
Abstract 

Several problems arising in control system analysis 
and design, such as reduced order controller synthe- 
sis, involve minimizing the rank of a matrix vari- 
able subject to linear matrix inequality (LMI) con- 
straints. Except in some special cases, solving this 
rank minimization probiem (globally) is very diffi- 
cult. One simple and surprisingly effective heuris- 
tic, applicable when the matrix variable is sym- 
metric and positive semidefinite, is to minimize its 
trace in place of its rank. This results in a semidefi- 
nite program (SDP) which can be efficiently solved. 

In this paper we describe a generalization of 
the trace heuristic that applies to general non- 
symmetric, even non-square, matrices, and reduces 
to the trace heuristic when the matrix is positive 
selinidefinite. The heuristic is to replace the (non- 
convex) rank objective with the sum of the singu- 
lar values of the matrix, which is the dual of the 
spectral norm. We show that this problem can be 
reduced to an SDP, hence efficiently solved. To mo- 
tivate the heuristic, we show that the dual spectral 
norm  is^ the convex envelope of the rank on the set 
of matrices with norm less than one. 

We demonstrate the method on the problem of 
minimum order system approximation. 

1 Introduction 

In recent years there has been a growing interest 
in problems that involve minimizing the rank of 
a matrix over a convex set. Applications arise in 
diverse axeas such as minimum order controller de- 
sign [Mes99], factor analysis in statistics [Sha82], 
and Euclidean distance matrix problems [TT93], 
among others. The general matrix rank minimiza- 
tion problem can be expressed as 
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where X E Rmxn is the optimization variable and 
C is a convex set, e.g., described by LMIs. It is 
well known that in general this problem is hard to 
solve p 9 6 ,  57.31. Various heuristics have been 
developed to handle problems of this type; see, 

'e.g., [BG96, SIG98, Dav941. One simple and sur- 
prisingly effective heuristic, applicable when the 
matrix is symmetric positive semidefinite, is to 
minimize its trace in place of its rank. This is- 
used in [ParOO, Mes99] to design reduced order con- 
trollers. 

This heuristic obviously does not apply to prob- 
lems in which the matrix is non-symmetric, or non- 
square, since the trace is not even defined, let alone 
a good convex surrogate for the rank. In this paper, 
we present a generalization of the trace heuristic 
that can be applied to any matrix. The heuristic 
is to solve the problem 

minimize IlXll* 
subject to X E C, 

in place of (1), where 

a= 1 

where ui(X)  = d m  denote the singular val- 
ues of X. The norm 11 . [ I 8  is sometimes called the 
nuclear nom or Ky-Fun n-nom (see [HJ91]), and 
is the dual of the spectral (or maximum singular 
value) norm of a matrix, i.e., 

IlXll* = s u p P Y T X  I IlYll I111 

where 11 11 denotes the maximum singular value or 
spectral norm. Note that while the original prob- 
lem (1) is in general a difficult optimization prob- 
lem, the dual spectral norm minimization prob- 
lem (2) is a convex optimization problem, and 
therefore (at least in principle) easily solved. 
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If the matrix variable X is symmetric and posi- 
tive semidefinite, then its singular values are the 
same as its eigenvalues, and therefore the dual spec- 
tral norm IlX((, reduces to WX. In this case, 
the heuristic (2) reduces to the trace minimization 
heuristic. 



Another special case occurs when the matrix X is 
diagonal, say, X = diag(x), where x E R". In this 
case, Rank X is the same as the number of nonzero 
entries of the vector x, i.e., its cardinality Cards. 
Problem (1) then reduces to the problem of finding 
the sparsest (i.e., minimum cardinality) vector z 
in a convex set. For this special case, the heuristic 
dual spectral norm minimization problem (2) be- 
comes the problem of minimizing the l l  norm of a 
vector x over a convex set C. Minimizing the 
norm is a well-known heuristic for minimizing the 
cardinality; see for example m 9 9 ,  CD94. 

The rest of the paper is organized as follows. In 52 
we motivate the heuristic by showing that the dual 
spectral norm is the convex envelope of the rank 
function on the set of matrices with norm less than 
one, which allows us to interpret the heuristic as 
a type of relaxation of the original rank minimiza- 
tion problem. In 33 we show how the dual spec- 
tral norm can be represented by an LMI, so when 
the feasible set C is described by LMIs, the dual 
spectral norm problem (2) can be formulated as a 
semidefinite program (SDP), and so can be solved 
using standard, existing software p 9 6 ,  AHN+97, 
Stu98, FK95, GN93, EG95]. In 54, we demonstrate 
the effectiveness of the heuristic by applying it to 
the problem of minimum order system approxima- 
tion. 

2 Convex envelope of rank 

Let f : C 3 R, where C C R". The convex en- 
velope of f (on C) is defined as the largest convex 
function g such that g(x) 5 f(x) for all x E C (see, 
e.g., W 9 3 1 ) .  

Theorem 1 The convex envelope of the function 
+(X) = Rank(X), on 
C = { X  E Rmxn I IlXll 5 I}, is +env(X) = IIX(I** 

This theorem has the following implications for 
problem (1) and the heuristic (2). Suppose the fea- 
sible set is bounded by M ,  i.e., for all X E C, we 
have (IXI/ 5 M .  The convex envelope of R a n k X  
on {XI llXll 5 M} is given by hllXll*. In partic- 
ular, for all X E C, we have R a n k X  1 llXll*. 
It follows that if Prank denotes the optim5 value 
of the rank minimization problem (1) and p ,  de- 
notes the optimal value of the dual spectral norm 
minimization problem (2), we have 

In other words, by. solving the heuristic problem, 
we obtain a lower bound on the optimal value of 

the original problem (provided we can identify a 
bound M on the feasible set). 

See the appendix for the proof of theorem 1. 

3 Dual spectral norm minimization via 
SDP 

The heuristic problem (2) is a convex problem and 
can be handled using a variety of convex optimiza- 
tion algorithms. In this section, we show how to ex- 
press the problem as an SDP, when the constraints 
are given by LMIs. The advantage of such a for- 
mulation is that we can use widely available SDP 
solvers to readily solve the problem. 

We will use the following result: 

Lemma 1 For X E R"'" and t E R, we have 
IlX(l* 5 t if and only i f  there exist matrices Y E 
Rmxm and Z E RnXn such that 

[ x'. ;] 201 Try +Trz 5 2t .  (3) 

In other words, the condition IlXll* 5 t can be 
represented as an LMI. This observation is made 
also in p 9 6 ,  $3.11. 

This lemma can be used to express the dual spectral 
norm minimization problem (2) as an SDP. We &st 
write problem (2) as 

minimize t 
subject to IlXll* 5 t 

X E C ,  
with variables X and t. Then, using the lemma 
above, we express the problem as 

minimize T r Y + T r Z  

(4) 
Y X  subject to X~ 1 2 0  

where Y = YT and Z = ZT are new variables. The 
problem (4) is an SDP, provided the constraint set 
C is expressed as an LMI. See appendix B for the 
proof of the lemma. 

4 Minimum order system approximation 

In this section we apply the rank minimization 
heuristic to the minimum order system approxi- 
mation problem. Such problems arise, for exam- 
ple, in model reduction problems that come &om 
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overparametrization in subspace system identsca- 
tion [JacQ4, McK95, OM96], and 'H, model reduc- 
tion [HJN92]. 

Let P I , .  . . , p ~  E C be a set of complex numbers 
with conjugate symmetry, i.e., whenever pi is com- 
plex, there is some j such that p j  = pi. We consider 
the family of proper rational matrices given by 

( 5 )  

where R, E Cmxn satisfy conjugate symmetry: 
whenever pi = f i ,  we have fi  = Rj. We consider 
p , ,  the poles of the rational matrix H, as iixed; 
the residues R, are the variables that we will use 
for approximation (subject to the conjugate sym- 
metry constraint). The McMillan degree, i.e., the 
order of a minimal state space realization, of the 
rational matrix H is given by 

N 
deg(H) = Rank(Ri). 

i=l  

Our goal is to determine values of the residue ma- 
trices R, that minimize the MacMillan degree, over 
some set of acceptable approximations. 

Let w1,. . . ,WK E R, and suppose Gk E CmXn are 
given. we can interpret the Wk and Gk are sam- 
pled frequencies, and measured frequency response 
matrix, respectively. As a criterion for acceptable 
fit, we use the simple conditions 

l lH(jwk)-Gkll  I€, k = l , . . . , K ,  

i.e., that the matrix H ,  evaluated at the given fie- 
quencies, should approximate (in spectral norm), 
within a tolerance e, the given data. 

The problem of finding the minimum order approx- 
imation is then given by 

minimize ~ : ~ ~ a n k ( ~ , )  
subject to I IH( ' jwk)  - Gkll 5 e, 

Rj = R, for p j  =pi 
k = 1,. . . , K 

(6) 
where the optimization variables are the R, E 

. Note that H(jwk)  is a linear function of 
the variables R,. The objective can also be ex- 
pressed as the rank of the block diagonal matrix 
with blocks R I , .  . . , R N ,  so this problem has the 
minimum rank form (1) (with complex matrices, 
however, instead of real matrices). 

For a discussion on optimization over an &ne fam- 
ily of linear system, see [BGFB94, 510.11. 

Cmxn 

4.1 Dual spectral norm heuristic 
The heuristic dual spectral norm method, and the 
results concerning convex envelope and the LMI 
representation, are all readily extended to the com- 
plex case, with the Hermitian conjugate substi- 
tuted in place of the transpose. 

We now form the heuristic problem (2) associ- 
ated with the minimum order approximation prob- 
lem (6). We obtain 

minimize xEl IIR,II. 
subject to llH(jWk) - GkII 5 E ,  

Rj = for p j  = pi. 
k = 1,. . . , K 

(7) 
This is a convex optimization problem in the vari- 
ables &, . . . , RN.  

4.2 SDP representation 
We can express the problem (7) as an SDP as fol- 
lows. We introduce variables ti, and express prob- 
lem (7) as 

minimize CzIti 
subject to 11R,1[* 5 ti i = I,. . . , N 

Rj = l?, for p j  = f i .  
l l H ( ' j W & ) - G k l l  < E  k = 1 ,  ..., K 

Using lemma 1, we can replace the first constraint 
by its LMI equivalent; the approximation con- 
straints can also be expressed via LMIs using Schur 
complements. Thus we obtain the following SDP: 
minimize E:, ~r Y,  + ~r ZC 

subject to [ $21 2 0  i = i ,  ..., N 

Rj = & for p j  =pi ,  
(8) 

where €2, E CmXn, Y = Y' E C"'", and 2 = 
2' E Cnx" are the variables. (Note that since Y ,  
and 2, are Hermitian, their traces are real, so the 
objective is real.) This is a (complex) SDP. 

4.3 Complex semidefinite programs 
The complex SDP (8) can in turn be expressed as 
a real SDP, using the fact that for any Hermitian 
matrix X E CYXn, the matrix inequality X 2 0 is 
equivalent to 

[E -g+o, 

which is an ordinary (real) LMI in the (real) matrix 
variables !RX and 3X. 
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Figure 1: Original 8th order data (solid), and 6th order 
approximation (dashed). . 

4.4 Numerical example 
In this section, we demonstrate the techniques 
above on numerical data, generated from a generic 
system model. 

The problem data was generated as follows. We 
used an 8th order, 2-input 2-output transfer ma- 
trix F,  which was normalized so that llFllm = 
sup, 1IF(jw)II = 1. The frequencies W k ,  k = 
1, . . . , K = 128 were chosen as linearly spaced from 
O h  to lHz, and G k  was taken as the value of the 
8th order model at W k :  Gk = F ( j W k ) .  For the 
poles pl, . . . ,pa ,  we took the poles of F, which ap- 
pear in four complex conjugate pairs. Two pairs 
are clustered at f O . l O H z ,  the other two are around 
f0.24Hz. 

The system approximation problem then becomes a 
model reduction problem: we keep the poles of the 
original system, and modify the residue matrices; 
the goal is to reduce the order, while respecting 
a model reduction transfer matrix error. We used 
SDPSOL w 9 6 ]  to solve the resulting SDPs. 

As an example, (8) is solved with E = 0.05 (-26dB). 
The result is a 6th order approximation. Figure 1 
shows the magnitude plot of the original system 
(F) and the approximation result (i.e., H):< 

By solving the dual spectral norm problem (8) for a 
range of values of the tolerance E from very small to 
0.55, the tradeoff curve in figure 2 is obtained. The 
staircase curve is the actual rank objective from (6), 
evaluated for the optimizer of (8). This provides an 
upper bound on the optimal rank objective in (6). 
The curve below it is the dual spectral norm objec- 
tive value of (8). 

E Tolerance E 
I 

U Tolerance E 
Figure 2: Tradeoff curves. The horizontal axis gives the 
approximation tolerance E .  The top plot shows the MacMil- 
lan degree obtained by the dual spectral norm heuristic. The 
bottom plot shows the minimum dual spectral norm. 

A Proof of theorem 1 

To prove the theorem we use conjugate functions. 
Recall that the conjugate f of a function f : C + 

R, where C C Rn, is defined as 

f*(Y> = SUP{YTZ - f ( 4  I E C). 

A basic result of convex analysis is that f **, i.e., the 
conjugate of the conjugate, is the convex envelope 
of the function f ,  provided some technical condi- 
tions, which are valid here, hold; see theorem 1.3.5 
in [HuL93]. 

Part 1.  Computing #*: The conjugate of the rank 
function 9, on the set of matrices with (spectral) 
norm less than or equal to one, is 

Let q = min{m,n}, and note that by Von Neu- 
mann's trace theorem we have 

9 

T ~ Y * X  5 Cai(Y)ai(X), (10) 
i= 1 

where ai(.) denotes the ith largest singular value. 
Let X = UxZxV$ and Y = UyCyVy' be the sin- 
gular value decompositions (SVDs) of X and Y. 
Since the term $(X) in (9) is independent of Ux 
and Vx, we pick Ux = Uy and VX = Vy to maxi- 
mize the first term in (9). It follows that 
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If X = 0, we have @(Y)  = 0 for all Y ,  and 
if R a n k ( X )  = r ,  1 5 r 5 q, then @(Y) = 
E:=l. bi(Y) - T .  So @(Y)  can be expressed as: 

~!J*(Y) 
r 

= "(0, q ( ~ )  - 1, .  . . , CU~(Y)  - r, 
4 i=l 

i= 1 

The largest term in this set is the one that sums all 
positive (o;(Y) - 1) terms. We conclude that 

@(Y)  = (Ui(Y) - I)+ , (11) 
where a+ denotes the positive part of a, i.e., a+ = 
max(0, a}.  

Part 2. Computing e*: We will now find the 
conjugate of @, defined as 

#J**(Z) = sup(? ZTY - 4*(Y)), 
Y 

for all 2 E Cmx". As before, we choose U y  and Vy 
such that UgUy = I and VTVz = I to get 

Q 
fl*(Z> = sUP(Coa(z)Ui(Y) - @(Y)). 

Y i=l 

We will consider two cases, ll2ll > 1 and ll2ll 5 1: 

If l[Z[l > 1, we can choose ol(Y) large enough so 
that @*(Z) 4 m. To see this, note that in 

Q r 

the coefficient of cq (Y) is (a1 (2) - 1) which is pos 
itive. 

Now let ((Z(1 5 1. If llYll 5 1, then p ( Y )  = 0 
and and the supremum is achieved for oi(Y) = 1, 
i=1, . . . , q  ,yielding 

9 

q!J**(Z) = COi(2) = 11211*. 
i-1 

We will now show that if JjYIJ > 1, v * ( Z )  is always 
smaller than the value given above. We have 

Consider the expression inside the sup. By adding 
and subtracting the term C7=l ai(Z) and rearrang- 
ing the terms, we get 

where the last inequality holds since the first two 
sums on the second line always have a negative 
value. 

In summary, we have shown 

fl*(Z) = 1 1 ~ 1 1 * ,  
over the set (2 I 112(1 6 1). Thus, over this 
set, llZ(l* is the convex envelope of the function 
Rank(2). U 

B Proof of lemma B 

Proof: (e) Let Y and 2 satisfy the relations (3) 
above, and let X = UCVT be the SVD of X. Here, 
C is of size T ,  where T is the rank of X. We have 

since the trace of the product of two PSD matrices 
is always non-negative. This yields 

TrUUTY-TrUVTXT-TrVUTX+TrVVTZ 2.0. 
(12) 

Since columns of U axe orthonormal, we can always 
add more columns to complete them-to a @ll basis, 
i.e., there exists UT such that (U q [ U  UIT = I, 
or UUT + O P  = I, so I U U ~  I 1. SO we get 

Von Neumann's trace theorem, see [HJ91]) Sim- 
ilarly, for V we have TrVVTZ 5 TrZ. Also, 
Tr V U T X  = Tr VCV* = Tr C .  Using these facts, 
and (12) above, we get 

ITrUuTYl 5 '&Xi(UU 1 )Ai(Y) " 5 Try (using 

Try +Trz-Trc>_o, 
Trc I qTry f Tr Z), 
n c  = iX((* 5 t .  

(e) Suppose IlXll* 6 t .  We will show Y and 
2 can be chosen to satisfy the relations (3). Let 
Y = U C f l  + y I  and Z = V C V  + T I ,  then 

TrY+TkZ = STrC+y(p+q) = P(IXll*+y@+q), 

so if we choose y = w, we will have Try + 
Tr z = 2t. 

Also note that 

UCUT UCVT 

c [UT V*] +yl, 

which is PSD. 0 
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