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Abstract

Conventional methods for optimal sizing of wires and transistors use linear RC circuit models and the Elmore
delay as a measure of signal delay. If the RC circuit has a tree topology the sizing problem reduces to a convex
optimization problem which can be solved using geometric programming. The tree topology restriction precludes
the use of these methods in several sizing problems of signi�cant importance to high-performance deep submicron
design including, for example, circuits with loops of resistors, e.g., clock distribution meshes, and circuits with
coupling capacitors, e.g., buses with crosstalk between the lines. The paper proposes a new optimization method
which can be used to address these problems. The method uses the dominant time constant as a measure of signal
propagation delay in an RC circuit, instead of Elmore delay. Using this measure, sizing of any RC circuit can be
cast as a convex optimization problem which can be solved using the recently developed e�cient interior-point
methods for semide�nite programming. The method is applied to two important sizing problems | sizing of
clock meshes, and sizing of buses in the presence of crosstalk.



1 Introduction

The classical approach to optimal sizing of wires
and transistors assumes a linear RC circuit model and
uses Elmore delay as a measure of signal propagation
delay. This approach �nds its origins in [8, 13, 9].
In particular, Fishburn and Dunlop [9] were �rst to
observe that if the resistors form a tree with the in-
put voltage source at its root and all capacitors are
grounded, the Elmore delay of an RC circuit is a
posynomial function of the conductances and capac-
itances. This observation has the important conse-
quence that convex programming, speci�cally geomet-
ric programming, can be used to optimize Elmore de-
lay under area and power constraints. Geometric pro-
gramming forms the basis of the TILOS program and
of several extensions and related programs developed
since then. We refer to [6] for a comprehensive recent
survey.

The tree topology restriction, however, precludes
the use of these Elmore delay methods in several siz-
ing problems of signi�cant importance to high perfor-
mance deep submicron design including circuits with
capacitive coupling between the nodes, e.g., buses
with crosstalk, and circuits with loops of resistors, e.g.,
clock meshes.

In this paper we present a new optimal sizing
method which can be used to address these problems.
The method uses the dominant time constant as a
measure of signal delay, instead of Elmore delay. The
motivation for this choice is that the dominant time
constant of a general RC circuit is a quasiconvex func-
tion of the conductances and capacitances. In partic-
ular we show that it can be optimized using semidef-
inite programming for which e�cient methods have
recently been developed. The Elmore delay, on the
other hand, has no useful convexity properties except
when the RC circuit has a tree topology. Moreover
practical experience suggests that the numerical val-
ues of the dominant time constant are quite close to
threshold delay (and to the Elmore delay).

We apply our method to two important sizing prob-
lems. The �rst is the problem of sizing a clock mesh
(x4). The results illustrate that, to a certain extent,
our method can be used to design the interconnect
topology (in addition to sizing). The second prob-
lem is the simultaneous sizing of bus line widths and
spacings taking into account coupling capacitances be-
tween neighboring bus lines (x5). This problem is
important in deep submicron design where the cou-
pling capacitance can be signi�cantly higher than the
plate capacitance. The results illustrate that optimiz-
ing dominant time constant allows us to control not

only the signal propagation delay, but also indirectly
the crosstalk between the lines. Since the circuit has
nongrounded capacitors, this is not possible using El-
more delay.

The outline of the paper is as follows. In x2 we
describe the RC circuit model considered in the pa-
per, and de�ne the dominant time constant. In x3 we
show that sizing problems using the dominant time
constant as a measure of delay lead to semide�nite
programming problems, for which e�cient methods
have recently been developed. In x4 and x5 we de-
scribe the application of our method to sizing of clock
meshes and buses with crosstalk. Additional theoret-
ical background, and more examples, are presented
in [20].

2 The dominant time constant

We consider linear resistor-capacitor (RC) circuits
that can be described by the di�erential equation

C
dv

dt
= �G(v(t)� u(t)); (1)

where v(t) 2 Rn is the vector of node voltages, u(t) 2
Rn is the vector of independent voltage sources, C 2
Rn�n is the capacitance matrix, and G 2 Rn�n is the
conductance matrix. We assume that C and G are
symmetric and positive de�nite. We are interested in
design problems in which C and G depend on some
design parameters x 2 Rm. Speci�cally we assume
that the matrices C and G are a�ne functions of x,
i.e.,

C(x) = C0 + x1C1 + � � �+ xmCm;
G(x) = G0 + x1G1 + � � �+ xmGm;

(2)

where Ci and Gi are symmetric matrices.
Linear RC models of the form (1) are often used as

approximate models for transistors and interconnect
wires. When the design parameters are the physical
widths of conductors or transistors, the conductance
and capacitance matrices are a�ne in these parame-
ters, i.e., they have the form (2).

We are interested in how fast a change in the in-
put u propagates to the di�erent nodes of the circuit,
and in how this propagation delay varies as a function
of the variables x. To simplify notation, we will con-
sider the autonomous equation Cdv=dt = �Gv. We
assume the circuit starts at initial condition v(0) and
will study the rate at which the voltages

v(t) = e�C
�1Gtv(0) (3)

become small. We distinguish three possible measures
for the circuit propagation delay.



� The threshold delay at node k is the �rst time
after which vk stays below some given threshold
level � > 0, i.e.,

T thres

k = inff T j jvk(t)j � � for t � T g:

We call the maximum threshold delay to any node
the critical threshold delay of the circuit.

� The Elmore delay at node k is de�ned as

T elm

k =

Z
1

0

vk(t) dt:

While T elm

k is always de�ned, it can be interpreted
as a measure of delay only when vk(t) � 0 for all
t � 0, i.e., when the node voltage is nonnegative
(which is the case in RC circuits with grounded
capacitors if v(0) � 0). We can express the El-
more delay in terms of G, C, and v(0) as

T elm

k = eTkG
�1Cv(0)

where ek is the kth unit vector. We de�ne the
critical Elmore delay as the largest Elmore delay
at any node, i.e., T elm = maxk T

elm

k .

� The dominant time constant is de�ned as

T dom = �1=�1 (4)

where �1; : : : ; �n denote the poles of the circuit,
i.e., the eigenvalues of �C�1G, sorted in decreas-
ing order, i.e., 0 > �1 � � � � � �n. The dominant
time constant is a meaningful measure of delay
since each voltage can be expressed as a sum of
decaying exponentials

vk(t) =

nX
i=1

�ike
�it;

and the dominant time constant gives the time
constant of the slowest of these exponentials.

The threshold delay is the most natural of these
three measures, but it is di�cult to handle mathe-
matically. It depends on the design parameters x in
a very complicated way. Methods for direct optimiza-
tion of T thres require simulating the circuit to obtain
the value of T thres and its derivatives (sensitivity with
respect to variations in x). Such methods are nec-
essarily local, i.e., not guaranteed to �nd a globally
optimal design, and limited to small circuits.

The Elmore delay is widely used for optimal circuit
sizing (see, e.g., [9, 15, 3, 16, 14, 11]). However, as

pointed out in the introduction, it can be e�ciently
optimized only in circuits with a tree topology.

The dominant time constant T dom is a complicated
function of G and C (it is the negative inverse of the
largest zero of the polynomial det(sC +G)). However
it can be expressed in a form that will be very useful
to us:

T dom = minf T j TG� C � 0 g;

where the inequality means that TG � C is positive
semide�nite. In particular,

T dom(x) � Tmax () TmaxG(x) � C(x) � 0: (5)

In other words, an upper bound on the dominant time
constant is equivalent to a linear matrix inequality

(LMI), i.e., a convex constraint in x, regardless of the
topology of the circuit. This also means that T dom

is a quasiconvex function of x, i.e., its sublevel sets�
x
�� T dom(x) � Tmax

	
are convex sets for all Tmax.

3 Semide�nite programming
In this section we show that sizing problems based

on dominant time constant can be cast in terms of two
standard optimization problems with LMI constraints.

The most common problem is the semide�nite pro-

gramming (SDP) problem, in which we minimize a
linear function subject to an LMI:

minimize cTx
subject to A(x) � 0;

(6)

where A(x) = A0 + x1A1 + � � � + xmAm, Ai = AT
i 2

Rn�n. Semide�nite programs are convex optimiza-
tion problems, and can be solved very e�ciently using
recent interior-point methods (see, e.g., [12, 19]).

As an example, suppose the area of the circuit de-
scribed by (2) is a linear function of the variables xi.
This occurs when the variables represent the widths
of transistors or conductors (with lengths �xed as li),
in which case the circuit area has the form

a0 + x1l1 + � � �+ xmlm

where a0 is the area of the �xed part of the circuit.
We can minimize the area subject to a bound on the
dominant time constant T dom � Tmax, and subject to
upper and lower bounds on the widths by solving the
SDP

minimize

mX
i=1

lixi

subject to TmaxG(x) � C(x) � 0
xmin � xi � xmax; i = 1; : : : ;m:

(7)



The optimal solutions of (7) are on the tradeo� curve,
i.e., they are Pareto optimal for area and dominant
time constant. By solving this SDP for a sequence
of values of Tmax, we can compute the exact optimal
tradeo� between area and dominant time constant.

A second common optimization problem with LMI
constraints has the form

minimize �
subject to �B(x) �A(x) � 0

B(x) > 0; C(x) � 0;
(8)

where A, B, and C are symmetric matrices that are
a�ne functions of x, and the variables are x and � 2
R. This problem is called the generalized eigenvalue

minimization problem (GEVP). GEVPs are quasicon-
vex and can also be solved e�ciently using interior-
point methods [1, 12].

For example, the problem of minimizing the domi-
nant time constant, subject to an upper bound on the
area and upper and lower bounds on the variables, can
be cast as a GEVP

minimize T
subject to TG(x)� C(x) � 0

mX
i=1

lixi � Amax

xmin � xi � xmax; i = 1; : : : ;m:

with variables T and x.

4 Sizing of clock meshes
The possibility of optimizing RC circuits with loops

of resistors is of importance to high-performance mi-
croprocessor design where the clock signal is dis-
tributed using a mesh instead of a tree. In [7], Desai,
Cvijetic, and Jensen describe the design of the clock
distribution network on a DEC-alpha processor, and
note, \there is a need for algorithms for sizing large
non-tree networks." Minimizing the dominant time
constant instead of Elmore delay is a promising tech-
nique to achieve exactly that goal.

Figure 1 shows the example that we consider in
this paragraph. The circuit consists of a mesh of
interconnect wire. The number of segments per row
or column is N (and the number of nodes in the circuit
is equal to n = (N+1)2). We model each interconnect
segment (the rectangular elements in Figure 1) as a �-
segment, as in Figure 2. The optimization variables
are the N2 segment widths xi (with constraints 0 �
xi � wmax).

Each node of the mesh has a capacitive load Ci.
The network is driven by voltage sources with output
conductance G0. The sources switch between zero and

Figure 1: Clock distribution network modeled as an RC

mesh. Each rectangular element represents a wire, which

we model as a single �-segment as in Figure 2. The drivers

switch simultaneously. We are interested in the tradeo�

between delay (dominant time constant) and total dissi-

pated power. The variables are the widths of the N2 seg-

ments, where N is the number of segments in each column

and row.

x

�x �x
�x

Figure 2: A segment of an interconnect wire with width

x is modeled as a conductance �x and two capacitances to

the ground �x.

one simultaneously and at a �xed frequency. Therefore
the energy dissipated in once cycle is equal to

1TC(x)1 =

nX
i=1

Ci + 2�

N2X
i=1

xi;

which is a linear function of the variables x (1 is the n-
vector with all components equal to one). This means
we can minimize the dissipated power subject to a
bound on the dominant time constant by solving the
SDP

minimize 1TC(x)1
subject to TmaxG(x) � C(x) � 0

0 � xi � wmax; i = 1; : : : ; N2:
(9)

By solving the SDP (9) for di�erent values of Tmax, we
can trace the exact tradeo� curve between dissipated



power and dominant time constant. This is shown in
Figure 4 for the numerical values

N = 4; G0 = 1; � = 1; � = 0:5; wmax = 1;

and for load capacitances as indicated in Figure 3.
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Figure 4: Tradeo� between dissipated power and domi-

nant time constant.

Figure 5 shows the solution for two di�erent points on
the tradeo� curve (T dom = 55 and T dom = 100).

We note that the topology is di�erent in the two
cases. More segments are used in the circuit on the
left, which has a small dominant time constant and
large power consumption (large total capacitance). In
the solution on the right, fewer segments are used and
they are smaller, which reduces the power dissipation
but increases the dominant time constant.

Figure 6 shows the fastest and the slowest step re-
sponses in both circuits, when a step input is applied
simultaneously to the �ve voltage sources in the mid-
dle row. Note in particular that the values of the three
delay measures are very close (and in fact, the dom-
inant time constant approximates the 50%-threshold
delay better than the Elmore delay). This observation
is con�rmed by many other examples (see [20]).
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Figure 6: Step responses for the two solutions in Fig-

ure 5. The plots show the responses at the fastest (a) and

the slowest (b) node in Figure 5. We also show the criti-

cal 50%-threshold delay, the critical Elmore delay, and the

dominant time constant.

5 Sizing of buses with crosstalk

The second application demonstrates another im-
portant advantage of using dominant time constant
instead of Elmore delay: the ability to take into ac-
count non-grounded capacitors.

The problem is to determine the optimal line widths
and spacings for a bus taking into account the cou-
pling capacitances between the lines. We consider an
example with three wires, each consisting of �ve seg-
ments, as shown in Figure 7. The optimization vari-
ables are the widths wij , and the distances s1 and s2
between the wires.

The RC model of the three wires is shown in Fig-
ure 8. The wires are connected to a voltage source
with output conductance G at one end, and to capac-
itive loads at the other end. As in the previous ex-
ample, each segment is modeled as a �-segment, with
conductance and capacitance proportional to the seg-
ment width wij . We include a parasitic capacitance
between the wires. We assume that there is a capaci-
tance between the jth segments of wires 1 and 2, and
between the jth segments of wires 2 and 3, with total



w11 w12
w13

w14 w15

w21 w22 w23 w24 w25

w31 w32 w33 w34 w35

s11 s12 s13 s14 s15

s21 s22 s23 s24 s25

s1

s2

Figure 7: Wire sizing and spacing. Three parallel wires

consisting of �ve segments each. The conductance and

capacitance of the jth segment of wire i is proportional

to wij . There is a capacitive coupling between the ith

segments of wires 1 and 2, and between the ith segments

of wires 2 and 3, and the value of this parasitic capacitance

is inversely proportional to s1i, and s2i, respectively. The

optimization variables are the 15 segment widths wij and

the distances s1 and s2.

values inversely proportional to the distances s1j and
s2j , respectively. To obtain a lumped model, we split
this distributed capacitance over two capacitors: the
capacitance between segments j of wires 1 and 2 is
lumped in two capacitors with value 
=s1j ; the total
capacitance between segments j of wires 2 and 3 is
lumped in two capacitors with value 
=s2j . This leads
to the RC circuit in Figure 8.

We also impose the constraints that the distances
sij between the wires must exceed a value smin, and
that wire widths are less than wmax. We can minimize
the total width s1 + s2 of the three wires subject to a
bound on the dominant time constant of the circuit,
by solving the optimization problem

minimize s1 + s2
subject to TmaxG(w) � C(w; s) � 0

s1j = s1 � w1j � 0:5w2j ; j = 1; : : : ; 5
s2j = s2 � w3j � 0:5w2j ; j = 1; : : : ; 5
sij � smin; i = 1; 2; j = 1; : : : ; 5
wij � wmax; i = 1; 2; 3; j = 1; : : : ; 5;

(10)
in the variables s1, s2, wij , sij . Note that the capaci-
tance matrix contains terms that are inversely propor-
tional to the variables sij , and therefore problem (10)
is not an SDP. However, it is shown in [20] that by a
change of variables tij = 1=sij , problem (10) can be

U1

U2

U3

G

G

G

C1

C2

C3

g11 g15

g21 g25

g31 g35

c11 c12 c15 c16

c21 c22 c25 c26

c31 c32 c35 c36

bc11 bc12bc15 bc16

bc21 bc22bc25 bc26

Figure 8: RC model of the three wires shown in Fig-

ure 7. The wires are connected to voltage sources with

output conductance G at one end, and to load capacitors

Ci at the other end. The conductances gij and capaci-

tances cij are part of the �-models of the wire segments.

The capacitances bcij model the capacitive coupling. The

conductances and capacitances depend on the geometry

of Figure 7 in the following way: gij = �wij , ci1 = �wi1,

cij = �(wij+wi(j�1)) (1 < j < 6), ci6 = �wi5, bci1 = 
=si1,bcij = 
=sij + 
=si(j�1) (1 < j < 6), bci6 = 
=si5.

reformulated as a convex optimization problem

mimimize s1 + s2
subject to TmaxG(w) � C(w; t) � 0

1=t1j � s1 � w1j � 0:5w2j ; j = 1; : : : ; 5
1=t2j � s2 � w3j � 0:5w2j ; j = 1; : : : ; 5
0 � tij � 1=smin; i = 1; 2; j = 1; : : : ; 5
wij � wmax; i = 1; 2; 3; j = 1; : : : ; 5;

(11)
with variables s1, s2, tij , and wij . Problem (11) can
be readily cast as an SDP (see [20]).

Figures 9 through 12 illustrate the solution of (10)
for two values of Tmax, assuming the parameter values

G = 100; C1 = 10; C2 = 20; C3 = 30;
� = 1; � = 0:5; 
 = 2; smin = 1; wmax = 2:

Figures 9 and 10 illustrate a solution for Tmax = 130.
The widest wire is number three, since it drives the
largest load, the narrowest wire is number one, which
drives the smallest load. We also see that the small-
est distance between the wires is equal to its mini-
mum allowed value of 1.0, which means that the cross-
coupling did not a�ect the optimal spacing between
the wires. Figure 10 shows the output voltages for
steps applied to one of the wires, while the two other
input voltages remains zero.

Figures 11 and 12 illustrate a solution for Tmax =
90. Note that here the distance between the second
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Figure 9: Solution of (10) for Tmax = 130. Note that the

distance between the wires is equal to its minimal allowed

value of 1.0
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Figure 10: Responses for solution of Figure 9. The volt-

ages at the output nodes due to a step applied to the �rst

wire (left �gure), second wire (center), or third wire (right).

The dashed line marks the dominant time constant.

and third wires is larger than the minimum allowed
value of 1.0. The other �gures show the output volt-
ages for the same situations as above.

Note that we cannot guarantee that the peak due
to crosstalk stays under a certain level. This would
be a speci�cation in practice, but it is di�cult to in-
corporate into the optimization problem. However we
in
uence the level indirectly: minimizing the domi-
nant time constant makes the crosstalk peak shorter
in time (since the dominant time constant determines
how fast all voltages settle around their steady-state
value). Indirectly, this also tends to make the magni-
tude of the peak smaller (as can be seen by comparing
the crosstalk levels for the two solutions in the exam-
ples).

A practical heuristic based on the dominant time
constant minimization that would guarantee a given
peak level is as follows. We �rst solve problem (10)
for a given value of Tmax. Then we simulate to see if
crosstalk level is acceptable. If not, we increase the
spacing of the wires until it is. Then we determine the
optimal wire sizes again, keeping the wires at least at
this minimum distance. This iteration is continued
until it converges. The dominant time constant of the
�nal result will be at least as good as the �rst solution
and the crosstalk level will not exceed the maximum
level.

6 Conclusions
We presented a new method for wire and transis-

tor sizing. The method uses the dominant time con-
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Figure 11: Solution of (10) for Tmax = 90.
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Figure 12: Responses for the solution shown in Fig-

ure 11. The voltages at the output nodes, due to to a step

applied to the �rst wire (left �gure), second wire (center),

or third wire (right). The dashed line marks the dominant

time constant.

stant as a measure of signal delay in RC circuits. The
main advantage of using this measure is that RC cir-
cuits with general non-tree topologies can be optimally
sized using convex optimization. This is in contrast to
the Elmore delay sizing methods which only work for
RC trees. We demonstrated the power of this method
by applying it to two important examples of signi�-
cant practical importance: sizing of clock meshes, and
sizing of buses in the presence of crosstalk.

The method we described uses the recently devel-
oped interior-point methods for semide�nite program-
ming (see, e.g., [12, 19]). Since real world sizing prob-
lems are likely to be very large we brie
y discuss the
complexity of the SDP methods. Two factors deter-
mine the overall complexity of these methods: the to-
tal number of iterations and the complexity of an iter-
ation. It can be shown that the number of iterations
to solve an SDP to a given accuracy � grows at most
as O(

p
n log(1=�)), where n is the size of the matrix

A(x) in (6) [12]. In practice the performance is even
better than suggested by this worst-case bound. The
number of iterations usually lies between 5 and 50, al-
most independently of problem size. For practical pur-
poses it is therefore fair to consider the total number
of iterations as constant, and to regard the complexity
of an iteration as dominating the overall complexity.

Each iteration involves solving a large system of
linear equations to compute search directions. Little
can be said about the complexity of this computa-
tion since it largely depends on the degree to which
the structure of the problem can be exploited. If the
problem has no structure, i.e., if the matrices Ai in (6)



are completely dense, then the complexity of one it-
eration is O(mn3 + m2n2). This is the case for the
general-purpose SDP solvers sp and sdpsol [17, 21],
that were used in the examples discussed in this paper.
These solvers can handle problems with up to several
hundred variables without di�culty, but become im-
practical for larger problems.

In most applications, however, there is a great
deal of structure that can be exploited, and special-
ized solvers can be orders of magnitude more e�-
cient than general-purpose solvers (see for a few exam-
ples, [18, 2]). In particular the SDP problems arising
in dominant time constant minimization exhibit two
forms of sparsity that can be exploited in a special-
ized solver. First, the capacitance and conductance
matrices C and G are usually sparse matrices (indeed
C is often diagonal). Second, each variable xi a�ects
only a very small number of elements of C and G (i.e.,
the di�erent matrices Ci and Gi in (2) are extremely
sparse).

We conclude by discussing the di�erences between
Elmore delay and the dominant time constant. The
most important di�erence is that the dominant time
constant always leads to tractable convex or quasi-
convex optimization problems, with no restrictions on
circuit topology. This follows from (5) which holds re-
gardless of the circuit topology. Speci�cally, we note
the following advantages.

� Elmore delay optimization applies only to cir-
cuits with one input source. The dominant time
constant can be applied to circuits with multiple
sources, a problem that has only recently received
attention [4, 5].

� The Elmore delay in an RC tree is a posyno-
mial function if the conductances depend on one
variable only. For dominant time constant opti-
mization the conductance and capacitances can
be general a�ne functions of the variables.

� The circuits may contain loops of resistors, e.g.,
clock meshes. Although for grounded capacitor
RC circuits with loops of resistors, the Elmore
delay is still a meaningful approximation of sig-
nal delay [10, 22, 23], it does not have the simple
posynomial form as it does for RC trees, and con-
vex optimization cannot be used to minimize it.

� The possibility of handling non-tree topologies al-
lows us to design the topology of the interconnec-
tion itself. For example in the optimization of a
clock mesh we start with a full grid of possible

wire segments. After optimal wire sizes are com-
puted, some (and often, many) of the wires have
zero widths, which means they are not needed in
the circuit (see also [4] for problems of designing
interconnection topology).

� Dominant time constant minimization handles
circuits with capacitive coupling between the
nodes (see x5).

The Elmore time constant, in addition to being
quite useful as a measure of delay when sizing RC
trees, is sometimes more appropriate to use than the
dominant time constant. We give here two examples
where this is the case.

� Consider a path consisting of several stages of
bu�ered wire segments. The total Elmore de-
lay of the path is the sum of the Elmore delays
of the segments, and is still a posynomial func-
tion that can be e�ciently minimized by geomet-
ric programming. In contrast it is not possible to
e�ciently minimize the sum of the dominant time
constants, since in general the sum of quasiconvex
functions is not quasiconvex.

� The dominant time constant is useful as an al-
ternative to the critical Elmore delay, i.e., the El-
more delay to the node with the slowest response.
It is not a good measure for the delay to the other
nodes.
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