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ABSTRACT

We consider the achievable performance of a network of nodes in which the
nodes view a common random variable corrupted by a site specific noise and
share low rate information about their observations in order to reproduce the
common random variable,

INTRODUCTION

Distributed information systems consist of many isolated subsystems or
nodes which measure their environment and take actions based on their own
measurements and on information supplied to them by other subsystems in the
network. A typical example is a distribuied sensor network where isolated remote
sensors and their associated computing facilities are connected 3\. digital
communication links; the separate sensors must use their own observations
together with shared digital side information from other sensors in order to
perform reliable estimation or detection on objects moving through the network.

Distributed compression ard classification systems form a special case. An
example is the following: Many separate nodes make measurements of a common
phenomencn with different measurement noise and share digital information based
on these measurements so that each node can combine its observation with the
data from the other nodes in order 1o well reproduce (compression) or make a
decision about (classification) the common phenomenon. Such a system can be
viewed as a source coding analog of the broadcast network considered by Gallager
{5}. Results providing Shannon theory bounds and simple code design techniques
have been developed for the special case of only twe nodes [1,2,3,4]. It is of
interest, however, to consider the case where there are a large number of nodes,
but the permitted communication rate is small, say one bit. The goal is to find the
achievable performance for a fixed block size asymptotically as the number of
nodes grows. This is in distinction to the usual asymptotic quantizer theory which
considers asymptotically large rate for fixed block size or the Shannon theory
which considers asymptotically large dimension for fixed rate. In this paper we
consider a simpie example of such a system.
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DISTRIBUTED QUANTIZATION

Suppose that there are N nodes and that each node makes an observation Y, =
X +W;,i=12,_.N, where X is a random variable (the underlying phenomenon)
and the W; are noises. For example, X provides information on the location of a
target and the W, are measurement noises. In practice we will usually be
interested in a sequence of such observations, but we here formulate the problem
as a “one-shot” system to focus on the node action at a specific time. For
simplicity we assume that the noise terms W; are independent, e.2., the nodes are
widely separated, and in addition, the noises are independent of the common
random variable X. Each node sends low rate digital information about its
measurement, say g,(Y;), to all of the other nodes and attempts to either reproduce
(compression) or classify X based on its own observation and the shared low rate
information.For example, node #1 observes Y, and produces a digital signal
,(Y ) which it sends to the other nodes. It then makes a decision based on Y,
and ¢, (Y;}; i=23,--- N. The ¢,(y} could be ordinary quantizers and simply
attempt to send a good reproduction of y, but they might do something quite
different, however, such as to extract some piece of information from the
observations thal is more meaningful 10 the other nodes when pooled with all of
the digital data. In either case, however, we shall refer to the 4; as quantizers
since they map analog variables into binary variables.

As a related problem, each node might only be able 1o use its own quantized
output and hence must base its decision on q;(¥;);i=1, - N. In this case al] of
the nodes use the same information to reach their final decision. Clearly this
system provides a bound on the performance of the previous system since the
decision makers have less information. If one has a distortion measure d(x X}
which measures the distortion of reproducing x as £, the common design goal of
information theory is to minimize for each node the average distortion
mﬁﬁxkﬁﬁ..ﬁcﬁw.ﬁ_&_ 1), where X is the reproduction of the original X based
on the available information. By appropriate choice of the distortion measure, one
can aise treat the problem of classification of which of a finite coliection of
possible distributions produced X (this is essentially what vector quantization of
finear predictive coded speech does).

Suppose that the quantizers are all constrained 1o bhave only I bit of
information, that is, they are binary quantizers. One strategy would be to make all
of the quantizers do as good a job at reproducing their observation with minimum
average distortion (using, e.g., the Lloyd-Max algorithm), but this may not be
good given the overall goal of sharing information to reproduce the underlying
vanable. A natural question is the following: Does there exist a strategy such that
the average distortion between the guess based upon the shared information and
the true value tends to 0 as N —e? On one hand, one is getting an infinite number
of bits in the limit and one would expect that that would vield ever smaller
distortions, eventually converging to zero. On the other hand, each bit provides
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information about a random vecior corrupted by continuous noise and hence in a
sense there is more noise than 1 bit per node can handle. We shall argue below
that at least in a special case, as N —es an appropriate choice of quantizers yields
an arbitrarily small average distortion at each node, even though the rate of each
node is only 1 bit per vector.

AN EXAMPLE
For simplicity we consider the scalar case so that the observation is a real
random variable X. We also make the following simplifying assumptions:
1. The noises W; are independent, identically distributed, and nonnegative, and
EW is known (in particular, W has an expectation).
2. The random variabie X is nonnegative, independent of the W;, and £X «<-ee,
3. The distortion measure is the squared error 4(x %) = {x ~£)2.

Theorem: If 1. through 3. above hold, then there is a sequence of 1 bit
quantizers g%}, i=1,---,N? and decoding mles Xy = f(g™(¥,).
i=1, -, N?), such that

lim Ed(X Xy)=0, .
N =

that is, by choesing the number of nodes N2 large enough the average
distortion for each node can be made arbitrarily small.

Sketch of Proof. Foreach N define for the ith node the quantizer
™M)= Vo) é=1, - N2,

where 1¢(y) is the indicaror function for F, that is, is 1 if y € F' and 0 otherwise.
Define the decoder function
. 1 M2

Xx=y 8 (1-¢;* 0, )-EW . n

For the moment consider conditional expectations with X =x fixed. We have
¥
1N

E(X, X=x)= 23 PriW+x>iiN)~EW . @)

=]

Using the fact that Pr(W +x > ) is monotone in z, it can be shown that this sum
converges as N —e= to the imegral

mgu? X=x) a.l ._.Slm.,s_t?c:_&% —FW =x,
S —oT D
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where Fy, . is the cumulative distribution function of W+x. Thus the estimate
X, is an asymptotically unbiased estimate of x.

Considering next the conditional variance, we have that

1 M . .
amwiﬂ = MMM_ Prix+W i iINYI-Pr{x+W >i/N))
i=
1~
S— 5% Prix+WxiiN) = 0.
Z_uh.u_ N oo

since the sum in (2) converges {0 EW +x.
Considering conditional L, norms we have using the triangle inequality that

Xy =x il < Xy —E Xy X =x )|+ 1 E Xy 1 X =x)x | e

—pem

which proves that
lim mﬁﬁkkzv_knnvuo &)
N oo

for all x. It can be shown that mﬁumz [ X=x)<x for all x, so by dominated
convergence we conclude from (3}

_,ma Ed(X X\)= Lma [E@(X Xy) | X=x)dPr(X <x)=0

and the theorem is proved.

COMMENTS

The above simple example is new and makes several inleresting points. The
first point is that an intelligent quantizer strategy involves nodes cooperating to
extract certain information from the observations and not acting independently to
simply quantize their observations. The second point is that such a strategy can
yield arbitrarily small average distortion in the limit of many nodes. The third
point is that several of the nodes might fail to provide their bits without affecting
the asymptotic properties since the nodes make overlapping tests. The estimate is
simply modified to not include the missing information. Provided there are
enough nodes, the overall approximation is still good. This robustness againsl
missing nodes can be extremely valuable in a distributed system where nodes may
fail.

There are many generalizations of possible imterest: The nonnegative
restriction can be removed in a straightforward manner. The generalization to
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noise valves that are mot independent is more imponant and less obvious.
Intuitively one would expect that reasonable models would entail highly correlated
noise in adjacent nodes with the correlation going to § with increased distance, It
is also desirable to remove the assumption of identical distributions, although they
must be related in order for the cooperative information to help. Generalizations
lo vector quantization in the presense of independent vector noises have been
obtained using the ergedic theorem and quantizers that are indicator functions for
sets that partition the space in an appropriate manner.
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