.66 ] , mz = -0.20 

K3 = [ -0.19 x -7.00 ] , m3 = 0.00, 
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a = 1.01 

It is clear from figure 4 that maximizing the decay rate 
has yielded a much faster controller as compared to the 
controller whose results are shown in figure 3. This has 
come at the expense of increasing the control signal 
although the gain vectors still meet the limiting bounds. 
Also notice that the constraints for continuity of the 
input signals have imposed that the first component of 
all gain vectors be equal. 

VI. CONCLUSIONS 
The main contribution the paper is to show that the 
problem of piecewiseaffine state feedback controller 
synthesis can be cast as an optimization program 
with an infinite number of LMI constraints param- 
eterized analitically by a vector. After a relaxation 
(such as, for example, gridding the domain of the 
vector parameterizing the LMIs), the problem can now 
be solved more efficiently to a point near the global 
optimum using available convex optimization packages. 
Before casting the synthesis in the format presented 
here, Lyapunov-based piecewise-afiine state feedback 
controller synthesis could only be formulated as a hi- 
convex optimization program, which is very expensive 
to solve globally. 
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