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Abstract- For wireless ad hoc networks with mul-
tihop transmissions and Rayleigh fading, this paper
maximizes the overall system throughput subject to
QoS constraints on power, probability of outage, and
data rates. Formulations are also given which mini-
mize delay and optimize network resources in a wire-
less ad hoc network, where each link is shared by mul-
tiple streams of traffic from different QoS classes, and
each traffic traverses many links. Although these opti-
mal resource allocation problems are non-linear, they
can be posed as geometric programs, which are trans-
formed into convex optimizations, and can be solved
globally and efficiently through interior-point meth-
ods.

I. Introduction

Quality of service (QoS) has become an important issue in
various kinds of data networks as some users are no longer sat-
isfied with resource allocation based on service provisioning.
Three major considerations of QoS support are bandwidth,
delay and delivery guarantee. Voice, data, image, and video
have different bandwidth requirements. Some classes of traf-
fic, such as voice, are also much more sensitive to delay than
background classes, such as data. QoS provisioning in a wire-
less network is a particularly difficult issue because physical
layer problems; such as path loss, fading, and multipath; can
make the communication links unreliable. This makes delivery
guarantee a necessary feature in wireless ad hoc network QoS
provisioning.

The challenge is to first prescribe a feasible QoS scheme for
different classes of traffic, and then to optimize the use of net-
work resources, mainly link capacities and transmitter powers,
to satisfy QoS requirements for all classes while maximizing
either the total network performance, or the QoS for the pre-
mier class. Within the wireless arena, ad hoc wireless networks
pose additional technical challenges for QoS support. Unlike
cellular wireless networks, ad hoc networks have no fixed in-
frastructure, and long range communications require multihop
transmissions where a packet is routed through the network
by other transceivers that act as relay nodes.

In sections 3 and 4, the following resource allocation prob-
lems for QoS provisioning in wireless ad hoc networks are
solved:
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P1 As a special case of resource allocation, the power con-
trol of user nodes are optimized to maximize the overall
system throughput.

P2 Turning to the general cases, feasibility of service level
agreement (SLA) terms are determined under network
resource constraints.

P3 Taking delay into consideration, the total delay for the
most time sensitive class of traffic is minimized by opti-
mizing over powers, capacities, and SLA terms.

P4 Optimizing over powers, capacities, and SLA terms; the
unused capacity of the network is maximized.

Because the mobile radio channel is fast varying and the
number of user nodes is large, a fast and robust decision mak-
ing algorithm is needed that accommodates a large number of
variables for dynamic resource allocation to be feasible. Sev-
eral ad hoc heuristics have been proposed to tackle the above
problem, but they cannot meet all of the following criteria:
optimality, speed, and the ability to accommodate a variety
of constraints and a large number of variables. Solutions for
wireless cellular networks have been proposed in [1]. This pa-
per tackles the more difficult problems of resource allocation
for wireless ad hoc networks.

A global solution to non-linear problems P1 to P4 is found
by transforming the problems into convex optimization prob-
lems. Solution methods for these problems not only produce
globally optimal solutions as efficiently as for linear program-
s, but also unambiguously determine feasibility. This second
property is used to determine the feasibility and pricing scheme
of admitting a new user with a defined QoS requirement.

II. Convex optimization and geometric

programming

An efficient algorithm is needed in order to find the opti-
mal solution to the above nonlinear problems in a high speed
dynamic network with a large number of links and nodes. For-
mulations for P1 to P4 are provided that can be turned into
convex optimizations, which have fast algorithms, such as the
interior point method and the primal dual method, that make
them as easy to solve as linear programs.

Convex optimization refers to minimizing a convex objec-
tive function over convex constraint sets. The particular type
of convex optimization used in this paper is in the form of geo-
metric programming [2]. First consider the following definition

Definition 1 A monomial is a function h : Rn → R, where
the domain contains all real vectors with positive components:
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h(x) = cxa1
1 xa2

2 · · ·xan
n , c ≥ 0 and ai ∈ R (1)

A sum of monomials f(x) =
∑

k
ckxa1k

1 xa2k
2 · · ·xank

n is
called a posynomial. Geometric programming is an optimiza-
tion problem with the following form:

minimize f0(x)
subject to fi(x) ≤ 1

hj(x) = 1
(2)

where f0 and fi are posynomials and hj are monomials.
Geometric programming in the above form is not a convex
optimization problem. However, with a change of variables:
yi = log xi and bik = log cik, the geometric programming form
is put into convex form:

minimize p0(y) = log
∑

k
exp(aT

0ky + b0k)
subject to pi(y) = log

∑
k

exp(aT
iky + bik) ≤ 0

qj(y) = aT
j y + bj = 0

(3)
It can be verified that the log of sum of exponentials is a convex
function [2]. Therefore pi are convex functions and qj are affine
functions, and the problem is a convex optimization problem.
Note that if all posynomials are in fact monomials, geometric
programming becomes linear programming.

Convex optimization problems can be solved globally and
efficiently through interior point and primal dual methods [3],
with running times that usually scale to the square root of the
problem size. These methods also offer duality interpretations,
stability analyses and accommodate a variety of constraints.
This paper shows how geometric programming can solve many
versions of QoS provisioning problems in wireless ad hoc net-
works.

III. Power control for throughput

optimization

First a special case of resource allocation optimization is
formulated and solved in this section. The variables are us-
er node powers and the objective is to maximize the overall
system throughput in bps. The method in this paper explic-
itly takes into account the statistical variation of the received
signal and the interference power.

A. Multi-hop network model and Rayleigh fading

Consider a wireless ad hoc network with n transmit-
ter/receiver pairs, labeled 1, . . . , n, which transmit at powers
P1 . . . , Pn. The power received from transmitter j, at receiver
i is given by

GijFijPj (4)

The nonnegative number Gij represents the path gain in
the absence of fading from the jth transmitter to the ith re-
ceiver. Gij can encompass path loss, shadowing, antenna gain,
coding gain, and other factors.

The Rayleigh fading between each transmitter j and receiv-
er i is given by Fij . The Fij ’s are assumed to be independent
and have unit mean. The Gij ’s are appropriately scaled to re-
flect variations from this assumption. The distribution of the
received power between any pair of transmitter j and receiver
i is exponential with mean value,

E [GijFijPj ] = GijPj (5)

The signal to interference ratio (SIR) for user i determines
the quality of the received signal and is defined as

SIRi =
PiGii∑N

j 6=i
PjGij + ni

(6)

Unlike SNR, SIR cannot be increased by simply increasing
all users’ transmitting powers since that would raise both the
signal level and the interference level. This introduces a bit
error floor and a QoS bottleneck.

B. Outage probability and system throughput

An outage is declared when the received SIR falls below a
given threshold defined as SIRth, often computed from a BER
requirement. The outage probability associated with the ith

hop is given by

Oi = Pr(SIRi ≤ SIRth)
= Pr(GiiFiiPi ≤ SIRth

∑
k 6=i

GikFikPk)
(7)

The outage probability can be expressed as [4]

Oi = 1 −∏
k 6=i

1

1+
SIRthGikPk

GiiPi

(8)

Outage probability over a hop induces an outage probability
over a path S

OpathS = Prob(outage along the path S)
= 1 −∏

s∈S
(1 − Oi)

= 1 −∏
s∈S

∏
k 6=s

1

(1+
SIRthGikPk

GiiPi
)
.

(9)

The constellation size M used by a hop can be closely ap-
proximated for MQAM modulation as follows

M = 1 +
−1.5

ln(5BER)
SIR (10)

where BER is the bit error rate. Defining K = −1.5
ln(5BER)

leads

to a monotonic expression for the data rate of the ith hop as
a function of the received SIR:

Ri = (1/T ) log2(1 + KSIRi) (11)

The aggregate data rate for the system can then be written
simply as the sum of terms of this form.

Rsystem =
∑

i
Ri = (1/T ) log2

∏
i
(1 + KSIRi) (12)

Overall system throughput is defined as the maximum aggre-
gate data rate supportable by the system given a set of users
with defined QoS.
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C. Throughput optimization

Theorem 1 (Optimize power for throughput maximization)
The following problem of optimizing user node powers to max-
imize total network throughput is a convex optimization prob-
lem.

maximize Rsystem

subject to

Ri ≥ Ri,LB , ∀i
1 −∏

k 6=i
1

1+
SIRthGikPk

GiiPi

≤ Prouti ∀i

1 −∏
s∈S

∏
k 6=s

1

(1+
SIRthGikPk

GiiPi
)

≤ Prout path s ∀S

Pi ≤ Pmax

(13)

The objective function is the overall system throughput. It
is optimized over the set of all feasible powers Pi. The first set
of constraints are the data rates demanded by existing system
users. The second set of constraints are the outage probability
limitations demanded by users using single hops. The third set
of constraints are the outage probability limitations for users
using a multi-hop path. Lastly, the forth set of constraints are
regulatory or system limitations on transmitter powers.

D. Simulation

A simple four node multi-hop network is considered in the
following simulation. As shown in figure 1, the network con-
sists of 4 nodes A, B, C, and D, and 4 links 1, 2, 3, and 4. On
link 1 node A is the transmitter and node B is the receiver;
similarly, the transmitter and receiver nodes for each link are
shown in the figure. Note that node A is also the transmitter
on link 3, illustrating that a node can be a transmitter and/or
receiver on many links. Nodes A and D as well as B and C
are separated by a distance of 20m. By geometry the distance
of each transmit path is 10

√
2m.

For this simulation each link has a maximum transmit pow-
er of 1W. Alternatively, the power constraint could be placed
on each node instead of each link by adding a constraint that
P1 + P3 ≤ 1W. All nodes are using MQAM modulation. The
baseband bandwidth for each link is 10kHz, the minimum da-
ta rate for each link is 100bps for maintenance data, and the
target BER is 10−3. For the Rayleigh fading a probability of
outage of Pout = 0.1 is required for an SIR threshold of 10dB.

The gains for each link are computed as Gij = 1
200

[
1
d

]4
for

i 6= j, and Gii =
[

1
d

]4
, with the exception of G12 and G34

which are set equal to 0 since it is assumed that a node does
not transmit and receive at the same time. The factor of 1

200

can be viewed as the spreading gain in a CDMA system, or
the power falloff with frequency in a FDMA system. This gives
the following gain matrix:

G = 10−4 ·




0.2500 0.0003 0.0012 0.0003
0 0.2500 0.0003 0.0012
0.0012 0.0003 0.2500 0.0003
0.0003 0.0012 0 0.2500


 (14)

1

A

B

C

D

2

3 4

20m

20m

Fig. 1: Network Topology for Simulation

The maximum aggregate data rate, found using the geo-
metric programming optimization method, is R = 216.8kbps,
with M = 42.8QAM modulation for each link, Ri = 54.2kbps
for each link, and P1 = P3 = 0.709W and P2 = P4 = 1W
link transmit powers. The resulting SIR = 21.7dB on each
link. The symmetry in modulation levels and SIR is due to
the symmetries in the network topology, and not due to any
explicit optimization constraint.

E. Admission control and pricing

The methodology used in this section can also be extended
for other resource management purposes in a wireless ad hoc
network. For example, a new user is admissible if his QoS re-
quirements can be supported by the system without disturbing
the existing QoS requirements of current users. In this mod-
el a user is admissible if a feasible solution of the problem in
Theorem 1 exists after the new user’s QoS constraints have
been added. An infeasible solution is a definitive statement
that this new user may not be added to the system without a
change in required QoS.

Our model also supports several service-pricing approach-
es. The decrease in the overall system throughput associated
with a new user can be used to estimate the incremental cost
of supporting that new user, and should be proportional to the
price that might be charged. A second approach is to calcu-
late the effect of different levels of QoS for a given data rate.
The effect on overall system throughput for each of the chosen
different levels of QoS can then be used to set relative pricing
for these levels. One example is to set pricing as a function of
probability of outage for a given data rate.

IV. Resource allocation for delay and

efficiency optimization

The more general cases of resource allocation are formulat-
ed and solved in this section. Optimization variables include
powers, the number of packets in each traffic, bandwidth, de-
lay and delivery guarantee required for each QoS class, and
capacity for each link. Potential objective criteria include de-
lay, unused capacity and SLA feasibility, in addition to the
overall system throughput in the last section.

A. Problem formulations
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Consider a network with J links with capacity of Cj pack-
ets per second for each link j. There are K classes of traffic
with different QoS requirements to be transported over the
network. For each QoS class k, the bandwidth required is bk

Hz, and the delay guarantee in the service level agreement
(SLA) is dk,UB seconds. Also, a minimum probability of de-
livering the packet across the unreliable network is required in
the SLA, denoted by pk,LB . In this problem formulation the
delay is the delay due to transmission time; propagation delay
is ignored because it is constant for the optimization parame-
ters. The more refined model with queueing delay is treated
in the extension.

Similar to the last section, each stream of traffic from
source s to destination d will traverse certain specific links as
dictated by the particular routing protocol used for the net-
work. Denote by Kj the set of traffic using link j and by Jk

the set of links traversed by QoS class k. Denote by nk the
number of packets dynamically admitted in the kth class of
traffic.

In an ad hoc network each link may fail due to either pow-
er shut down of a user or deep fading that causes an outage.
Therefore pj , a real number between 0 and 1, is attached to
each link as the probability that this link will be maintained
during the transmission. By increasing transmitter power over
a link j while keeping other parameters of the network con-
stant, SIR of link j and therefore pj can be increased.

As will be shown in the following problem formulations,
with the above constraints on link capacity, bandwidth require-
ment, delay, and delivery probability guarantees, the problem
is not a linear programming problem. However, these non-
linear optimizations can be turned into geometric program-
ming problems and solved as efficiently as linear programs.

The first formulation is the following.

Theorem 2 (SLA feasibility under network constraints) The
following problem of testing SLA feasibility is a convex opti-
mization problem.

minimize No Objective Function
subject to

∑
k∈Kj

bknk ≤ Cj , ∀j

∑
j∈Jk

(∑
i∈Kj

ni

Cj

)
≤ dk,UB, ∀k∏

j∈Jk
pj ≥ pk,LB, ∀k

bknk ≥ Rk, ∀k
bk∗nk∗ = Cj∗
nk∗
Cj∗

= d∗
k,j

pj ≤ pj,UB

bk, Cj , pj , dk,UB , pk,LB ≥ 0
(15)

No objective function is necessary since in this formulation
only the feasibility of the SLA terms pj , dk,UB and pk,LB is
being tested. Alternatively, a cost function as the objective
function could be used for relative pricing during admission
control. Note that the first constraint is the link capacity

constraint, the second one is the delay guarantee constraint
and the third one the delivery probability constraint. The
fourth constraint delivers a guaranteed data rate to each class
of traffic. The fifth constraint makes room for SLA terms that
give a class of traffic the sole right to traverse a link j∗. This
could be for bandwidth requirements or for security reasons.
The sixth constraint allows for SLA terms that specify not just
an end to end total delay guarantee, but also an exact delay
requirement for a particular traffic class k∗ on a link j∗. The
other constraints are positivity constraints on the variables,
and upper bound constraints on pj .

The following parameters are all potential optimization
variables: bk, nk, pj , Cj , dk,UB and pk,LB. Variables bk, dk,UB

and pk,LB are terms in the SLA. The link capacities Cj and
probability of maintaining a link pj are network resources to
be optimized over. Admission control is reflected in nk.

The formulation is a non-linear optimization problem be-
cause optimization variables are multiplied together, such as
bknk in the first constraint or the product of pj in the third
constraint, and appear in the denominator, such as Cj in the
second and sixth constraints. However, all the inequality con-
straints are in posynomial form and all the equality constraints
are in monomial form.

In the second formulation, the unused capacity of a partic-
ular link j0 is maximized. The link may be a bottleneck link,
or the most often traversed link in the network. [5].

Theorem 3 (Unused capacity maximization) The following
problem of maximizing the unused capacity under SLA and
network constraints is a convex optimization problem.

maximize Cj0 −∑
k∈Kj0

bknk

subject to
∑

k∈Kj
bknk ≤ Cj , ∀j

∑
j∈Jk

(∑
i∈Kj

ni

Cj

)
≤ dk,UB, ∀k∏

j∈Jk
pj ≥ pk,LB, ∀k

bknk ≥ Rk, ∀k
bk∗nk∗ = Cj∗
nk∗
Cj∗

= d∗
k,j

pj ≤ pj,UB

bk, Cj , pj , dk,UB , pk,LB ≥ 0
(16)

The objective function is to maximize unused capacity of a
link j0 by keeping the used capacity to the minimum under all
network and QoS constraints. The constraints are the same as
in Theorem 2.

In the third formulation, the total delay for a particular
class of traffic is minimized.

Theorem 4 (Delay Minimization) Delay minimization under
SLA and network constraints is a convex optimization problem.
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minimize
∑

j∈Jk0

∑
i∈Kj

ni

Cj
+ α

(∑
j
Cj

)
subject to

∑
k∈Kj

bknk ≤ Cj , ∀j

∑
j∈Jk

(∑
i∈Kj

ni

Cj

)
≤ dk,UB, ∀k∏

j∈Jk
pj ≥ pk,LB, ∀k

bknk ≥ Rk, ∀k
bk∗nk∗ = Cj∗
nk∗
Cj∗

= d∗
k,j

pj ≤ pj,UB

bk, Cj , pj , dk,UB , pk,LB ≥ 0
(17)

Where α is the marginal tradeoff of capacity for delay. By
increasing capacities available on each link at the relative cost
α through bandwidth allocation or bandwidth leasing, delay of
the most time sensitive QoS class can be decreased. Therefore,
a weighted sum, parametrized by α, of the premier QoS class’s
delay and the cost of capacity provisioning is maximized.

B. Simulation

The following is a simulation for Theorem 4, which investigates
the tradeoff between delay and cost of capacity.

For the network in Fig. 2 there are three classes of traffic.
The first class is audio data traffic sent along path ABCD re-
quiring a rate of 50 packets/second and a maximum delay of
0.2 seconds. The second class is also audio data traffic sent
along path DFEA with the same rate and delay requirements.
The third class of traffic is video data sent along path ABFD
with a rate requirement of 250 packets/second. The goal is
to minimize both the delay of the video data and the cost of
capacity that must be provisioned or leased. This is accom-
plished by minimizing a weighted sum of the video data delay
and the total capacity used subject to meeting the rate con-
straints on all traffic classes, and the delay constraints on the
audio data traffic. For each α, the marginal tradeoff value
between delay and capacity, Fig. 3 shows the minimum delay
achievable for the video traffic given. The x-axis uses a log
scale. The tradeoff curve shows that the minimum delay in-
creases rapidly with increasing cost of capacity until it reaches
the delay associated with the minimum capacity required to
support the video signal; from that point onwards the tradeoff
curve is flat.

C. Extensions

Some extensions to Theorems 2 to 4 include minimizing
the maximum delay and accounting for queueing delay at the
nodes. Minimizing the maximum delay can be accomplished
by minimizing a dummy variable subject to all delays less than
that dummy variable. Queueing delay in a store and forward
network can also be accounted for in the geometric program-
ming construction [5].

V. Summary
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Fig. 2: Network Topology for Simulation
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Fig. 3: Trade off between video traffic delay and capacity cost

Important performance metrics are optimized, such as
throughput and delay, subject to a variety of realistic con-
straints on both SLA terms and network resources. This is
done for wireless ad hoc networks with multihop transmission-
s, mutual interference, and intrinsic unreliability of links and
nodes. Although these resource allocation optimizations are
non-linear problems, they can be solved efficiently using fast
convex optimization algorithms.
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