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Abstract

We propose to use the dominant time constant of a resistor-capacitor (RC) circuit as a mea-

sure of the signal propagation delay through the circuit. We show that the dominant time

constant is a quasiconvex function of the conductances and capacitances, and use this prop-

erty to cast several interesting design problems as convex optimization problems, speci�cally,

semide�nite programs (SDPs). For example, assuming that the conductances and capaci-

tances are a�ne functions of the design parameters (which is a common model in transistor

or interconnect wire sizing), one can minimize the power consumption or the area subject

to an upper bound on the dominant time constant, or compute the optimal tradeo� surface

between power, dominant time constant, and area. We will also note that, to a certain

extent, convex optimization can be used to design the topology of the interconnect wires.

This approach has two advantages over methods based on Elmore delay optimization.

First, it handles a far wider class of circuits, e.g., those with non-grounded capacitors.

Second, it always results in convex optimization problems for which very e�cient interior-

point methods have recently been developed.

We illustrate the method, and extensions, with several examples involving optimal wire

and transistor sizing.

Research supported in part by AFOSR (under F49620-95-1-0318), NSF (under ECS-9222391 and EEC-

9420565), MURI (under F49620-95-1-0525), and a gift from Synopsys.



1 Introduction

Determining the optimal dimensions of the transistors and interconnect wires in a digital cir-

cuit involves a tradeo� between signal delay, area, and power dissipation. The conventional

approach to optimal sizing is based on linear RC models and on the Elmore delay as a measure

of signal propagation delay. This approach �nds its origins in the work of Elmore[Elm48],

Rubinstein, Pen�eld and Horowitz[RPH83], and Fishburn and Dunlop[FD85]. In particular,

Fishburn and Dunlop were �rst to observe that under certain conditions (the resistors form

a tree with the input voltage source at its root and all capacitors are grounded) the Elmore

delay of an RC circuit is a posynomial function of the conductances and capacitances. This

observation has the important consequence that convex programming, speci�cally geometric

programming, can be used to optimize Elmore delay, area, and power consumption. Geo-

metric programming forms the basis of the TILOS program and of several extensions and

related programs developed since then [FD85, HSFK89, SSVFD88, ME87, SRVK93, Sap96].

In this paper we propose to use the dominant time constant as an alternative to the

Elmore delay. The resulting method has two important advantages over methods based on

Elmore delay optimization. First, a far wider class of circuits can be handled, including for

example circuits with capacitive coupling between the nodes. We will give an example that

illustrates the practical signi�cance of this extension. Second, the dominant time constant

of a general RC circuit is a quasiconvex function of the design parameters, and it can be op-

timized using convex optimization techniques (speci�cally, semide�nite programming). The

Elmore delay, on the other hand, leads to convex optimization problems only for a very spe-

cial class of circuits (which excludes, for example, circuits with loops of resistors). Moreover

practical experience suggests that the numerical values of Elmore delay and dominant time

constant are usually close.

The method will be illustrated with �ve examples (Section 5). The �rst two of these

examples (x5.1 and x5.2) are applications that can also be handled with classical Elmore

delay optimization. They are included to show that, where they both apply, dominant time

constant and Elmore delay minimization give very similar results. The next two examples

(x5.3 and x5.4) are applications that cannot be handled using Elmore delay minimization

because of the presence of resistor loops in the circuit. These two examples will illustrate that,

to a certain extent, convex optimization can be used to design the topology of the interconnect

wires. The �fth example (x5.5) is the best illustration of how much more general the new

technique is. Here we simultaneously determine the optimal sizes of interconnect wires

and the optimal distances between them, taking into account capacitive coupling between

neighboring wires. We will see that optimizing dominant time constant allows us to control

not only the signal propagation delay, but also indirectly the crosstalk between the wires.

This is not possible with Elmore delay minimization, since the Elmore delay is only de�ned

for circuits with grounded capacitors. This example is of practical importance in deep

submicron technologies where the coupling capacitance can be signi�cantly higher than the

plate capacitance.

The outline of the rest of the paper is as follows. In x2 we describe the circuit model

considered in the paper and the special cases that we will encounter. We also explain how

these di�erent RC circuit models arise in MOS transistor and interconnect wire sizing. In x3
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Figure 1: General RC circuit with n + 1 nodes shown as a resistive network, a
capacitive network, and voltages sources.

we discuss three de�nitions of signal propagation delay. In x4 we show that optimizing

the dominant time constant leads to semide�nite programming problems, a special class of

convex optimzation problems for which very e�cient methods have recently been developed.

Section 5 contains the �ve examples. In Section 6 we relate the three de�nitions of signal

propagation delay. Section 7 gives a short discussion of the computational complexity.

2 Circuit models

2.1 General RC circuit

We consider linear resistor-capacitor (RC) circuits that can be described by the di�erential

equation

C
dv

dt
= �G(v(t)� u(t)); (1)

where v(t) 2 Rn
is the vector of node voltages, u(t) 2 Rn

is the vector of independent

voltage sources, C 2 Rn�n
is the capacitance matrix, and G 2 Rn�n

is the conductance

matrix (see Figure 1). Throughout this paper we assume that C and G are symmetric and

positive de�nite (i.e., that the capacitive and resistive subcircuits are reciprocal and strictly

passive). In a few examples and the appendix we will also consider the case in which C and

G are only positive semide�nite, i.e., possibly singular.

We are interested in design problems in which C andG depend on some design parameters

x 2 Rm
. Speci�cally we assume that the matrices C and G are a�ne functions of x, i.e.,

C(x) = C0 + x1C1 + � � �+ xmCm; G(x) = G0 + x1G1 + � � �+ xmGm; (2)

where Ci and Gi are symmetric matrices.

We will refer to a circuit described by (1) and (2) as a general RC circuit. We will

also consider several important special cases, for example circuits composed of two-terminal

elements, circuits in which the resistive network forms a tree, or all capacitors are grounded.

We describe these special cases now.
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Figure 2: Orientation of the kth branch voltage Vk and branch current Ik in an RC
circuit. Each branch consists of a capacitor ck � 0, and a resistor with conductance
gk � 0 in series with an independent voltage source Uk.

2.2 RC circuit

When the general RC circuit is composed of two terminal resistors and capacitors (and the

independent voltage sources) we will refer to it as an RC circuit. More precisely, consider a

circuit with N branches and n + 1 nodes, numbered 0 to n, where node 0 is the ground or

reference node. Each branch k consists of a capacitor ck � 0, and a conductance gk � 0 in

series with a voltage source Uk (see Figure 2). Some branches can have a zero capacitance

or a zero conductance, but we will assume that both the capacitive subnetwork (i.e., the

network obtained by removing all resistors and voltage sources), and the resistive subnetwork

(i.e., the network obtained by removing all capacitors) are connected.

We denote the vector of node voltages by v 2 Rn
, the vector of branch voltages by

V 2 RN
and the vector of branch currents by I 2 RN

. The relation between branch

voltages and currents is

Ik = ck
dVk

dt
+ gk(Vk � Uk); k = 1; : : : ; N: (3)

To obtain a description of the form (1), we introduce the reduced node-incidence matrix

A 2 Rn�N
and de�ne C and G as

C = A diag(c)AT ; G = A diag(g)AT : (4)

Obviously, C and G are positive semide�nite. Both matrices are also nonsingular if the

capacitive and resistive subnetworks are connected. To see this, suppose that ck > 0 for

k = 1; : : : ; N+ and ck = 0 for k > N+. Then C = A+diag(c+)A
T

+, where c+ is the vector

with the �rst N+ components of c, and A+ is the matrix formed by the �rst N+ columns of

A (i.e., the reduced node-incidence matrix of the capacitive subnetwork). Since a reduced

node-incidence matrix of a network is of full row rank if and only if the network is connected,

A+ must have rank n, and hence C must be positive de�nite. In a similar way one can show

that G is positive de�nite if the resistive subnetwork is connected.

Using Kirchho�'s laws AI = 0 and V = ATv, it is now straightforward to write the

branch equations (3) as (1) with u = G�1A diag(g) U .
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Figure 3: Example of a grounded capacitor RC tree.

For future use we note that for this class of circuits C andG have the following well-known

form: for i = 1; : : : ; n,

Gii =
X

k2N (i)

gk; Cii =
X

k2N (i)

ck;

where the summations extend over all branches connected to node i, and, for i; j = 1; : : : ; n,

i 6= j,

Gij = �
X

k2N (i;j)

gk; Cij = �
X

k2N (i;j)

ck

where the summations are over all branches between nodes i and j. In particular, the

diagonal elements of C and G are positive and the o�-diagonal elements are negative. It can

also be shown that the matrices R = G�1 and C�1 are elementwise nonnegative.

From the expressions for the matrices G and C (4), we see that they are a�ne functions

of the design parameters x, if each of the conductances gk and capacitances ck is.

2.3 Grounded capacitor RC circuit

It is quite common that all capacitors in the RC circuit are connected to the ground node.

In this case the matrix C is diagonal and nonsingular if there is a capacitor between every

node and the ground. We will refer to circuits of this form as grounded capacitor RC circuits.

2.4 Grounded capacitor RC tree

The most restricted class of circuits considered in this paper consists of grounded capacitor

RC circuits in which the resistive branches form a tree with the ground node as its root.

Moreover only one resistive branch is connected to the ground node, and it contains the only

voltage source in the circuit. An example is shown in Figure 3.

Note that the resistance matrix R = G�1 for a circuit of this class can be written down

by inspection:

Rij =
X

resistances upstream from node i and node j; (5)
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i.e., to �nd Rij we add all resistances in the intersection of the unique path from node i to

the root of the tree and the unique path from node j to the root of the tree. For the example

in Figure 3, we obtain

R =

2
666666664

r1 r1 r1 r1 r1 r1
r1 r1 + r2 r1 + r2 r1 r1 r1
r1 r1 + r2 r1 + r2 + r3 r1 r1 r1
r1 r1 r1 r1 + r4 r1 + r4 r1 + r4
r1 r1 r1 r1 + r4 r1 + r4 + r6 r1 + r4
r1 r1 r1 r1 + r4 r1 + r4 r1 + r4 + r5

3
777777775

where ri = 1=gi.

One can also verify that in a grounded capacitor RC tree with input voltage vin(t), the

vector u(t) in (1) is equal to u(t) = vin(t)e where e is the vector with all components equal

to one.

2.5 Applications

Linear RC circuits are often used as approximate models for transistors and interconnect

wires. When the design parameters are the physical widths of conductors or transistors,

the conductance and capacitance matrices are a�ne in these parameters, i.e., they have the

form (2).

An important example is wire sizing, where xi denotes the width of a segment of some

conductor or interconnect line. A simple lumped model of the segment consists of a � section:

a series conductance, with a capacitance to ground on each end. Here the conductance is

linear in the width xi, and the capacitances are linear or a�ne. We can also model each

segment by many such � sections, and still have the general form (1), (2).

Another important example is an MOS transistor circuit where xi denotes the width of

a transistor. When the transistor is `on' it is modeled as a conductance that is proportional

to xi, and a source-to-ground capacitance and drain-to-ground capacitance that are linear

or a�ne in xi.

3 Delay

We are interested in how fast a change in the input u propagates to the di�erent nodes

of the circuit, and in how this propagation delay varies as a function of the resistances and

capacitances. In this section we introduce three possible measures for this propagation delay:

the threshold delay, which is the most natural measure but di�cult to handle mathematically;

the Elmore delay, which is widely used in transistor and wire sizing; and the dominant time

constant. We will compare the three delay measures in the examples of x5 where we will

observe that their numerical values are usually quite close. More theoretical details on the

relation between these three measures will be presented in x6, including some bounds that

they must satisfy.
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We assume that for t < 0, the circuit is in static steady-state with u(t) = v(t) = v�. For

t � 0, the source switches to the constant value u(t) = v+. As a result we have, for t � 0,

v(t) = v+ + e�C
�1Gt

(v� � v+) (6)

which converges, as t ! 1, to v+ (since our assumption C > 0, G > 0 implies stability).

The di�erence between the node voltage and its ultimate value is given by

~v(t) = e�C
�1

Gt
(v� � v+);

and we are interested in how large t must be before this is small.

To simplify notation, we will relabel ~v as v, and from here on study the rate at which

v(t) = e�C
�1Gtv(0) (7)

becomes small. Note that this v satis�es the autonomous equation Cdv=dt = �Gv.
It can be shown that for a grounded capacitor RC circuit the matrix e�C

�1
Gt

is element-

wise nonnegative for all t � 0 (see Berman and Plemmons[BP94, Theorem 3.12]). Therefore,

if v(0) � 0 (meaning, vk(0) � 0 for k = 1; : : : ; n) in (7), the voltages remain nonnegative,

i.e., for t � 0 we have

v(t) � 0:

Also note that in a grounded capacitor RC tree, the steady-state node voltages are all

equal. When discussing RC trees, we will therefore assume without loss of generality that the

input switches from zero to one at t = 0, i.e., v� = 0, v+ = e in (6), or, for the autonomous

model, that v(0) = e in (7).

3.1 Threshold delay

In many applications the natural measure of the delay at node k is the �rst time after which

vk stays below some given threshold level � > 0, i.e.,

T thres
k

= inff T j jvk(t)j � � for t � T g:

We will call the maximum threshold delay to any node the critical threshold delay of the

circuit:

T thres
= maxfT thres

1 ; : : : ; T thres
n

g = inff T j kv(t)k1 � � for t � T g;
where k � k1 denotes the in�nity norm, de�ned by kzk1 = maxi jzij. The critical threshold
delay is the �rst time after which all node voltages are less than �.

The critical threshold delay T thres
depends on the design parameters x through (7), i.e.,

in a very complicated way. Methods for direct optimization of T thres
are ine�cient and also

local, i.e., not guaranteed to �nd a globally optimal design.
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Figure 4: Graphical interpretation of the Elmore delay at node k. T thres
k
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k

. From this it is clear that

when the voltage is nonnegative and monotonically decaying, �T thres
k
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.

3.2 Elmore delay

In[Elm48], Elmore introduced a measure of the delay to a node that depends on C and

G (hence, x) in a simpler way than the threshold delay, and often gives an acceptable

approximation to it. The Elmore delay to node k is de�ned as

T elm
=

Z
1

0
vk(t) dt:

While T elm
k

is always de�ned, it can be interpreted as a measure of delay only when vk(t) � 0

for all t � 0, i.e., when the node voltage is nonnegative. (Which is the case, as we mentioned,

in grounded capacitor RC circuits with v(0) � 0.)

In the common case that the voltages decay monotonically, i.e., dvk(t)=dt � 0 for all

t � 0, we have the simple bound

�T thres � T elm
k

;

which can be derived as follows. Assuming vk is positive and nonincreasing, we must have

vk(t) > � for t < T thres
k

. Hence the integral of vk must exceed �T thres
k

(see Figure 4). The

monotonic decay property holds, for example, for grounded capacitor RC trees (see [RPH83,

Appendix C]).

We can express the Elmore delay in terms of G, C, and v(0) as

T elm
k

= eT
k
G�1Cv(0)

where ek is the kth unit vector. Thus the vector of Elmore delays is given by the simple

expression RCv(0), where R = G�1 is the resistance matrix. We de�ne the critical Elmore

delay as the largest Elmore delay at any node, i.e., T elm
= maxk T

elm
k

.

For a grounded capacitor RC circuit with v(0) � 0 we can express the critical Elmore

delay as

T elm
= kG�1Cv(0)k1;

by noting that the matrix G�1C = RC is elementwise nonnegative. If v(0) = e (as in a

grounded-capacitor RC tree) we can also write

T elm
= max

k

�
eT
k
G�1Ce

�
= kG�1Ck1: (8)
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(For a matrixA 2 Rn�n
, kAk1 is the maximum row sum of A, i.e., kAk1 = maxi=1;:::;n

P
n

j=1 jAijj.)

3.3 Dominant time constant

In this paper we propose using the dominant time constant of the RC circuit as a measure of

the delay. We start with the de�nition. Let �1; : : : ; �n denote the eigenvalues of the circuit,

i.e., the eigenvalues of �C�1G, or equivalently, the roots of the characteristic polynomial

det(sC+G). They are real and negative since they are also the eigenvalues of the symmetric,

negative de�nite matrix

C1=2
�
�C�1G

�
C�1=2 = �C�1=2GC�1=2

(which is similar to �C�1G). We assume they are sorted in decreasing order, i.e.,

0 > �1 � � � � � �n:

The largest eigenvalue, �1, is called the dominant eigenvalue or dominant pole of the RC

circuit.

Each node voltage can be expressed in the form

vk(t) =
nX
i=1

�ike
�it; (9)

which is a sum of decaying exponentials with rates given by the eigenvalues. We de�ne

the dominant time constant at the kth node as follows. Let p denote the index of the �rst

nonzero term in the sum (9), i.e., �ik = 0 for i < p and �ip 6= 0. (Thus, the slowest decaying

term in vk is �ipe
�pt.) We call �p the dominant eigenvalue at node k, and the dominant time

constant at node k is de�ned as

T dom
k

= �1=�p:
In most cases, vk contains a term associated with the largest eigenvalue �1, in which case we

simply have T dom
k

= �1=�1.
The dominant time constant T dom

k
measures the asymptotic rate of decay of vk(t), and

there are several ways to interpret it. For example, T dom
k

is the smallest number T such that

jvk(t)j � �e�t=T

holds for some � and all t � 0.

The (critical) dominant time constant is de�ned as T dom
= maxk T

dom
k

. Except in the

pathological case when v(0) is de�cient in the eigenvector associated with �1, we have

T dom
= �1=�1: (10)

In the sequel we will assume this is the case.

Note that the dominant time constant T dom
is a very complicated function of G and C,

i.e., the negative inverse of the largest zero of the polynomial det(sC + G). The dominant

time constant can also be expressed in another form that will be more useful to us:

T dom
= minf T j TG� C � 0 g:

This form has another advantage: it makes sense and provides a reasonable measure of delay

in the case when C and G are only positive semide�nite (i.e., possibly singular). We will see

this in several of the examples; the details are given in Appendix A.
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4 Dominant time constant optimization

In this section we show how several important design problems involving dominant time

constant, area, and power, can be cast as convex or quasiconvex optimization problems that

can be solved very e�ciently.

4.1 Dominant time constant speci�cation as linear matrix inequal-

ity

The dominant pole �1 can be expressed as

�1 = inff� j �C(x) +G(x) � 0g; (11)

and hence, in particular, �1C(x) +G(x) � 0. Another consequence of (11) is

T dom
(x) � Tmax () TmaxG(x)� C(x) � 0: (12)

This type of constraint is called a linear matrix inequality (LMI): the left hand side is a

symmetric matrix, the entries of which are a�ne functions of x. It can be shown that the

set of vectors x that satisfy (12) is convex.

We conclude that T dom
is a quasiconvex function of x, i.e., its sublevel setsn

x
��� T dom

(x) � Tmax

o

are convex sets for all Tmax. Quasiconvexity can also be expressed as: for � 2 [0; 1],

T dom
(�x + (1� �)~x) � maxfT dom

(x); T dom
(~x)g;

i.e., as the design parameters vary on a segment between two values, the dominant time

constant is never any more than the largest of the two dominant time constants at the

endpoints.

Linear matrix inequalities have recently been recognized as an e�cient and uni�ed rep-

resentation of a wide variety of nonlinear convex constraints. They arise in many di�erent

�elds such as control theory and combinatorial optimization (for surveys, see [BEFB94,

NN94, VB96, LO96, Ali95]). Most importantly for us, many convex and quasiconvex op-

timization problems that involve LMIs can be solved with great e�ciency using recently

developed interior-point methods.

4.2 Optimization over LMIs

Here we brie
y describe several common convex and quasiconvex optimization problems over

LMIs.

The most common problem is semide�nite programming (SDP), in which we minimize a

linear function subject to a linear matrix inequality:

minimize cTx

subject to A(x) � 0;
(13)

9



where A(x) = A0 + x1A1 + � � � + xmAm, Ai = AT

i
. Semide�nite programs are convex

optimization problems, and can be solved very e�ciently (see, e.g., [NN94, VB96]). Some

public domain general-purpose SDP software packages are sp[VB94], sdpsol[WB96], and

lmitool[END95].

We can handle multiple LMI constraints in SDP (13) by representing them as one big

block diagonal matrix. We can also incorporate a wide variety of convex constraints on x by

representing them as LMIs. For example, we can represent an SDP with additional linear

inequalities on x,
minimize cTx

subject to A(x) � 0

fT
i
x � gi; i = 1; : : : ; p

(14)

as the SDP

minimize cTx

subject to

"
A(x) 0

0 diag(g1 � fT1 x; : : : ; gp � fT
p
x)

#
� 0:

(15)

In the sequel we will simply refer to a problem such as (14), which is easily transformed to

an SDP in the standard form (13), as an SDP.

Another common problem has the form

minimize �

subject to �B(x)� A(x) � 0

B(x) > 0; C(x) � 0;

(16)

where A, B, and C are symmetric matrices that are a�ne functions of x, and the variables

are x and � 2 R. This problem is called the generalized eigenvalue minimization problem

(GEVP). GEVPs are quasiconvex and can be solved very e�ciently using recently developed

interior-point methods. See Boyd and El Ghaoui [BE93], Haeberly and Overton [HO94], and

Nesterov and Nemirovsky [NN94, NN95, Nem94] for details on specialized algorithms.

4.3 Minimum area subject to bound on delay

We now return to circuit optimization problems. We suppose the area of the circuit is a

linear (or a�ne) function of the variables xi. This occurs when the variables represent the

widths of transistors or conductors (with lengths �xed as li), in which case the circuit area

has the form

a0 + x1l1 + � � �+ xmlm

where a0 is the area of the �xed part of the circuit.

We can minimize the area subject to a bound on the dominant time constant T dom � Tmax,

and subject to upper and lower bounds on the widths by solving the SDP

minimize

mX
i=1

lixi

subject to TmaxG(x)� C(x) � 0

xmin � xi � xmax; i = 1; : : : ; m:

(17)
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By solving this SDP for a sequence of values of Tmax, we can compute the exact optimal

tradeo� between area and dominant time constant. The optimal solutions of (17) are on the

tradeo� curve, i.e., they are Pareto optimal for area and dominant time constant.

4.4 Minimum power dissipation subject to bound on delay

The total energy dissipated in the resistors during a transition from initial voltage v to �nal

voltage 0 (or between 0 and v) is the energy stored in the capacitors, i.e., (1=2)vTCv. There-

fore for a �xed clock rate and �xed probability of transition, the average power dissipated

in proportional to

vTC(x)v =
mX
i=1

xk
�
vTCiv

�
;

which is a linear function of the design parameters x.

Therefore we can minimize power dissipation subject to a constraint on the dominant

time constant by solving the SDP

minimize vTCv

subject to TmaxG(x)� C(x) � 0

xmin � xi � xmax; i = 1; : : : ; m:

We can also add an upper bound on area, which is a linear inequality. By solving this

SDP for a sequence of values of Tmax, we can compute the optimal tradeo� between power

dissipation and dominant time constant. By adding a constraint that the area cannot exceed

Amax, and solving the SDP for a sequence of values of Tmax and Amax, we can compute the

exact optimal tradeo� surface between power dissipation, area, and dominant time constant.

4.5 Minimum delay subject to area and power constraints

We can also directly minimize the delay subject to limits on area and power dissipation, by

solving the GEVP

minimize T

subject to TG(x)� C(x) � 0

xmin � xi � xmax; i = 1; : : : ; m

fT
i
x � gi; i = 1; 2

with variables x and T , where the linear inequalities limit area and power dissipation.

4.6 Comparison with Elmore delay optimization

We brie
y describe how Elmore delay can be optimized, in order to compare it with the

methods for dominant time constant optimization we have described above.

Elmore delay is optimized only in a very special case: grounded capacitor RC trees where

each conductance is proportional to exactly one variable. From (5) and (8) we see that the

Elmore delay to node k can be written in the form

T elm
k

=
X
ij


ijci=gj (18)
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where the coe�cients 
ij are either zero or one. For example the Elmore delay to the third

node of the circuit in Figure 3 is

T elm
3 = c9(r1 + r2 + r3) + c8(r1 + r2) + c7r1 + c10r1 + c12r1 + c11r1:

Suppose each ci is a�ne in the variable x, and each gi is proportional to exactly one variable.

Then (18) simpli�es to a function of the form

f(x1; : : : ; xn) =
NX
j=1

�j

mY
i=1

x
�ij

i : (19)

where the coe�cients �j are nonnegative and the exponents �ij can be �1, 0, or +1. A

function of the form (19) (with �ij arbitrary real numbers) is called a posynomial function,

and an optimization problem of the form

minimze f0(x)

subject to fi(x) � 1; i = 1; : : : ; n

x > 0;

(20)

where all functions fi are posynomial, is called a geometric programming problem. Geometric

programming problems can be cast as convex optimization problems by the following simple

change of variables. De�ning yi = logxi, and expressing the function (19) in terms of y, we

obtain

f(ey1; : : : ; eym) =
X
j

�j exp

 
mX
i=1

�ijyi

!
;

which is convex in y. Applying this transformation to each of the functions in (20) yields a

convex optimization problem in the variables y.

This fact was exploited in the TILOS program of Fishburn and Dunlop[FD85] for Elmore

delay minimization, and in several more recent approaches to Elmore delay minimization in

transistor and wire sizing (for examples, see [SSVFD88, HNSLS90, SRVK93, Sap96]).

We conclude this section by listing some limitations of the Elmore delay, and contrasting

them with the dominant time constant. The main di�erence is that the dominant time

constant always leads to tractable convex or quasiconvex optimization problems, with no

restrictions on circuit topology. In particular:

� The circuits may contain loops of resistors. Although for grounded capacitor RC

circuits with loops of resistors, the Elmore delay is still a meaningful approximation of

signal delay (see Lin and Mead[LM84] and Wyatt[Wya85, Wya87]), it does not have

a simple posynomial form as it does for RC trees, and convex optimization cannot be

used to minimize it.

� The circuits may contain non grounded capacitors (i.e., the matrix C in (1) may be

nondiagonal). As we have seen, the voltages vk(t) can be negative in this case, and the

Elmore delay is not a good measure for signal delay.

� Elmore delay gives the delay from one input node to one output node. The dominant

time constant applies also to circuits with multiple input voltages.

12



� The Elmore delay in an RC tree is a posynomial function if the conductances depend

on one variable only. For dominant time constant optimization the conductance and

capacitances can be general a�ne functions of the variables.

The examples in the next section will illustrate these di�erences. The �rst two are applica-

tions to which Elmore delay would also apply, with very similar results. The third and fourth

example illustrate the application to circuits with loops of resistors. The �fth example has

non-grounded capacitors.
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Figure 5: Optimal wire sizing. A voltage source and conductance drive a capacitor
through a wire modeled as 20 �-segments with (�xed) lengths li and widths (to be
designed) xi.

5 Examples

5.1 Wire sizing

In the �rst example we consider the problem of sizing an interconnect wire that connects

a voltage source and conductance G to a capacitive load C. We divide the wire into 20

segments of length li, and width xi, i = 1; : : : ; 20, which is constrained as 0 � xi � Wmax.

(We include this constraint just to show that it is readily handled.) The total area of the

interconnect wire is therefore
P

i lixi. We use a � model of each wire segment, with capacitors

�ixi and conductance �ixi. This is shown in Figure 5.

We used the following parameter values in our numerical simulation:

G = 1:0; C = 10; li = 1; �i = 1:0; �i = 0:5; Wmax = 1:

To minimize the total area subject to the width bound and a bound Tmax on dominant

time constant, we solve the SDP

minimize

20X
i=1

lixi

subject to TmaxG(x)� C(x) � 0

0 � xi � Wmax; i = 1; : : : ; 20:

By solving this SDP for a sequence of values of Tmax that range between 300 and 2000, we

can compute the optimal area-delay tradeo� for this example, which is shown in Figure 6.

We emphasize that the tradeo� curve shown is the absolute tradeo� curve between the

competing objectives, i.e., area and dominant time constant. This is a consequence of the

guaranteed global optimality of the solutions computed using semide�nite programming.

The general shape of the tradeo� curve is not a surprise: by increasing total area, we can

reduce the dominant time constant. In this case the optimal tradeo� curve happens to be

approximately hyperbolic, i.e., it is approximately described by

area � T dom � 5000:
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Figure 6: Area-delay tradeo� curve. The curve shows the (globally) optimal trade-
o� curve between two competing objectives: the total area of the wire and the
dominant time constant of the circuit. The solution for the four points marked on
the curve is shown in Figure 7.

(the minimum value of the area-delay product is 4700 and the maximum value is 6180).

Figure 7 shows the solution x at the four points marked on the tradeo� curve. The

general shape of these plots match what we would expect. The interconnect wire decreases

in size as we move from the drive end towards the other end, since less current is needed to

charge or discharge the capacitances farther down the line. As expected, this e�ect is more

pronounced in the large, fast design (a), and much less evident in the small, slow design (d).

We can see that the wire width limit becomes active only when the dominant time constant

speci�cation is smaller than 400 (or equivalently, the total area exceeds 14.5).

Figure 8 shows the step responses at the 21 nodes along the wire, for the two solutions

marked (a) and (d) on the tradeo� curve. Note that in design (d) the voltage at the �rst

nodes along the wire increases faster than in design (a), while the response at the end of the

wire is much slower. This is easily explained. Since the capacitors in design (d) are much

smaller than in (a), the voltage at the �rst nodes increases faster than in (a). However,

since the resistances along the wire are larger in (d), the voltages at the last stages increase

much more slowly. The dashed lines indicate the dominant time constant and the Elmore

and 50%-threshold delays at the end node. We see that in both cases the dominant time

constant is a reasonable approximation of the 0.5-threshold delay, and that T elm
and T dom

are very close.

Finally, note that the circuit is a grounded capacitor RC tree, and therefore the same

designs could be done using Elmore delay instead of dominant time constant. In this example,

simple wire sizing via dominant time constant optimization seems to produce results very

close to wire sizing via Elmore delay optimization.

15



0

0.5

1

0

0.5

1

0

0.3

0.6

0 2 4 6 8 10 12 14 16 18 20
0

0.2
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solution (a). The bottom �gure is solution (d). The plots show wire width as a
function of position. Each segment has unit length.
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Figure 8: Step responses at the 21 nodes. Left. Step responses for the solution
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Figure 9: Optimization of wire and repeater sizes. The lefthand driver drives an
interconnect wire, modeled as 20 RC � segments connected to a repeater, which
drives a capacitive load through another 20 segment wire. The problem is to deter-
mine the sizes of the wire segments (x1, . . . , x40) as well as the sizes of the driver
and repeater d1 and d2.

5.2 Combined sizing of drivers, repeaters, and wire

Figure (9) depicts two repeaters inserted in an interconnect wire. The wires are divided in 20

segments each. The segments are modeled as �-segments with capacitance and conductance

proportional to the segment widths. The dimensions of a repeater are characterized by

one number d. The input capacitance of the repeater is a�ne in d: C0 + cd; the output

conductance is linear in d: gd. For the dynamics of the repeater we use a simpli�ed model

and assume that the output of the repeater is a perfect step input triggered when the input

crosses a certain threshold. In this example we assume that the output of the �rst repeater

is a perfect unit step at time t = 0 and that the output of the second repeater is a unit step

at t = T dom
1 , where T dom

1 is the dominant time constant of the �rst stage. We assume that

the total area is equal to L(d1 + d2) +
P40

i=1 lixi, where li is the length of the ith segment,

and L(d1 + d2) is the area of the drivers.

The numerical values used in the calculations are

g = 1; C0 = 1; c = 3; � = 5; � = 0:1; C = 50; li = 1; L = 10:

We also impose a maximum wire width of 2.

We want to minimize area subject to bound on the combined delay T dom
1 + T dom

2 of the

two stages. However, the sum of two quasiconvex functions is not quasiconvex, and therefore,

minimizing the total area subject to a bound on T dom
1 + T dom

2 is not a convex optimization

problem. A reasonable sub-optimal solution consists in dividing the total allowed delay

equally over the two stages. In other words we will replace the nonconvex constraint T dom
1 +

T dom
2 � Tmax by two convex constraints

T dom
1 � Tmax=2; T dom

2 � Tmax=2:
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Figure 10: Area-delay tradeo�. The area is 10(d1 + d2) +
P

i xi. The delay is
equally distributed over the two stages, i.e., total delay less than Tmax means that
T dom
1 � Tmax=2 and T dom

2 � Tmax=2, where T
dom
1 and T dom

2 are the dominant time
constants of the �rst and second stage, resp. The solution marked (a) is shown in
Figure 11.

This leads to the optimization problem

minimize L(d1 + d2) +
40X
i=1

lixi

subject to 0 � xi � 2; i = 1; : : : ; 40

d1; d2 � 0

(Tmax=2)(G1(x; d1; d2)� C1(x; d2) � 0

(Tmax=2)(G2(x; d2)� C2(x) � 0;

(21)

where G1 2 R21�21
is the conductance matrix of stage 1, C1 2 R21�21

is a diagonal matrix

with the total capacitance at the nodes of stage 1 as its elements, G2 2 R21�21
is the con-

ductance matrix of stage 2 and C2 2 R21�21
is a diagonal matrix with the total capacitance

at the nodes of stage 2 as its elements.

Note that the two stages are almost uncoupled; only the size of the second repeater (d2)

couples the two stages, since it varies the capacitive load on the end of the �rst wire, and

also determines the drive conductance for the second wire.

The tradeo� curve computed by solving the SDP (21) for a sequence of values Tmax is

shown in Figure 10. The solution marked (a) is shown in Figures 11 and 12.
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Figure 13: Interconnect network with 4 nodes, connected by 6 wire segments,
shown as rectangles. The wire segments are modeled as �-segments of length li and
width xi, shown at right. Note that only 3 wire segments are required to connect
the 4 nodes; the 6 wire segments include 3 loops.

5.3 Wire sizing and topology design

In the third example we size the wires for an interconnect circuit with four nodes, as shown

in Figure 13. This example illustrates two important extensions. First, the topology of

the circuit is more complex; the wires do not even form a tree. As a result, conventional

Elmore delay minimization, based on geometric programming, cannot be applied. (Elmore

delay minimization for circuits with meshes yields hard non-convex optimization problems.)

Secondly, we will use this example to illustrate that, to a certain extent, convex optimization

can be used to design the topology of interconnections. Note that this is an example of a

grounded capacitor RC circuit.

The numerical values of the parameters are:

G = 0:1; C = 10; �1 = �2 = 10; �3 = 100; �4 = �5 = 1; �i = 1:0; li = 1:

Since we take li = 1, the area of the circuit is simply
P6

i=1 xi.

Figure 14 shows the optimal tradeo� curve between area and dominant time constant. In

this example the tradeo� curve has interesting structure, with three `regions' that correspond

to di�erent interconnect topologies (see below).

Figure 15 shows the solution for the three points marked on the tradeo� curve. The

left �gures show the circuit, with the optimal width mentioned above each segment (and

segments with zero width not shown). The interpretation of the third solution requires

some explanation. The optimal values of the widths are x3 = 0:027 and xi = 0 for i 6= 3,

which means that all conductances and capacitances connected to node 4 are zero. The

interpretation of this solution poses no problem: we can simply delete node 4 from the
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Figure 14: Tradeo� curve. Optimal tradeo� between area and dominant time
constant for the circuit in Figure 13. The solutions at the three points marked (a),
(b), (c) are given in Figure 15.

circuit. Note however that the conductance and capacitance matrices are both singular:

G =

2
6664

0:127 0:000 �0:027 0:000

0:000 0:000 0:000 0:000

�0:027 0:000 0:027 0:000

0:000 0:000 0:000 0:000

3
7775 ; C = diag

�h
2:727 0:000 12:727 0:000

i�
;

and therefore the assumptions we made in x2 do not hold. In particular, the equation

det(�C + G) = 0 has an in�nite number of solutions, so the number of eigenvalues of the

pencil (G;�C) is in�nite. However, the dominant time constant

T dom
= min fT j TG� C � 0g

is still well de�ned, and yields T dom
= 600. We will discuss the case of singular G or C in

more detail in Appendix A.

The right half of Figure 15 shows the step responses at the di�erent nodes, and the

values of the dominant time constant and the critical Elmore delay (the Elmore delay at

node 3). We can observe that the critical Elmore delay and the dominant time constant

are quite close, and that the dominant time constant is a reasonable approximation for the

50%-threshold delay at the output node.

Note also the interesting fact that for design (b), the interconnect circuit has loops, which

is certainly not a conventional design. Nevertheless this circuit has smaller area than any

loop-free design with the same dominant time constant.
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Figure 15: Solutions. The solutions at the three points marked on the tradeo�
curve (top: solution (a), middle: solution (b), bottom: solution (c)). The left �gures
show the circuit with the optimal segment widths xi. The segments that are not
shown have width zero. The right �gure shows the step responses at the di�erent
nodes. The vertical lines give the values of the dominant time constant T dom, the
Elmore delay T elm at the output node, and the 0:5-threshold delay T thres, at the
output node 3.
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Figure 16: Tri-state bus sizing and topology design. The circuit on the left repre-
sents a tri-state bus connecting six nodes. Each pair of nodes is connected through
a wire, shown as a dashed line, modeled as a � segment shown at right. Note that
we have �fteen wires connecting the nodes, whereas only �ve are needed to connect
them. In this example, as in the previous example, we will use dominant time con-
stant optimization to determine the topology of the bus as well as the optimal wire
sizes xij: optimal xij's which are zero correspond to unused wires. The bus can be
driven from any node. When node i drives the bus, the ith switch is closed and the
others are all open.

5.4 Tri-state bus sizing and topology design

In this example we optimize a tri-state bus connecting six nodes. The example will again

illustrate that dominant time constant minimization can be used to (indirectly) design the

optimal topology of a circuit.

The model for the bus is shown in Figure 16. Each pair of nodes is connected by a

wire (shown as a dashed line), which is modeled as a �-segment, as shown at right in the

�gure. (Since in the optimal designs many of the wire segments will have width zero, it is

perhaps better to think of the �fteen segments as possible wire segments.) The capacitance

and the conductance of the wire segment between node i and node j depend on its physical

dimensions, i.e., on its length lij and width xij: the conductance is proportional to xij=lij;

the capacitance is proportional to xijlij. The lengths of the wires are given; the widths will

be our design variables. The total wire area is
P

i>j lijxij.

The bus can be driven from any node. When node i drives the bus, the ith switch is closed

and the others are all open. Thus we really have six di�erent circuits, each corresponding to

a given node driving the bus. To characterize the threshold or Elmore delay of the bus we

need to consider 36 di�erent delays: the delay to node i when node j acts as driver. We are

interested in the largest of these 36 delays, i.e., the delay for the worst drive/receive pair.

To constrain the dominant time constant, we require that the dominant time constant of

each of the six drive con�guration circuits has dominant time constant less than Tmax
. In
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Figure 18: Area-delay tradeo�.

other words, if T dom
i

is the dominant time constant of the RC-circuit obtained by closing

the switch at node i and opening the other switches, then T dom
= maxi Ti is the measure of

dominant time constant for the tri-state bus.

The numerical values used in the calculation are:

G = 1; C = 10; � = 0:5; � = 1:

The wire sizes are limited to a maximum value of 1:0. We assume that the geometry of the

bus is as in Figure 17, and that the length lij of the wire between nodes i and j is given by

the `1-distance (Manhattan distance) between points i and j in Figure 17.

Figure 18 shows the tradeo� curve between maximum dominant time constant T dom
and

the bus area. This tradeo� curve was computed by solving the following SDP for a sequence
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Figure 19: Solutions marked on the tradeo� curve. The left �gure shows the line
widths for solution (a). The thickness of the lines is proportional to xij . The
size of the wires between (1,5), (2,4), (3,4) and (3,6) is equal to the maximum
allowed value of one. There is no connection between node pairs (2,6), (3,5), (4,5)
and (4,6). The right �gure is the solution marked (b) on the tradeo� curve. The
thickest connection is between nodes (3,4) and has width 0.14. Again all connections
are drawn with a thickness proportional to their width xij . In this solution the
connections between (1,4), (2,3), (2,5), (2,5), (2,6), (3,5), (4,5) and (4,6) are absent.
(Note when comparing both �gures, that a di�erent scale was used for the widths
in both �gures. The sizes in the right �gure are roughly seven times smaller than
in the left �gure.)

of values of Tmax:

minimize
X
i>j

lijxij

subject to 0 � xij � 1

Tmax(
~G(x) +GEkk)� C(x) � 0; k = 1; : : : ; 6:

Here x denotes the vector with components xij (in any indexing order), ~G(x) denotes the

conductance matrix of the circuit when all switches are open, and C(x) is the diagonal matrix

with as its ith element the total capacitance at node i. The matrix Ekk is zero except for

the kth diagonal element, which is equal to one. The six di�erent LMI constraints in the

above SDP correspond to the six di�erent RC-circuits we have to consider. The conductance

matrix for the circuit with switch k closed is ~G with G added to its kth diagonal element,

so the kth LMI constraint states that the dominant time constant of the circuit with switch

k closed is less than Tmax.

Figure 19 shows the optimal widths for the two solutions marked (a) and (b) on the

tradeo� curve. The connections in the �gure are drawn with a thickness proportional to

xij. (Note however that the scales are not the same in the left and right �gure.) Note

again that the topology of both designs are di�erent: Solution (a), which is faster, uses more

connections than solution (b). Also note that in both cases the optimal topologies have

loops.

Figure 20 shows all step responses for both solutions. The results con�rm what we expect.

The smallest delay arises when the input node is 1 or 2 (the two top rows in the �gure),

since they lie in the middle. The delay is larger when the input node is one of the four other

nodes. Note that, in both solutions, T dom
is equal in four of the six cases.
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Figure 20: Step responses. Step responses for solution (a) (left) and solution (b)
(right). The �gures in the top row are the step responses when switch 1 is closed,
the second row shows step responses when switch 2 is closed, etc. Each plot gives
the step responses at the six di�erent nodes of the circuit. We also indicate the
values of the dominant time constant, the critical Elmore delay, and the critical
50%-threshold delay.
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Again the Elmore delay is slightly higher than dominant time constant and the dominant

time constant is roughly equal to the 50%-threshold delay.
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Figure 21: Wire sizing and spacing. Three parallel wires consisting of �ve segments
each. The conductance and capacitance of the jth segment of wire i is proportional
to wij. There is a capacitive coupling between the ith segments of wires 1 and 2, and
between the ith segments of wires 2 and 3, and the value of this parasitic capacitance
is inversely proportional to s1i, and s2i, respectively. The optimization variables are
the 15 segment widths wij and the distances s1 and s2.

5.5 Combined wire sizing and spacing

The examples so far involved grounded capacitor RC circuits. This section will illustrate

an important advantage of dominant time constant minimization over techniques based on

Elmore delay: the ability to take into account non-grounded capacitors.

The problem is to determine the optimal sizes of interconnect wires and the optimal

distances between them. We will consider an example with three wires, each consisting of

�ve segments, as shown in Figure 21. The optimization variables are the widths wij, and the

distances s1 and s2 between the wires.

The RC model of the three wires is shown in Figure 22. The wires are connected to

a voltage source with output conductance G at one end, and to capacitive loads at the

other end. As in the previous examples, each segment is modeled as a �-segment, with

conductance and capacitance proportional to the segment width wij. The di�erence with

the models used above is that we include a parasitic capacitance between the wires. We

assume that there is a capacitance between the jth segments of wires 1 and 2, and between

the jth segments of wires 2 and 3, with total values inversely proportional to the distances

s1j and s2j, respectively. To obtain a lumped model, we split this distributed capacitance

over two capacitors: the capacitance between segments j of wires 1 and 2 is lumped in two

capacitors with value 
=s1j, placed between nodes j and j + 6, and between nodes j + 1

and j + 7, resp; the total capacitance between segments j of wires 2 and 3 is lumped in two

capacitors with value 
=s2j, placed between nodes j+6 and j+12, and between nodes j+7
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Figure 22: RC model of the three wires shown in Figure 21. The wires are con-
nected to voltage sources with output conductance G at one end, and to load ca-
pacitors Ci at the other end. The conductances gij and capacitances cij are part
of the �-models of the wire segments. The capacitances bcij model the capacitive
coupling. The conductances and capacitances depend on the geometry of Figure 21
in the following way: gij = �wij , ci1 = �wi1, cij = �(wij + wi(j�1)) (1 < j < 6),
ci6 = �wi5, bci1 = 
=si1, bcij = 
=sij + 
=si(j�1) (1 < j < 6), bci6 = 
=si5.
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Figure 23: Tradeo� curve. The two objectives are the dominant time constant
of the circuit and the total width s1 + s2. subject to a lower bound of 1.0 on the
distances sij, and an upper bound of 2.0 on the segment widths wij .

and j + 13, respectively. This leads to the RC circuit in Figure 22 with, for i = 1; 2; 3,

gij = �wij; ci1 = �wi1; cij = �(wij + wi(j�1)) (1 < j < 6); ci6 = �wi5;

and, for i = 1; 2,

bci1 = 


si1
; bcij = 


sij
+




si(j�1)
(1 < j < 6); bci6 = 


si5
:

In the calculations we will use the numerical values

G = 100; C1 = 10; C2 = 20; C3 = 30; � = 1; � = 0:5; 
 = 2:

We also impose the constraints that the distances sij between the wires must exceed 1.0,

and that wire widths are less than 2.0.

Figure 10 shows the tradeo� between the total width s1 + s2 of the three wires, and the

dominant time constant of the circuit. Each point on the tradeo� curve is the solution of an

optimization problem

mimimize s1 + s2
subject to TmaxG(w11; : : : ; w35)� C(w11; : : : ; w35; s11; : : : ; s25) � 0

s1j = s1 � w1j � 0:5w2j; j = 1; : : : ; 5

s2j = s2 � w3j � 0:5w2j; j = 1; : : : ; 5

sij � 1; i = 1; 2; j = 1; : : : ; 5;

wij � 2; i = 1; 2; 3; j = 1; : : : ; 5;

(22)

in the variables s1, s2, wij, sij. Note that the capacitance matrix contains terms that

are inversely proportional to the variables sij, and therefore problem (22) is not an SDP.
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However, it can be reformulated as an SDP in the following way. First we introduce new

variables tij = 1=sij, and write the problem as

mimimize s1 + s2
subject to TmaxG(w11; : : : ; w35)� C(w11; : : : ; w35; t11; : : : ; t25) � 0

1=t1j � s1 � w1j � 0:5w2j; j = 1; : : : ; 5

1=t2j � s2 � w3j � 0:5w2j; j = 1; : : : ; 5

0 � tij � 1; i = 1; 2; j = 1; : : : ; 5:

(23)

Note that we replace the equalities in the second and third constraints by inequalities. We

�rst argue that this can be done without loss of generality. Suppose (si; wij; tij) are feasible

in (23) with a certain objective value, and that one of the of the nonlinear inequalities in tij,

e.g., the inequality

1=t1j � s1 � w1j � 0:5w2j

is not tight. Decreasing t1j increases the smallest eigenvalue of the matrix G � TmaxC.

(This is readily shown from the Courant-Fischer minimax theorem. It is also quite intuitive:

reducing coupling decreases the dominant time constant.) Therefore we can replace t1j by

the value et1j = 1=(s1 � w1j � 0:5w2j);

while still retaining feasibility in (23), and without changing the objective value. Without loss

of generality we can therefore assume that at the optimum the second and third constraints

in (23) are tight. Hence problem (23) is equivalent to (22).

Problem (23) is convex in the variables s1, s2, tij, wij: the �rst constraint is an LMI; the

fourth constraint is a set of linear inequalities; the second and third constraints are nonlinear

convex constraints that can be cast as 3� 3-LMIs by the following equivalence:

x � 0; xy � 1 () x � 0;







"

2

x� y

#




 � x+ y

() x � 0;

2
64
x + y 0 2

0 x + y x� y

2 x� y x + y

3
75 � 0:

Figures 24 through 26 illustrate the solution marked (a) on the tradeo� curve, i.e., a

solution with large dominant time constant and small area. The thickest wire is number

three, since it drives the largest load, the thinnest wire is number one, which drives the

smallest load. Note that although the wires clearly taper o� toward the end, there is a very

slight increase in the width of wires 1 and 3 at segments 2 and 3. We also see that the smallest

distance between the wires is equal to its minimum allowed value of 1.0, which means that

the cross-coupling did not a�ect the optimal spacing between the wires. Figure 25 shows

the output voltages for steps applied to one of the wires, while the two other input voltages

remains zero. In Figure 26 we show the e�ect of applying a step simultaneously at two

inputs, while the third input voltage remains zero.

Figures 27 through 29 illustrate the solution (b), i.e., a circuit with small dominant time

constant and large area.. Note that here the distance between the second and third wires is
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Figure 24: Solution marked (a) on the tradeo� curve. Note that the distance
between the wires is equal to its minimal allowed value of 1.0
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Figure 25: Responses for solution (a). The voltages at the output nodes due to a
step applied to the �rst wire (left �gure), second wire (center), or third wire (right).
The dashed line marks the dominant time constant.
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Figure 26: Responses for solution (a). Voltages at output nodes when a step is
applied simultaneously at wires 1 and 2 (left �gure), wires 1 and 3 (center), and
wires 2 and 3 (right). The dashed line marks the dominant time constant.
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Figure 27: Solution marked (b) on the tradeo� curve.
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Figure 28: Responses for solution (b). The voltages at the output nodes, due to
to a step applied to the �rst wire (left �gure), second wire (center), or third wire
(right). The dashed line marks the dominant time constant.

0 20 40 60 80 100 120 140 160

0

0.2

0.4

0.6

0.8

1

��	
v6(t)

@@I v12(t)

��	
v18(t)

time

v
o
lt
a
g
e

0 20 40 60 80 100 120 140 160

0

0.2

0.4

0.6

0.8

1

��	
v6(t)

��	
v12(t)

@@I v18(t)

time
0 20 40 60 80 100 120 140 160

0

0.2

0.4

0.6

0.8

1

��	
v6(t)

��	
v12(t)

@@I v18(t)

time

Figure 29: Responses for solution (b). Voltages at output nodes when a step is
applied simultaneously at wires 1 and 2 (left �gure), wires 1 and 3 (center), and
wires 2 and 3 (right). The dashed line marks the dominant time constant.
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larger than the minimum allowed value of 1.0. The other �gures show the output voltages

for the same situations as above.

Note that we can not guarantee that the peak due to crosstalk stays under a certain

level. This would be a speci�cation in practice, but it is di�cult to incorporate into the

optimization problem. However we in
uence the level indirectly: minimizing the dominant

time constant makes the cross-talk peak shorter in time (since the dominant time constant

determines how fast all voltages settle around their steady-state value). Indirectly, this also

tends to make the magnitude of the peak smaller (as can be seen by comparing the crosstalk

levels for the two solutions in the examples).

A practical heuristic based on the dominant time constant minimization that would

guarantee a given peak level is as follows. We �rst solve a problem as above, i.e., minimize

area subject to a constraint on the dominant time constant. Then we simulate to see if

crosstalk level is acceptable. If not, we increase the spacing of the wires until it is. Then we

determine the optimal wire sizes again, keeping the wires at least at this minimum distance.

This iteration is continued until it converges. The dominant time constant of the �nal result

will be at least as good as the �rst solution and the cross talk level will not exceed the

maximum level.

6 Some relations between the delay measures

In this section we derive several bounds between the three delay measures. The results allow

us to translate upper bounds on T dom
into upper bounds on Elmore delay and threshold

delays. Some of the bounds will turn out to be quite conservative. As the examples of

previous section show, the 50% threshold delay, the Elmore delay, and the dominant time

constant are much closer in practice than the bounds derived here would suggest.

Bounds on node voltages

We start by rewriting (7) as

v(t) = e�C
�1Gtv(0) = C�1=2e�C

�1=2GC�1=2tC1=2v(0);

and use the second form to derive an upper bound on kv(t)k1:

kv(t)k1 =




C1=2e�C
�1=2GC�1=2tC�1=2v(0)





1

�



C1=2





1




e�C�1=2GC�1=2t



1




C�1=2



1
kv(0)k

1

�
p
n�1(C

1=2
)




e�C�1=2GC�1=2t


 kv(0)k
1

=
p
n�1(C

1=2
) kv(0)k

1
e�t=T

dom

; (24)

where the condition number �1 is de�ned as �1(A) = kAk1kA�1k1, and kAk denotes the
spectral norm of A, i.e., its largest singular value. The �rst inequality follows from the

submultiplicative property of the matrix norm (kABk1 � kAk1kBk1) and the de�nition of

the in�nity-induced matrix norm (kAxk1 � kAk1kxk1). The second inequality follows from
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the relation between the in�nity-induced and the spectral norm of a matrix (kAk1 �
p
nkAk

for A 2 Rm�n
). In the last line we used the fact the largest eigenvalue of the symmetric

matrix e�C
�1=2GC�1=2t

is e�t=T
dom

, and that the largest eigenvalue and the spectral norm of a

positive de�nite symmetric matrix coincide.

Note that for diagonalC = diag(C1; : : : ; Cn) we have �1(C
1=2

) = (maxiCi)
1=2=(minj Cj)

1=2
.

For grounded capacitor RC circuits with v(0) > 0 we can also derive a lower bound on

kv(t)k1. Recall that for a grounded capacitor RC circuit the matrix e�C
�1

Gt
is elementwise

nonnegative. We therefore have

max
k

vk(t) = max
k

�
eT
k
e�C

�1Gtv(0)
�
� vmin(0)max

k

�
eT
k
e�C

�1Gte
�
� vmin(0)e

�t=Tdom ; (25)

where vmin(0) is the smallest component of v(0). The last inequality follows from the Ger-

shgorin disk theorem [GL89, p. 341], which, together with the elementwise nonnegativity,

implies that the eigenvalues of the matrix e�C
�1

Gt
are bounded above by largest row sum

maxk e
T

k
e�C

�1Gte. In a grounded-capacitor RC tree we can assume v(0) = e and therefore

max
k

vk(t) � e�t=T
dom

: (26)

Threshold delay and dominant time constant

From (24) we see that for t � T dom
log

�p
n�1(C

1=2
)
kv(0)k1

�

�
, we have kv(t)k1 � �, so we

conclude

T thres � T dom
log

 p
n�1(C

1=2
)
kv(0)k1

�

!
:

In a similar way, we can derive from (25) the lower bound

T thres � T dom
log

 
vmin(0)

�

!
(27)

on the critical threshold delay of a grounded capacitor RC circuit. If v(0) = e, one obtains

T thres � T dom
log (1=�)

Dominant time constant and Elmore delay

From (24) we have for each k

T elm
k

=

Z
1

0
vk(t) dt �

p
n�1(C

1=2
)kv(0)k1

Z
1

0
e�t=T

dom

dt

= T dom
p
n�1(C

1=2
)kv(0)k1: (28)

Thus we have a bound between critical Elmore delay and dominant time constant. For

grounded capacitor circuits we obtain the lower bound from (26):

T elm � T domvmin(0)

and for a grounded capacitor RC tree

T elm � T dom:
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T thres T elm T dom

T thres � T elm=� � T dom
log (

p
n�=�)

T elm � T thres
p
n�= log(1=�) � T dom

p
n�

T dom � T thres= log(1=�) � T elm

Table 1: Bounds for grounded capacitor RC trees. � stands for C
1=2
max=C

1=2
min.

Threshold delay and Elmore delay

We have already seen that T thres � T elm=� when the voltage decays monotonically.

For a grounded capacitor circuit we can also put together bounds (28) and (27), which

yields

T elm � T thres
p
n�1(C

1=2
)

kv(0)k1
log(vmin(0)=�)

;

and, for a grounded capacitor RC tree,

T elm � T thres
p
n�1(C

1=2
)

1

log(1=�)
:

Summary

Table 1 summarizes the bounds for grounded-capacitor RC trees, for which we have a com-

plete set of upper and lower bounds. As an illustration, we evaluate the upper and lower

bounds for the RC tree of the example in x5.1. We obtain

T dom � T elm � 4:58 �1(C
1=2

)T dom:

The lower bound turns out to be quite close (T elm � T dom
+ 67 over the entire range of

computed values of T dom
). The upper bound however turns out to be very conservative (it

ranges from 7842 for T dom
= 370 to 8289 for T dom

= 2000). The other examples con�rm this

observation that the bounds of this section are sometimes quite conservative in practice.
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7 Conclusions

Computational complexity of dominant time constant minimization

We conclude with some discussion of the complexity of dominant time constant minimization

via semide�nite programming. For more numerical details on interior-point methods for SDP

we refer to the survey papers [VB96, LO96].

Two factors determine the overall complexity: the total number of iterations and the

amount of work of one iteration. It can be shown that the number of iterations to solve

an SDP to a given accuracy � grows at most as O(
p
n log(1=�)), where n is the size of the

matrix A(x) in (13) [NN94]. In practice the performance is even better than suggested

by this worst-case bound. The number of iterations usually lies between 5 and 50, almost

independently of problem size. For practical purposes it is therefore fair to consider the total

number of iterations as constant, and to regard the work per iteration as dominating the

overall complexity.

Each iteration involves solving a large system of linear equations to compute search

directions. Little can be said about the complexity of this computation since it largely

depends on the amount of problem structure that can be exploited. If the problem has no

structure, i.e., if the matrices Ai in (13) are completely dense, then the cost of one iteration

is O(mn3 +m2n2). This is the case for the general-purpose SDP software sp and sdpsol

[VB94, WB96], which were used for the numerical examples in this paper. These codes

solve problems up to several hundred variables without di�culty, but become impractical

for larger problems, since they do not exploit problem structure. In all practical applications,

however, there is a great deal of structure that can be exploited, and specialized codes are

orders of magnitude more e�cient than the general-purpose software (see for a few examples,

[VB95, BVG94]).

SDP problems arising in dominant time constant minimization possess two forms of spar-

sity that should be exploited in a specialized code. First, the capacitance and conductance

matrices C and G are usually sparse matrices (indeed C is often diagonal). Secondly, each

variable xi a�ects only a very small number of elements of C and G (i.e., the di�erent

matrices Ci and Gi in (2) are extremely sparse).

General conclusions

Fishburn and Dunlop make an interesting remark in the conclusion of their paper on the

TILOS program[FD85, x10]. They address the question whether it is justi�ed to assume

perfect step inputs, or whether the program should take into account a more realistic input

waveform:

Although there exist several static timing analyzers and a transistor sizer that take into

account input waveform shape, we hesitate to do so without a convexity proof in hand.

If a more accurate model turns out to be non-convex, there is always the danger that

the optimizer might become trapped in a local minimum that is not a global minimum,

resulting in a more pessimal solution than the less acurate model.

A similar argument can be made in favor of the approach in this paper. Accurate expressions

for the delay in transistor circuits are important for simulation and timing veri�cation, and

37



approximations based on the �rst few moments seem to be very well suited for this purpose

(see, for example, [PR90, FF95, GGV94b, GGV94a]. For delay optimization, however, these

expressions lead to complicated non-convex optimization problems, with possibly many local

minima. This is already the case for the Elmore delay (the �rst moment of the transfer

function) of a grounded capacitor RC circuit with loops of resistors. Optimizing the dominant

time constant on the other hand leads to tractable convex optimization problems even in

general RC circuits.
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A Singular C or G

We now come back to the assumption in x2 that the capacitance matrix C and conductance

matrix G are both strictly positive de�nite. This assumption simpli�ed the de�nition and

interpretation of the dominant time constant, since it ensures that the number of generalized

eigenvalues, i.e., the number of roots of the polynomial det(�C +G), is exactly equal to n.

In Example 3 we have encountered a case where both C and G were singular. In this

case the dominant time constant minimization still leads to meaningful results, provided we

do not de�ne the dominant time constant in terms of the largest generalized eigenvalue, but

use the LMI de�nition

T dom
= inffT j TG� C � 0g (29)

(we should add that T dom
= +1 if there is no T with TG � C � 0). In this appendix we

show that this de�nition is indeed meaningful and valid when C and G are only positive

semide�nite, i.e., possibly singular.

Given arbitrary positive semide�nite C and G, one can always change coordinates to

bring the circuit equations C _v = �Gv into the form

2
64
bC 0 0

0 0 0

0 0 0

3
75
2
64
dbv1=dt
dbv2=dt
dbv3=dt

3
75 = �

2
64
bG11

bG12 0bGT

12
bG22 0

0 0 0

3
75
2
64
bv1(t)bv2(t)bv3(t)

3
75 ; (30)

with bC and bG22 strictly positive de�nite. Note that these equations are a combination of

di�erential and algebraic equations.
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Assume bC 2 Rp�p
. The circuit equation (30) is equivalent to

dbv1=dt = � bC�1 � bG11 � bG12
bG�122

bGT

12

� bv1(t); bv2(t) = � bG�122
bGT

12v1(t)

and v3(t) completely arbitrary. Let �i, i = 1; : : : ; p, be the eigenvalues of the matrix

� bC�1 � bG11 +
bG12

bG�122
bGT

12

�

sorted in decreasing order. Then all solutions of (30) have the form

bv1(t) =X
i

�ie
�it; bv2(t) =X

i

�ie
�it; bv3(t) arbitrary.

The components of v3 correspond to nodes that are not connected by capacitors or resistors

to the rest of the circuit (as was the case with node 4 in Example 3). It is therefore natural

to ignore v3 when de�ning the dominant time constant (or, equivalently, to impose the extra

assumption that v3(t) � 0), and to say that T dom
= �1=�1 (and T dom

=1 if �1 = 0).

Finally, to see that this de�nition coincides with (29), note that T � �1=�1 if and only

if the LMI "
T bG11 � bC T bG12

T bGT

12 T bG22

#
� 0;

holds. This can be easily shown by using a Schur complement (see, e.g., [VB96]).
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