
Mathematical Programming Computation (2022) 14:593–622
https://doi.org/10.1007/s12532-022-00220-6

FULL LENGTH PAPER

Allocation of fungible resources via a fast, scalable price
discovery method

Akshay Agrawal1 · Stephen Boyd1 · Deepak Narayanan1 ·
Fiodar Kazhamiaka1 ·Matei Zaharia1

Received: 6 April 2021 / Accepted: 15 March 2022 / Published online: 18 April 2022
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2022

Abstract
We consider the problem of assigning or allocating resources to a set of jobs. We
consider the case when the resources are fungible, that is, the job can be done with any
mix of the resources, but with different efficiencies. In our formulation we maximize
a total utility subject to a given limit on the resource usage, which is a convex opti-
mization problem and so is tractable. In this paper we develop a custom, parallelizable
algorithm for solving the resource allocation problem that scales to large problems,
with millions of jobs. Our algorithm is based on the dual problem, in which the dual
variables associatedwith the resource usage limit can be interpreted as resource prices.
Our method updates the resource prices in each iteration, ultimately discovering the
optimal resource prices, from which an optimal allocation is obtained. We provide an
open-source implementation of our method, which can solve problems with millions
of jobs in a few seconds on CPU, and under a second on a GPU; our software can
solve smaller problems in milliseconds. On large problems, our implementation is up
to three orders of magnitude faster than a commercial solver for convex optimization.

Keywords Dual decomposition · Resource allocation · Parallel computing · GPU
acceleration

1 Introduction

We consider the problem of allocating fungible resources to a set of jobs. The goal is
to maximize a concave utility function of the allocation, given limits on the amount
of available resources. This is a convex optimization problem, and so is tractable.

For this problemwedevelop a custom, efficientmethod amenable to parallel compu-
tation, allowing it to scale to problem sizes larger than can be handled by off-the-shelf

B Akshay Agrawal
akshayka@cs.stanford.edu

1 Stanford University, 450 Serra Mall, Stanford, CA 94305, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-022-00220-6&domain=pdf

594 A. Agrawal et al.

solvers for convex optimization. Our method solves the dual problem, adjusting the
dual variable for the resource constraint to its optimal value. For a given dual variable
value, the dual function splits into several small resource allocation problems, one per
job, which can be solved in parallel using an analytical solution that we derive. (In this
sense our method can be interpreted as a simple dual decomposition method [7, Sect.
6.4] [15, Sect. 3.2], with an efficient method for evaluating the dual function). Because
this dual variable can be interpreted as resource prices [13, Sect. 5.4.4], our method
has a natural interpretation. Roughly speaking, each job determines its resource usage
independently. Our method iteratively adjusts the prices to their optimal values, i.e.,
it discovers the optimal resource prices. From these, we obtain an optimal allocation.

In the resource allocation problem considered in this paper, a resource can be
allocated to two or more jobs at the same time; this can be viewed as a variant of
the more common scheduling problem where a resource cannot work on two tasks
simultaneously. Our motivating application comes from computer systems. Here, the
jobs are computational tasks that are to be scheduled on a number of interchangeable
hardware configurations (for example, as in [41], where each resource is a different
type of GPU). Each allocation or schedule leads to an estimated throughput, and the
quality of the allocation is judged by a utility function of the achieved throughput. The
resource allocation problem studied in this paper arises in several other contexts, and
our method is generically applicable across all of them.
Outline. We state the resource allocation problem in Sect. 2. The remainder of the
paper develops and demonstrates our price discovery algorithm. In Sect. 3 we describe
the (partial) Lagrangian, dual function, and dual problem for the resource allocation
problem, and we explain how the dual function can be evaluated, and how an optimal
resource allocation can be found from the optimal dual variables (prices). In Sect.
4 we give an analytical solution to the subproblems that arise for each job when
evaluating the dual function. In Sect. 5 we give our price discovery algorithm. In Sect.
6 we describe our software implementation of the method, which heavily exploits the
parallelism inherent to solving the subproblems, and can be run on a CPU or a GPU. In
this same section we demonstrate our implementation on some numerical examples,
and show that it is often orders ofmagnitude faster than a commerical solver for convex
optimization. Finally in Sect. 7 we explain how our problem connects to other types
of resource allocation problems, and mention some extensions to the problem that are
compatible with our method.

1.1 Related work

Price discovery methods. Resource allocation problems arise in many fields, and they
are frequently solved by price adjustment methods that are similar in spirit to ours.
Price adjustment methods are an instance of a general family of methods called dual
decomposition [7, Sect. 6.4] [15, Sect. 3.2], in which Lagrange multipliers are intro-
duced for complicating constraints in a way that makes it efficient to evaluate the
dual function (and obtain a subgradient). These methods have been applied widely,
especially in communication networks [8, 33, 43, 57, 58] and energy management
[23, 31, 60], but also in other contexts [35, 46, 49, 58]. In communications, it has

123

Allocation of fungible resources via a fast… 595

been shown that under certain conditions, the TCP/IP protocol can be interpreted as
a distributed dual method for solving a utility maximization problem, with different
congestion control mechanisms optimizing for different utility functions [18].

Real-time optimization. In this paperwe develop an extremely fastmethod for solving a
specific class of convex optimization problems that scales to very large problems (with
tens or hundreds of millions of jobs). Because our method is so fast, it could conceiv-
ably be deployed in a real-time setting, in which the problem would be solved several
times a second, resulting in a new allocation each time (in the setting of computer sys-
tems, this might be reasonable for time-slicing threads across CPU cores, but less so
for moving whole tasks across different servers). (As we will discuss later, our method
also has other uses, such as pricing resources in a shared or cloud data center). There is
a large body of work on real-time optimization, for more general classes of problems
than ours. Small to medium-size problems can be solved extremely quickly using
embedded solvers [21, 52, 56] or code generation tools that emit solvers specialized to
parametric problems [6, 19, 39]. For example, the aerospace and space transportation
company SpaceX uses the quadratic program code generation tool CVXGEN [39] to
land its rockets [11].

Indeed, for slower rates, in which a problem needs to be solved just once every few
minutes, even high-level domain-specific languages for optimization such as CVXPY
[3, 20] have been found to be sufficiently fast, especially when symbolic parameters
are used, which make recompilations of a single problem with different numerical
data essentially free [2]. For example, the technology and media company Netflix par-
tially replaced the Linux CFS scheduler with a combinatorial optimization subroutine,
implemented using CVXPY, to allocate containers to CPUs in a way that minimizes
interference [48].

2 Resource allocation problem

In this section we state the resource allocation problem and study some of its basic
properties. In Sect. 2.1, we lay out the main parts of the resource allocation problem
and introduce the concept of throughput, which is a linear function of a job’s resource
allocation. In Sect. 2.2, we introduce the concept of utilities, which are functions of
the throughput that measure the quality of an allocation; we also give some examples
of utility functions. In Sect. 2.3, we give some additional interpretations of utility
functions. Finally in Sect. 2.4, we tie together these concepts and present the resource
allocation problem in its entirety.

2.1 Resource allocation to jobs

We consider a setting with n jobs (or processes or tasks), labeled i = 1, . . . , n, and
m types of resources, labeled j = 1, . . . ,m. In the problems we are interested in, n
is typically large, and m is typically small (though the amount of resources available
for each type may be large). We let xi ∈ Rm+ denote the allocation of the m resources
to job i . We collect these resource allocation vectors into a matrix X ∈ Rn×m , with

123

596 A. Agrawal et al.

i th row xTi . We interpret Xi j = (xi) j as the fraction of time job i gets to use resource
j . Thus we have 1T xi ≤ 1 for each i , or matrix terms, X1 ≤ 1, where 1 is the vector
with all entries one and the inequality is elementwise. We refer to X , or the collection
of vectors xi , as the resource allocation.

Total resource usage limit. Them-vector r = ∑n
i=1 xi = XT 1 gives the total usage of

each of them resources. The total resource usage cannot exceed a given limit R ∈ Rm+,
i.e., r ≤ R. (Wemention thatwe can easily handle the case inwhich some jobs consume
more than one unit of resource while running, in which case the constraint becomes
XT d ≤ R, where d ∈ Rm++ gives the amount of resources demanded by each job).
Throughput. The throughput of job i is ti = aTi xi , where ai ∈ Rm+ is a given efficiency
vector. The particular form ti = aTi xi says that job i can be carried out using any
mixture of the resources, with (ai) j interpreted as the effectiveness or efficiency of
using resource j for job i . Another interpretation is that the resources are fungible,
i.e., they can be substituted for each other. We obtain the same throughput ti for any
allocation that satisfies aTi xi = ti . In particular, we can ‘exchange’ resource j for
resource j ′, by decreasing (xi) j by δ > 0, and increasing (xi) j ′ by (ai) j/(ai) j ′δ
(assuming these changes do not violate the constraints xi ≥ 0, 1T xi ≤ 1). We can
interpret (ai) j/(ai) j ′ as the exchange rate between resource j and j ′, for job i .

Note that the throughput of job i ranges between the minimum value ti = 0
(obtained with xi = 0) and a maximum value ti = max j (ai) j , obtained with xi = eq ,
where q = argmax j (ai) j . (In other words, the maximum throughput for a given job
is obtained by using the most efficient resource, at 100%).

2.2 Utility

The utility of the allocation to job i is given by ui (ti), where ui : R++ → R is the
utility associated with job i , for i = 1, . . . , n. We will assume these are nondecreasing
and concave functions. Nondecreasing means that we derive more (or the same) utility
from higher throughput, and concavity means that there is decreasing marginal utility
as we increase the throughput. The total utility is given byU (t) = ∑n

i=1 ui (ti), where
t ∈ Rn+ is the vector of job throughputs. The average utility, which can be more
interpretable than the total utility, is U (t)/n.

Below, we give a few examples of utility functions.

Linear utility. The simplest utility is linear utility, with ui (ti) = ti ; in this case the
overall utility is the total throughput, and the average utility is the average throughput.
Roughly speaking the linear utility gives equal weight to increasing throughput; non-
linear concave utilities give more weight to increasing the throughput of a job when
the throughput is small.

Worst-case or min utility. A utility function that is used in some applications is the
minimum throughput or worst-case utility U (t) = mini ti . This utility function is not
separable, and so does not fit our requirement of separability. Nevertheless we will see
below that it is can be approximated by separable utilities. We note that the min-utility
is at the opposite extreme from the linear utility, since roughly speaking it gives no

123

Allocation of fungible resources via a fast… 597

weight to increasing any utility above the minimum, and focuses all its attention on
the jobs with minimum throughput.
Log utilities. A commonly used strictly concave utility function is the logarithmic
utility

ui (ti) = log ti , (1)

which is used in economics (e.g., in Kelly gambling [17, 34, 37]) and networking,
where it leads to allocations that are called proportionally fair [33].

Power utilities.Another family of strictly concave utility functions is the power utility
ui (ti) = t pi , with p ∈ (0, 1] or ui (ti) = −t pi with p < 0. These utility functions are
widely used in economics, where they are called the constant relative risk aversion
(CRRA) or isoelastic utilities [22, Sect. 1.7]. For p positive and small, or negative
and large, the power utility approximates the min-throughput utility (up to a constant),
since it gives much higher weights to smaller throughputs than larger throughputs.

Log and power utility functions are sometimes described as one family of utility
functions, called α-fairness [40], with the form

ui (ti) =
{

1
1−α

t1−α
i α ≥ 0 and α �= 1

log ti α = 1.

The choice α = 0 yields linear utility, while α = 1 yields the log utility. In networking,
it has been shown that taking α → ∞ yields max-min fairness [40] (in practice, a
large value of α suffices).

Target-priority utility. Another useful family of utility functions is based on a target
throughput and a priority,

ui (ti) = wi min{ti − tdesi , 0}, (2)

where wi is a positive weight parameter and tdesi is a positive target throughput. This
utility is zero when the throughput meets or exceeds the target value, and decreases
linearly, with slope wi , when the throughput comes short of the target. The parameter
wi encodes the priority of job i , with higher weight giving higher priority. With target-
priority utility, the total utility is zero if all job target throughputs are achieved, and
negative otherwise; it is the total of (weighted) shortfalls. These utility functions are
not differentiable, or strictly increasing, or strictly concave.

2.3 Utility interpretations

Utility-derived averages. Utility functions, and the resulting utility, are meant to mea-
sure the quality of an aggregate throughput. Linear utility treats all throughputs, large
and small, the same; concavity or curvature of a utility function puts more weight
on the smaller job throughputs than larger ones. (The extreme here is the worst-case
utility, which focuses all its attention on the smallest throughput). When the same

123

598 A. Agrawal et al.

utility u is used for all jobs, and u is invertible, we can interpret the quantity

u−1

(
1

n

n∑

i=1

u(ti)

)

(3)

as a kind of average of the throughputs, skewed toward the smaller ones. It has the same
units and scale as the throughput itself, and coincides with well known averages for
some choices of utilities. For example, it is the (arithmetic) average for linear utility,
the geometric mean for log utility, and the harmonic mean for the inverse utility
u(ti) = −1/ti . The latter two have been proposed as measures of system performance
that in some cases are more appropriate than the simple arithmetic average [29, Sect.
1.8].

Connection to risk-adjusted average throughput. Utilities are closely related to the
concept of risk-adjusted average throughput. Let avg(t) denote the average throughput
and var(t) denote the variance of the throughput across jobs, i.e.,

avg(t) = 1

n

n∑

i=1

ti , var(t) = 1

n

n∑

i=1

t2i −
(
1

n

n∑

i=1

ti

)2

.

The average throughput is a natural measure of overall throughput; the variance is a
natural measure of fairness since it quantifies how different the job throughputs are.
The risk-adjusted throughput is defined as

avg(t) − γ

2
var(t),

whereγ > 0 is the so-called risk aversion parameter. Itmeasures an aggregate through-
put, with an adjustment for fairness, scaled by γ . The risk-adjusted throughput metric
is large when the average throughput is large and the variation in throughput across
the jobs is small. If we maximize it, it means we will accept a reduction in the average
throughput, if it comes with a sufficient decrease in the variance of the throughputs.
This concept is widely used in finance, especially in portfolio construction, where it
dates back to the 1950s [38, 54].

Now suppose that φ : R+ → R is concave, increasing, and twice differentiable,
with φ(0) = 0, φ′(0) = 1, and φ′′(0) = −1. (For example, φ(a) = 1− e−a). We can
define a family of utility functions ui (ti) = φ(γ ti), where γ > 0. A basic result is
that small γ , we have

1

γ
φ−1(U (t)/n) = avg(t) − γ

2
var(t) + o(γ 2).

(This can be seen by taking second-order Taylor expansions of the utility functions
ui and φ−1 around 0, and dropping higher order terms). The lefthand side is the
utility average (3) defined by ui , scaled by 1/γ ; the righthand side is the risk-adjusted
average throughput, plus higher order terms in γ . Thus for small γ , the utility, mapped

123

Allocation of fungible resources via a fast… 599

through themonotone increasingmapping a 	→ (1/γ)φ−1(a/n), is approximately the
risk-adjusted average throughput.

Connections between utility maximization and risk aversion have been studied
extensively in economics; e.g., see [5, 25, 28, 45, 53].

2.4 Resource allocation problem

The resource allocation problem is

maximize U (t)
subject to xi ≥ 0, 1T xi ≤ 1, ti = aTi xi , i = 1, . . . , n∑n

i=1 xi ≤ R,

(4)

with variables xi ∈ Rm and ti ∈ R, i = 1, . . . , n. The problem data are the utility
functions u1, . . . , un , the efficiency vectors a1, . . . , an , and the total resource usage
limit R. We recall that xi is the allocation of resources to job i , ti = aTi xi is the
throughput achieved by job i , the constraint 1T xi ≤ 1 says that each job consumes
resources for at most the total schedulable time, and the constraint

∑n
i=1 xi ≤ R says

that jobs cannot consume more resources than there are at hand. We denote an optimal
allocation as x�

i , i = 1, . . . , n, and its associated optimal throughput as t�, and utility
as U � = U (t�).

The resource allocation problem (4) is a convex optimization problem and therefore
tractable [13, Sect. 1]. We observe that the objective and the first line of constraints
are separable across jobs; the total resource usage limit (the last constraint) couples
the different jobs. In other words, without the last total resource usage constraint, the
resource allocation problem splits into n separate problems, one for each job i . Our
method will leverage this idea.

The resource allocation problem is infeasible only in obvious pathological cases
such as ai = 0 with log utility. We assume henceforth that the problem is feasible. It
always has a solution, since the feasible set is compact. The problem is bounded above;
the maximum possible utility is

∑
i ui (max j (ai) j), the utility when all throughputs

take on their maximum possible values. Our analysis later will show that the solution
need not be unique, even when the utilities are strictly concave.

In the resource allocation problem (4) we can replace the utility U (t) with the
average utility U (t)/n or, when the utilities ui are the same and invertible, the utility
average (3). Thesemonotone transformations of the utility yield an equivalent problem.

Pareto optimality. If the utility functions are strictly increasing, then the throughput
t achieved by an optimal allocation X is Pareto efficient [13, Sect. 4.7.3], in the
following sense. If t̃ is a throughput vector for another feasible allocation for which
t̃i > ti for some job i , then there must be some other job j for which t̃ j < t j (if this
were not the case, then evidently X would not be optimal).
Application to computer systems. In our motivating application, the jobs represent
computational tasks or services. The resources represent different hardware configu-
rations on which the jobs may be run, such as types of CPUs (differing in cache sizes,
clock frequency, core count), GPUs (differing in memory, core count); or servers

123

600 A. Agrawal et al.

(differing in, say, CPU, GPU, RAM, storage, network bandwidth). The resources are
fungible because a job can be run on any of the m hardware configurations, but with
different efficiencies. The entry (xi) j is the fraction of time job i will run on hard-
ware type j , and (ai) j is the throughput job i would obtain if it were to run entirely
on hardware j (the entries of ai can be obtained by profiling each job on the differ-
ent hardware configurations). Throughput can be measured in several ways, such as
number of individual tasks that can be processed per second, or the number of MIPS
(millions of instructions per second) that a hardware configuration can achieve on a
job type.

We can interpret the resource allocation problem as finding an optimal time-slicing
of the n jobs across the m hardware configurations, where optimality is measured by
total utility. This problem (with linear and worst-case utility) was recently studied in
[41], as part of a system for scheduling deep learning jobs on GPUs.

In addition to finding an optimal time-slicing of the jobs, our method discovers the
optimal prices of the different hardware configurations. These prices could be used
to inform markets that provide several users access to a shared pool of computational
resources, as they convey the value of each resource relative to the others. They could
also be used to actually charge jobs for hardware usage.

3 Duality and resource prices

In the remainder of the paper, we develop and demonstrate our price discovery method
for efficiently solving (4). We recall that our method is based on solving the dual
problem: we introduce a Lagrange multiplier for the constraint on resource usage,
which splits the dual function into one small resource allocation problemper job. These
subproblems can be solved efficiently and in parallel using an analytical solution.
This lets us evaluate the dual function and a subgradient very cheaply; we use the
subgradients to adjust the prices to their optimal values, from which we obtain an
optimal allocation.

In this section we cover some standard results about duality in convex analysis and
optimization that we will use in our solution method. For background on duality in
convex optimization, see [13, Chap. 5], [30, Chap. XII], or [47, Sect. VI.28].

Lagrangian and dual function. We first reformulate the problem (4) as

maximize U (t) − I(X , t)
subject to r ≤ R,

with variables X and t , where r = XT 1 is the total resource usage, and I is the
indicator function of the constraints

xi ≥ 0, 1T xi ≤ 1, ti = aTi xi , i = 1, . . . , n.

(This means that I(X , t) = 0 when these constraints are satisfied, and I(X , t) = ∞
when they are not). We introduce p ∈ Rm+ as a dual variable (or Lagrange multiplier

123

Allocation of fungible resources via a fast… 601

or shadow price) for the constraint r ≤ R, and form the Lagrangian

L(X , t, p) = U (t) − I(X , t) − pT (r − R).

We can interpret p as a set of prices for the resources [13, Sect. 5.4.4], and the part of
the LagrangianU (t)− pT r as the net utility, i.e., the utility derived from the throughput
minus the cost of using the resources, at the prices given by p.

The dual function is defined as

g(p) = max
X ,t

L(X , t, p).

The dual function is convex. This is the optimal value of theLagrangian for the resource
price vector p.
Evaluating the dual function.We first observe that the Lagrangian is separable across
jobs i , i.e., a sum of functions of xi and ti :

L(X , t, p) = U (t) − pT (r − R) − I(X , t)

= pT R +
n∑

i=1

(
ui (ti) − pT xi − I(xi ≥ 0, 1T xi ≤ 1, ti = aTi xi)

)
.

To evaluate the dual function g(p) we maximize this over all xi and ti ; by separability
we can maximize separately for each i . For i = 1, . . . , n we solve the problem

maximize ui (ti) − pT xi
subject to xi ≥ 0, 1T xi ≤ 1, ti = aTi xi .

(5)

This is a small convex optimization problemwithm+1 variables, which we will show
to how to solve analytically in Sect. 4. Its objective is the net utility for job i , i.e., the
utility minus the cost of resources used. The dual function value g(p) is the sum of
the optimal values of the subproblems (5), plus pT R.

Optimal value bounds from the dual function. Since for any feasible X , t and any
p ∈ Rm+ we have L(X , t, p) ≥ U (t), it follows that

g(p) ≥ U �. (6)

In other words, the dual function gives an upper bound on the optimal utility of the
resource allocation problem (4).

Dual problem. The dual problem has the form

minimize g(p)
subject to p ≥ 0,

(7)

with variable p ∈ Rm . This has the natural interpretation of choosing p to obtain the
best (i.e., smallest) upper bound on U � in (6). The dual problem (7) is convex. We

123

602 A. Agrawal et al.

denote an optimal p as p�, and refer to p� as the optimal resource prices. Solving the
dual problem is sometimes called price discovery, since solving it finds the optimal
prices.

Strong duality. A standard result from convex optimization states that

g(p�) = U �,

i.e., the upper boundonoptimal utility from thedual function (6) is tightwhenevaluated
at the optimal prices. (Strong duality holds here since the only constraints are linear
equalities and inequalities; see [13, Sect. 5.2.3]).

Recovering an optimal allocation from optimal prices. A basic duality result from
convex optimization states that any optimal allocation X� and throughput t� maximizes
L(X , t, p�) over X and t . But since L is separable across jobs i , this means that for
each job i , x�

i and t�i are solutions of the problem

maximize ui (ti) − (p�)T xi
subject to xi ≥ 0, 1T xi ≤ 1, ti = aTi xi .

This has a very nice interpretation. Each job derives utility ui (ti), and pays for the
resources consumed at the optimal prices p�. The optimal allocation maximizes the
net utility, i.e., the utility derived from the resources minus the amount paid for the
resources. This relation between optimal allocation and optimal prices is key to our
price-based method.
Resource prices.The interpretation of p� as a set of resource prices is standard through-
out applications that use optimization. To explain the interpretation, define U (R) to
be the optimal value of the resource allocation problem (4), i.e., the maximum utility,
as a function of the total resource usage limit R. A standard duality result is

p� = ∇RU
�(R), (8)

the gradient of the optimal utility with respect to the resource limits. Thus p�
j is the

(approximate) increase in optimal utility obtained per increase in resource j . (When
U �(R) is not differentiable, we replace the gradient above with a subgradient of −U).
The interpretation of the partial derivative ofmaximumutilitywith respect to a resource
limit as a price for the resource is common in many fields, e.g., in communication
networks [34] and power networks [12].
Subgradient of dual function.We mention for future use how to find a subgradient of
g at p. Let x̃i and t̃i be the solutions of the subproblems (5), for i = 1, . . . , n. Then a
subgradient of g is given by

q = R − r =
n∑

i=1

R − x̃i (9)

123

Allocation of fungible resources via a fast… 603

If g is differentiable at p, then q = ∇g(p). The subgradient q has a nice interpretation:
it is the difference between the total resource limit R and the total resource usage r ,
when you choose the allocations via the subproblems (5) with resource prices p.

4 Solving the subproblem

In this section we explain how to analytically solve the subproblems (5). In this section
we will drop the subscript i (which indexes the jobs), to keep the notation light, and
express the problem as

maximize u(t) − pT x
subject to x ≥ 0, 1T x ≤ 1, t = aT x,

(10)

with variables x ∈ Rm and t ∈ R. We write this as

maximize u(t) − c(t), (11)

with variable t ∈ R, where c(t) is the optimal value of the linear program (LP)

minimize pT x
subject to x ≥ 0, 1T x ≤ 1, aT x = t,

with variables x ∈ Rm and t ∈ R. We now show how to solve this LP analytically.
Indeed, we will give the solution parametrically, and obtain an explicit formula for
c(t).

4.1 Parametric solution of the LP

We introduce a slack variable s ∈ R and express it in standard form

minimize pT x
subject to (x, s) ≥ 0[

aT 0
1T 1

] [
x
s

]

=
[
t
1

]

.

A basic result for LPs states that there is always a basic feasible solution, i.e., one in
which at most two entries of (x, s) are nonzero [9, Sect. 2.2]. (Two is the number of
linear equality constraints). There arem(m+1)/2 such choices of two nonzero entries
of (x, s). This tells us that the resource allocation subproblem always has a solution
that uses at most two of the resources.

This is illustrated in Fig. 1 for a subproblem with m = 4, and

a = (1, 2, 3, 5), p = (1, 1, 4, 6). (12)

The figure shows a basic feasible solution of the subproblem as t ranges from 0 to 5,
its range of feasible values. For 0 ≤ t ≤ 2, only the second resource (which has the

123

604 A. Agrawal et al.

0 1 2 3 4 5
t

0.00

0.25

0.50

0.75

1.00
x1

x2

x3

x4

Fig. 1 Basic feasible solutions for a subproblem with m = 4 resources, with data (12), as t varies. The first
and third resources are never used

highest value of a j/p j) is used; for 2 < t < 5, both the second and fourth resources
are used; and for t = 5, only the fourth resource (which has the largest value a j) is
used. We note that the first and third resources are never used.

We will now assume that the efficiencies are sorted and distinct, so a1 < · · · < am .
(The results given below are readily extended to the case when they are not distinct).
First suppose that xi and x j are nonzero,with i < j . (This corresponds to the casewhen
the job uses only resources i and j). Then s = 0, so xi + x j = 1 and ai xi + a j x j = t ,
so

xi = a j − t

a j − ai
, x j = t − ai

a j − ai
. (13)

For these to be nonnegative, we must have t ∈ [ai , a j]. The associated objective value
is

pi
a j − t

a j − ai
+ p j

t − ai
a j − ai

. (14)

As t varies between ai and a j , this varies affinely between pi and p j , respectively.
Now consider the special case when x j and s are nonzero. (This corresponds to the

case when the job uses only resource j). Then we have a j x j = t , so

x j = t/a j .

For x j and s = 1 − x j to be nonnegative, we need t ∈ [0, a j]. The corresponding
objective value is

p j t/a j .

These are the same as the formulas (13) and (14) above, with i = 0, where we define
a0 = p0 = 0.

The optimal value c(t) is the pointwiseminimumof them(m+1)/2 affine functions,
restricted to an interval,

pi
a j − t

a j − ai
+ p j

t − ai
a j − ai

+ I(t ∈ [ai , a j]), i < j .

123

Allocation of fungible resources via a fast… 605

0 1 2 3 4 5
t

0

1

c(
t)

Fig. 2 A graph of the piecewise affine optimal cost c(t), for a fixed price vector and four resources

The graphs of these functions are line segments that connect the points (ai , pi) and
(a j , p j), including the additional point (a0, p0) = (0, 0). The graph of c(t) is the
pointwise minimum of these. It is easy to see that c is piecewise affine with kinks
points that are a subset of the values a1, . . . , am . It is increasing and convex, and
satisfies c(0) = 0, and has domain [0, am].

Given a and p, it is straightforward to directly compute the piecewise affine function
c, i.e., to find its kink points and the slope in between successive kink points. It is
completely specified by a subset of {0, . . . ,m}, given by 0 = i1 < · · · < ir = m. The
kink points are ail , l = 1, . . . , r , and the value of c at these points is pil .

This is illustrated in Fig. 2, for the same example as abovewith data (12). In this case
the active subset is 0, 2, 4, and c is piecewise affine with kink points 0, a2 = 2, a4 = 5,
and associated values 0, p2 = 1, p4 = 6.

4.2 Solving the subproblem

Oncewe have the explicit function c, we can readily solve the one dimensional problem
(11). To do this we maximize u minus an affine function over each of the intervals
between successive kink points and choose the one with largest objective. Thus we
need to maximize u(t) − (αt + β) over t ∈ [γ, δ], where α, β, γ, δ are given, with
α > 0. This is readily done for any utility function. For example, if u is increasing
and strictly concave (e.g., log utility) we have the explicit formula

t = Π(u′)−1(α), (15)

where Π is the projection onto the interval [γ, δ]. (Since u is strictly concave, u′ is
increasing and therefore invertible). Figure 3 plots u(t)−c(t) for our running example
with m = 4 resources, data (12), and log utility; in this case, a value of t ≈ 2.4 is
optimal.

This small problem is also easily solved for cases when the utility is neither increas-
ing nor strictly concave, e.g., the target-priority utility (2). For this utility function, the
solution is

t =
⎧
⎨

⎩

tdes w > α, γ ≤ tdes ≤ δ,

γ w ≤ α,

δ w > α, δ ≤ tdes.
(16)

Summary. We summarize the algorithm for solving the job subproblem (2) below.

123

606 A. Agrawal et al.

0 1 2 3 4 5
t

−4

−2

0

u
(t
)−

c(
t)

Fig. 3 Net utility, i.e., utility minus cost, for a log utility and four resources

Algorithm 1Maximizing net utility
given prices p ∈ Rm+ , efficiency vector a ∈ Rm+ (a1 < a2 < · · · < am), utility function u : R → R

1. Compute c(t).Compute the piecewise affine function c as the pointwise minimum ofm(m+1)/2
affine functions.

2. Compute optimal throughput. Compute the t maximizing u(t) − c(t) (e.g., via (15) or (16))
3. Compute optimal allocation. Compute the allocation for the pair (i, j) achieving the maximum

net utility, as in (13).

Note that we access the utility function u in just two ways: we must be able to evaluate
u at any throughput t , and obtain the t maximizing u(t) − c(t).
Complexity. The complexity of this method of solving the job subproblem is quadratic
inm. By solving it in parallel for all n jobs (in Sect. 6,we describe oneway to parallelize
these solves) , we go from a proposed resource price vector p to an allocation that
satisfies all constraints, except possibly the total resource usage limit. At the same time
we can evaluate the dual function g(p), and a subgradient of it, as described above.

5 Price discovery algorithm

Now we can give our method for solving the resource allocation problem (2). We will
instead solve the dual problem (7), in order to discover the optimal resource prices;
we recover an optimal allocation from solutions of the subproblems (5).

Our dual or price discovery algorithm adjusts the resource prices. We let pk ∈
Rm+ denote the prices in iteration k. We first evaluate the dual function g(pk) and a
subgradient qk . We do this by solving the subproblems as in Sect. 4 for each i , using
Algorithm 1, in parallel. This gives us an upper bound onU �, and a resource allocation
Xk that satisfies the job constraints xi ≥ 0 and 1T xi ≤ 1, but need not satisfy the total
resource usage limit (Xk)T 1 ≤ R.

From this allocation we create a feasible allocation, by scaling down each column
of Xk so that the resource usage limit holds. We refer to this feasible allocation as X̃ k .
We evaluate its utility, which is a lower bound on U �. Thus we have lower and upper
bounds on U �,

U (X̃ k) ≤ U � ≤ g(pk).

123

Allocation of fungible resources via a fast… 607

We refer to g(pk)−U (X̃ k) as the duality gap in iteration k. We quit when this is small,
with a guarantee on how far from optimal the current allocation is.
Standard subgradient price update. Tomove to the next iteration we update the prices.
A standard subgradient method uses the projected gradient update

pk+1 = max{pk − αkq
k, 0},

where αk are positive step lengths that satisfy αk → 0 and
∑∞

k=1 αk = ∞. This
simple update guarantees convergence, i.e., pk → p� [14, 51]. It is also extremely
intuitive. Recall that qk = R − rk , so that −qk tells us how much we are over-using
the resources, i.e., −qkj > 0 means that using the prices pk , we have rkj > R j . The
subgradient update above says that we should increase the price for resources we are
currently over-using, and decrease the price for any resource we are under-using (but
never decrease a price below zero).

Recall that the optimal price vector gives the true prices of each resource, from
which an optimal allocation is easily obtained (see Sect. 3).
More efficient price updates. The projected subgradient method described above
always works, even when g is nondifferentiable. We can also use more efficient and
sophisticated methods for minimizing g that rely on g being differentiable, for exam-
ple a quasi-Newton method such as the BFGS method [16, 24, 27, 50] or its limited
memory variants [36, 42]. While g need not be differentiable, for example with target-
priority utility, it is quite smooth when n is large, and we have observed no practical
cases where it failed. (In any case, we can always fall back on the basic subgradient
method).
Initialization. The initial price vector p1 can be anything, including 0 or 1. We have
found a simple initialization that depends on the data (ai , R, and ui) and yields prices
that are reasonably close to the optimal ones. We start with the simple allocation
xi = (1/n)R for all i , which distributes the full usage budget uniformly across the
jobs. (If κ = 1T (1/n)R > 1, we take xi = (1/(κn)R, so 1T xi = 1). We take as a
starting price

p1 = ∇RU (R) = 1

n

n∑

i=1

u′
i (a

T
i xi)ai . (17)

(When ui is not differentiable, we can take a supergradient, i.e., the negative of a
subgradient of −u). This simple initialization is motivated by the observation that the
optimal prices give the sensitivity of the total utility to the resource constraint [13,
Sect. 5.6.3]. We have found it to work well in practice.
Algorithm summary. We summarize our price discovery algorithm for solving the
resource allocation problem (4) below.

123

608 A. Agrawal et al.

Algorithm 2 Resource allocation price discovery
given efficiency vectors ai ∈ Rm+ , utility functions ui : R → R, total resource usage limit R, initial

resource prices p1 ∈ Rm+ , tolerance ε > 0
For iteration k = 1, 2, . . . , Kmax

1. With prices pk , solve n subproblems in parallel to find
• allocation Xk

• dual function value g(Xk)

• dual function gradient qk

• feasible allocation utility value U (X̃ k)

2. Quit if g(pk) −U (X̃ k) ≤ ε

3. Update prices to obtain pk+1

A reasonable choice of the tolerance ε is 10−3n, which guarantees that our final
allocation is no more than 10−3 suboptimal in average utility. With log utility, this
means the throughputs are optimal to within around 0.1%, which is far more than
good enough for any practical application. (The algorithm can be run to much higher
accuracy as well).

6 Numerical examples

6.1 Implementation

We have implemented the price discovery Algorithm 2 in PyTorch [44], along with
an object-oriented interface for specifying and solving resource allocation problems
of the form (4). In our library, users can select from a library of utility functions
(or define their own). Our code is open-source, and available at https://github.com/
cvxgrp/resalloc.

Solving the subproblems in parallel.Our implementation of Algorithm 1 is completely
vectorized and exploits the fact that for each subproblem, there is a basic feasible
solution in which at most two resources are used. In particular, we compute the slopes
of the affine functions on which c(t) depends using vectorized operations (across all
jobs), and collect them into a matrix of shape n by m(m − 1)/2 (this is tractable,
because in the problems we are interested in m � n). We then operate on this matrix
in a vectorized fashion to obtain the allocation solving the subproblem.

Roughly speaking, this means we solve the n subproblems in parallel, but not by
spawningmultiple threads that solve the problems in isolation. Instead, wemake heavy
use of vector and matrix operations (avoiding control flow such as for loops as much
as possible), and let our numerical linear algebra software (i.e., PyTorch) exploit the
parallelism that is intrinsic to these operations. On a CPU, this means we exploit
parallelism at multiple levels: the vector and matrix operations are split over multiple
threads, and each thread in turn can take advantage of SIMD (single instruction,
multiple data) operations supported by the hardware [29, Chap. 4]. Additionally, our
software library supports CUDA acceleration via PyTorch, i.e., users can run the price

123

https://github.com/cvxgrp/resalloc
https://github.com/cvxgrp/resalloc

Allocation of fungible resources via a fast… 609

discovery method on GPUs; in this case, the vector and matrix operations in our
implementation are split over the GPU’s streaming multiprocessors, each of which
can be thought of as a SIMD processor.

Because we efficiently exploit parallelism, our implementation is often orders of
magnitude faster than off-the-shelf solvers for convex optimization, and it can scale
to much larger problems. We will see some experiments that demonstrate this in the
following subsections.

Utility functions.Our implementation is modular, and can support any utility function
that implements three specific methods: one that evaluates the utility, one that solves
the subproblem (11) (given the slopes of the affine functions on which c(t) depends),
and one that computes an initial guess for the price vector (this guess need not be
intelligent). These methods must be vectorized over jobs, which is simple to do using
PyTorch.

Code example. Below we show a code example that formulates a simple resource
allocation problem using our software. (Here, the entries of the resource limits and
throughput matrix are randomly generated; in an application, a user would use their
real data for these variables).

import torch
from resalloc.fungible import AllocationProblem,
utilities

n_jobs, n_resources = int(1e6), 4
throughput_matrix = torch.rand((n_jobs, n_resources))
resource_limits = torch.rand(n_resources) * n_jobs + 1e3

problem = AllocationProblem(
throughput_matrix=throughput_matrix,
resource_limits=resource_limits,
utility_function=utilities.Log()

)

The problem can then be solved by calling the solve method:

problem.solve(verbose=True)

This yields the following verbose output, tracking the progress of the algorithm;
each line prints the average utility, dual function value (divided by the number of jobs),
and the gap between the two at a specific iteration of the price discovery algorithm.
(By default the solver uses L-BFGS for the price updates, and terminates when the
gap is less than 10−3).

123

610 A. Agrawal et al.

iteration 00 | utility=-0.349 | dual_value=0.275 |
gap=6.26e-01 iteration 05 | utility=-0.274 |
dual_value=-0.265 | gap=9.44e-03
Converged in 009 iterations, with residual 0.000161

After calling the solve method, the optimal allocation can be obtained by accessing
the X attribute of the problem object (problem.X), and the optimal prices can be
obtained via the prices attribute (problem.prices).

Solving this problem using a GPU requires just two changes to the code sample,
shown below.

problem = AllocationProblem(
throughput_matrix=throughput_matrix.cuda(),
resource_limits=resource_limits.cuda(),
utility_function=utilities.Log()

Experiment set-up. In the following subsections, we demonstrate our implementation
on numerical examples. All experiments use our implementation with default param-
eter values and 32-bit floating points. We use L-BFGS with memory 10 for the price
updates, and we run the algorithms with tolerance ε = 10−3n, which is more accu-
racy than needed in any practical application. We run the algorithm on a CPU, an
Intel i7-6700K CPU with four physical cores clocked at 4 GHz, and also a GPU, an
NVIDIA GeForce GTX 1070 with 1920 cores clocked at 1.5 GHz and a peak of 6.5
TFLOPs. We also give some experiments on a more compute-intensive configuration,
an NVIDIA DGX-1 equipped with an NVIDIA Tesla V100 SXM2 GPU, which has
5120 cores clocked at 1.29 GHz and a peak of 15.7 TFLOPs.

Where possible, we cross check each solution found by our method using CVXPY
[3, 20] with the MOSEK solver [4], a high performance commercial interior-point
solver. (CVXPY is unable to compile one very large instance, and we suspectMOSEK
would be unable to solve it on our machine). In all cases, the allocations found using
our method and MOSEK agreed.

6.2 Amedium size problem

We consider a medium size problem, with n = 106 jobs and m = 4 resources. The
data are synthetic but realistic. We choose the entries of ai from uniform distributions,

(ai)1 ∼ U (0.1, 0.3) (ai)2 ∼ U (0.1, 0.5) (ai)3 ∼ U (0.3, 0.8) (ai)4 ∼ U (0.6, 1.0)

and we choose R as

R = (8 × 105, 105, 104, 103),

123

Allocation of fungible resources via a fast… 611

so that the resources that are more efficient (on average) are also more scarce. We
consider two problems, one with log utility and another with target-priority utility,
with ti = 0.2 and priorities randomly chosen to be wi = 1 or wi = 2 (each with
probability one half).

We ran the price discovery algorithm on these problems, using the initialization
(17) for the prices. Maximizing the log utility took 3.9 seconds on our CPU and 0.30
seconds on our GPU; maximizing the target-priority utility took 11 seconds on our
CPU and 0.89 seconds on our GPU. These are impressive solve times, considering
our problem has 4 million variables. For comparison, MOSEK (which solves to high
accuracy) took 300 seconds and 36 iterations for the log utility and 99 seconds and 74
iterations for the target-priority.MOSEK’s set-up time for the problemswas 18 seconds
and 13 seconds, respectively, and it it took MOSEK approximately 111 seconds and
85 seconds to reach solutions of the same accuracy as ours.

The progress of the algorithm is shown in Figs. 4 and 5, for the log and target-
priority utilities, respectively. In each figure the top plot shows the prices pk versus
iteration, with dashed lines showing the optimal prices p�. We can see that the prices
converge to optimal (within 10−3) in 11 iterations for log utility and 21 iterations for
target-priority utilities. The second plot shows the resource usage rk versus iteration,
with dashed lines showing the resource limits. The resource usage constraints are
violated early on but are satisfied by the end, as the prices converge to their optimal
values. The third plot shows the upper and lower bounds on average utility, and the
bottom plot shows the duality gap divided by n, (g(Xk)−U (X̃ k))/n (which is known
at iteration k) and the true suboptimality divided by n, (U � −U (X̃ k))/n (which is not
known at iteration k). For U � we used the optimal value obtained by MOSEK.

Figure 6 visualizes 50 rows of the optimal allocation matrices, along with the
slack; the rows were selected by embedding the efficiency vectors ai into a line (using
principal component analysis, via PyMDE [1], a Python package for embedding),
sorting the resulting embedding, and permuting the rows of the allocation matrix to
match the sort order. For the allocation maximizing log utility, around 17 percent of
jobs use two resources, the remaining use just one resource, and roughly 18 percent
of jobs have a positive slack (meaning that 1T xi < 1, i.e., these jobs would run for
less than 100% total time). For the allocation maximizing the target-priority utility,
67 percent of jobs use two resources, the remaining use just one, and 50 percent have
positive slack.

The job throughput distributions for the initial allocation, the allocation obtained
after a few iterations, and the final optimal allocation X� are shown for the two prob-
lems in Fig. 7. We can see that the target-priority allocation is able to obtain the target
throughput 0.20 for over 95% of the jobs. Figure 8 shows the throughput distributions
for the target-priority optimal allocation, for the jobs with low priority (wi = 1) and
higher priority (wi = 2), respectively. Virtually all of the high priority jobs achieve
the target throughput, while around 10% of the low priority jobs do not. (Recall that
roughly half the jobs are high priority, and half are low priority).

123

612 A. Agrawal et al.

0 5 10

2.5

5.0

pr
ic
e

p1
p2
p3
p4

0 5 10

104

106

re
so
ur
ce

us
ag
e r1

r2
r3
r4

0 5 10

−1.6

−1.4

av
er
ag
e
ut
ili
ty

upper bound
lower bound

0 5 10
iteration

10−1

10−3

su
bo

pt
im

al
it
y

duality gap
true suboptimality

Fig. 4 Log utility. Prices, resource usage, bounds on average log utility, and suboptimality versus iteration
number

6.3 A large problem

For our next example we consider a large problem with n = 50 million jobs, m = 4
resources, and log utility. This is a convex optimization problem with 200 million
variables. We generate the entries of ai in the same way as the previous example, and
use the previous resource limits scaled by 50.

We solved this problem on our smaller machine’s CPU, and on the Tesla V100
GPU (the problem was too large to fit on the smaller GPU). The problem was solved
in 228 seconds on our CPU, and in roughly 7.9 seconds on the GPU. (This problem
was too large to solve with MOSEK). Figure 9 shows the progress of the algorithm.
In the final allocation, 17 percent of jobs use two resources, the remaining use one,
and 18 percent have positive slack.

123

Allocation of fungible resources via a fast… 613

0 10 20
0.0

0.5

pr
ic
e

p1
p2
p3
p4

0 10 20

104

106

re
so
ur
ce

us
ag
e r1

r2
r3
r4

0 10 20

−0.050

−0.025

0.000

av
er
ag
e
ut
ili
ty

upper bound
lower bound

0 10 20
iteration

10−1

10−3

su
bo

pt
im

al
it
y

duality gap
true suboptimality

Fig. 5 Target-priority utility. Prices, resource usage, bounds on average target-priority utility, and subopti-
mality versus iteration number

6.4 Scaling with jobs and resources

In this subsection we show how ourmethod scales in the number of jobs and resources,
and compare solve times for a number of problems against low-accuracy MOSEK
solves.
Evaluating the dual function. The main computation in each iteration of our algorithm
is evaluating the dual function (i.e., solving the n subproblems). To give an idea of how
our implementation scales, we timed how long it took to evaluate the dual function for
synthetic problems, varying the number of jobs n and resourcesm. We conducted two
experiments. In one, we held n fixed at 105, and varied m from 2 to 100; in the other,
we heldm fixed at 4, and varied n from 102 to 107. For each instance we evaluated the
dual function five times. The mean times are plotted in Fig. 10. To study the scaling,
for each plot we log-transformed the inputs and outputs and fit linear regressions, i.e.,

123

614 A. Agrawal et al.

Fig. 6 Fifty rows of the optimal
allocation matrices, along with
the slack. Each row represents
an allocation vector xi , and each
column a resource (or slack).
Each job uses at most two
resources. Top. Log utility.
Bottom. Target-priority utility

0

10

20

30

40

jo
b
nu

m
be

r

slack 1 2 3 4
resource number

0

10

20

30

40

jo
b
nu

m
be

r
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

we fit models of the form

log(s) ≈ a + b log(m), log(s) ≈ a + b log(n),

where s is the elapsed time.We fit these models in ranges where the constant overhead
of our software implementation no longer dominated. These fits are plotted as dashed
lines in Fig. 10.

For CPU, the coefficient b is 2.03 for resources and 1.05 for jobs; for GPU (we
used the Tesla V100), b is 1.75 for resources and 0.81 for jobs. (The coefficients a
are very small: for CPU, exp(a) is 1.4 × 10−3 and 1.6 × 10−7 for resources and jobs
respectively, and for GPU the values are 6.7× 10−5 and 1.7× 10−7). This means that
CPU time scales quadratically in the number of resources and linearly in the number
of jobs, while GPU times scales less than quadratically in the number of resources and
sublinearly in the number of jobs, at least over the range considered.
Comparison to MOSEK. For large problems, our method outperforms high-quality
off-the-shelf solvers for convex optimization, such as MOSEK. To demonstrate this,

123

Allocation of fungible resources via a fast… 615

0.05 0.10 0.15 0.20 0.25 0.30

0.0

0.2

0.4

0.6

0.8

1.0
k = 0
k = 5
k = 10

0.05 0.10 0.15 0.20 0.25 0.30
t

0.0

0.2

0.4

0.6

0.8

1.0
k = 0
k = 10
k = 21

Fig. 7 CDFs of throughputs, at iteration numbers k. Top. Log utility. Bottom. Target-priority utility

0.10 0.12 0.14 0.16 0.18 0.20
t

0.0

0.2

0.4

0.6

0.8

1.0
priority 1
priority 2

Fig. 8 CDFs of throughputs for optimal target-priority allocations, for the low and high priority jobs

we timed how long it took our method to solve a number of synthetic problems (with
log utility and accuracy ε = 10−3n), varying the number of jobs n and resources m;
we solved the same problems with MOSEK, to low accuracy (setting all tolerances to
10−3). In the first set of experiments, we held n fixed at 106, and variedm from 2 to 16;
in the second, we held m fixed at 4, and varied n from 102 to 106. The columns of the

123

616 A. Agrawal et al.

0 5 10

2

4

6

pr
ic
e

p1
p2
p3
p4

0 5 10

105

106

107

re
so
ur
ce

us
ag
e

r1
r2
r3
r4

0 5 10
iteration

−1.7

−1.6

−1.5

−1.4

av
er
ag
e
ut
ili
ty

upper bound
lower bound

Fig. 9 A large problem. Prices, resource usage, and bounds on average log utility versus iteration number,
for a large problem with n = 50 million jobs andm = 4 resources. This problem was solved in 228 seconds
on CPU and 7.9 seconds on GPU

throughput matrices were sampled from uniform distributions, so that (on average) the
resources were ordered from least tomost efficient. The resource limits were generated
by sampling each entry from a uniform distribution on [0.1, 1], and scaling the first
component by the number of jobs, the second by the number of jobs divided by 1.5,
the third by the number of jobs divided by 1.52, and so on. We solved five instances
of each problem.

Themean solve times are plotted in Fig. 11. For large problems, ourmethod appears
to be between one to three orders of magnitude faster than low-accuracy MOSEK
solves. We point out that we solve the largest instance, which has 16 million variables
(n = 106 jobs and m = 16 resources), in just 5 seconds on a GPU. On this same
instance, MOSEK takes over 200 seconds.

123

Allocation of fungible resources via a fast… 617

101 102

number of resources

10−2

10−1

100

101

se
co
nd

s

gpu
cpu

102 103 104 105 106 107

number of jobs

10−3

10−2

10−1

100

se
co
nd

s

gpu
cpu

Fig. 10 Evaluating the dual function. Mean time elapsed evaluating the dual function, with dashed lines
showing scaling over ranges where the fixed overhead no longer dominates. Top. n = 105, with m varying.
Bottom. m = 4, with n varying

7 Conclusion

We have described a custom solver for the fungible resource allocation problem that
scales to extremely large problem instances, especially when run on a GPU. For
example, problems with millions of variables can be solved in well under a second.
Smaller problems can be solved in milliseconds.

The method uses the dual problem, and manipulates a set of resource prices until
we achieve an optimal allocation. The optimal prices, which our algorithm discovers,
can be used for other tasks as well as a solving the allocation problem. For example
we can actually charge jobs in proportion to (p�)T xi , the total cost of the resources
used with the optimal prices.

The prices can also be used in situations where an allocation problem is broken
into M shards or subproblems, and each of these solved independently with resource
budget (1/M)R. If the optimal resource prices for the different shards are close, we
can conclude that the solution found from the partitioned problems is nearly optimal

123

618 A. Agrawal et al.

21 22 23 24

number of resources

10−1

100

101

102

se
co
nd

s

price discovery (gpu)
price discovery (cpu)
mosek

102 103 104 105 106

number of jobs

10−2

10−1

100

101

102

se
co
nd

s

price discovery (gpu)
price discovery (cpu)
mosek

Fig. 11 Comparison to MOSEK. Mean time elapsed solving resource allocation problems with log utility,
comparing our method and low-accuracy MOSEK solves. Top. n = 106, with m varying. Bottom. m = 4,
with n varying

for the allocation problem, had they been solved together. If the resource prices vary
across the shards, they can be used to re-allocate resources to the shards, by moving
resources from the shards with lower prices to those with higher prices. This method,
which is very interpretable, can be shown to converge to the solution of the larger
problem [15, Sect. 3.1]. This method could also be used to re-allocate resources
across separate virtual data centers in a principled way.

7.1 Extensions and variations

Wemention a few extensions and variations on our method, and related problems. The
first is the min-throughput utility. This objective function is concave and nondecreas-
ing, but it is not separable, so the methods of this paper cannot be directly used. But
very similar methods can be. Methods described in this paper can be used to approxi-
mate the min-throughput utility; for example, just using a utility function with strong
curvature, like a power utility with p near zero, already gives a good approximation

123

Allocation of fungible resources via a fast… 619

of the minimum throughput. Or we can use a target-priority utility and decrease the
target throughput until all (or a large fraction) of the jobs meet the target.

Our formulation (4) can easily be extended to the case in the constraint on the
resource usage is replaced with

∑n
i=1 di xi ≤ R, where di ∈ R++ is the number of

resources demanded by job i (this constraint was proposed in [41]). For example, if
di = 2, and the resources are GPUs, thismeans that job i requires twoGPUs in order to
run. We can also handle the case in which jobs demand different amounts of different
resources (leading to demands that are vectors in Rm++, not scalars). These extensions
would require very minimal changes to our price discovery method (the only change
is that the price vector in each subproblem (10) is multiplied by the job’s demand);
indeed, we have implemented them in our software.

In this paper we only considered the problem of allocating the fraction of time that a
job should spend consuming each resource; we did not consider the problem of coming
up with a schedule, which says when each job should consume its resources during
the time interval. In our motivating application of computer systems, some pairs of
jobs exhibit poor performance when colocated on the same hardware (i.e., when using
the same resource) [32, 41, 55, 59]. This kind of interference could be mitigated by a
lower-level scheduler, which takes as input an optimal allocation matrix, and comes
up with a concrete schedule that respects the time-slicing while minimizing cross-job
interference. The lower-level scheduler could itself be basedon solving anoptimization
problem;Netflix’s optimization-based scheduler is one such example [48].Wemention
that it is also possible to take interference into account in a higher-level optimization-
based scheduler, possibly using a formulation of the resource allocation problem that
is different from ours (one such formulation is given in [41, Sect. 3.1]).

Finally, another related and important problem is the allocation of non-fungible
resources. This occurs when the resources are heterogeneous, and not fully exchange-
able. For example in a data center, we can allocate number of cores, I/O bandwidth,
memory, and disk space. (These are not fungible, because you cannot get any through-
put if you only use I/O bandwidth and no cores, memory, or disk space). In this setting,
the utility function for each job does not have the form of a scalar utility function of
a linear function of the resources allocated; instead it is a utility function of xi . These
problems can often be posed as convex optimization problems (e.g., [10, 26]). The
specific solution of the subproblem described in Sect. 4 no longer applies, but the price
discovery method in general does. We will address that problem in a future paper.

Funding Akshay Agrawal was supported by a Stanford Graduate Fellowship when this work was authored.

Data availability andmaterials All data analyzed are publicly available. URLs are included in this published
article. This manuscript has associated data in a data repository. As already indicated in the paper, the code
for reproducing the numerical experiments are available at https://www.csie.ntu.edu.tw/~cjlin/papers/l-
commdir/l-commdir-journal-exp.tar.gz, and an open-source implementation of our algorithm is available
at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/.

Code Availability The full code is available online, at the URL published in this paper.

Declarations

Conflict of interest The authors declare that they have no conflicts of interest.

123

https://www.csie.ntu.edu.tw/~cjlin/papers/l-commdir/l-commdir-journal-exp.tar.gz
https://www.csie.ntu.edu.tw/~cjlin/papers/l-commdir/l-commdir-journal-exp.tar.gz
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/

620 A. Agrawal et al.

References

1. Agrawal, A., Ali, A., Boyd, S.: Minimum-distortion embedding. arXiv (2021)
2. Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., Kolter, J.Z.: Differentiable convex opti-

mization layers. In: Advances in Neural Information Processing Systems, pp. 9558–9570 (2019)
3. Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization

problems. J. Control Decis. 5(1), 42–60 (2018)
4. ApS, M.: MOSEK optimization suite. http://docs.mosek.com/9.2/intro.pdf (2021)
5. Arrow, K.: Essays in the Theory of Risk-Bearing. Markham Publishing Company, Markham (1971)
6. Banjac, G., Stellato, B., Moehle, N., Goulart, P., Bemporad, A., Boyd, S.: Embedded code generation

using the OSQP solver. In: IEEE Conference on Decision and Control (2017)
7. Bertsekas, D.: Nonlinear Programming. Athena Scientific, Belmont (1999)
8. Bertsekas, D., Gallager, R., Humblet, P.: Data Networks, vol. 2. Prentice-Hall, Hoboken (1992)
9. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scientific, Belmont (1997)

10. Bird, S., Smith, B.: PACORA: Performance aware convex optimization for resource allocation. In:
Proceedings of the 3rd USENIX Workshop on Hot Topics in Parallelism (2011)

11. Blackmore, L.: Autonomous precision landing of space rockets. The BRIDGE 26(4) (2016)
12. Bohn, R., Caramanis, M., Schweppe, F.: Optimal pricing in electrical networks over space and time.

RAND J. Econ. pp. 360–376 (1984)
13. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)
14. Boyd, S., Xiao, L., Mutapcic, A.: Subgradient methods (2003). Lecture notes for the course Convex

Optimization II
15. Boyd, S., Xiao, L., Mutapcic, A., Mattingley, J.: Notes on decomposition methods (2007). Lecture

notes for the course Convex Optimization II
16. Broyden, C.G.: The convergence of a class of double-rank minimization algorithms, general consid-

erations. IMA J. Appl. Math. 6(1), 76–90 (1970)
17. Busseti, E., Ryu, E., Boyd, S.: Risk-constrained kelly gambling. J. Invest. 25(3), 118–134 (2016)
18. Chiang, M., Low, S., Calderbank, A.R., Doyle, J.: Layering as optimization decomposition: a mathe-

matical theory of network architectures. Proc. IEEE 95(1), 255–312 (2007)
19. Chu, E., Parikh, N., Domahidi, A., Boyd, S.: Code generation for embedded second-order cone pro-

gramming. In: European Control Conference, pp. 1547–1552. IEEE (2013)
20. Diamond, S., Boyd, S.: CVXPY: a python-embedded modeling language for convex optimization. J.

Mach. Learn. Res. 17(1), 2909–2913 (2016)
21. Domahidi, A., Chu, E., Boyd, S.: ECOS: An SOCP solver for embedded systems. In: European Control

Conference, pp. 3071–3076. IEEE (2013)
22. Eeckhoudt, L., Gollier, C., Schlesinger, H.: Economic and Financial Decisions under Risk. Princeton

University Press, Princeton (2011)
23. Finardi, E.C., da Silva, E.L.: Solving the hydro unit commitment problem via dual decomposition and

sequential quadratic programming. IEEE Trans. Power Syst. 21(2), 835–844 (2006)
24. Fletcher, R.: A new approach to variable metric algorithms. Comput. J. 13(3), 317–322 (1970)
25. Friedman, M., Savage, L.: The utility analysis of choices involving risk. J. Political Econ. 56(4),

279–304 (1948)
26. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dominant resource

fairness: Fair allocation ofmultiple resource types. In: 8thUSENIXSymposiumonNetworkedSystems
Design and Implementation (NSDI 20), vol. 11, pp. 24–24 (2011)

27. Goldfarb, D.: A family of variable-metric methods derived by variational means. Math. Comput.
24(109), 23–26 (1970)

28. Gollier, C.: The Economics of Risk and Time. MIT Press, Cambridge (2001)
29. Hennessy, J., Patterson, D.: Computer Architecture: A Quantitative Approach, 5th edn. Morgan Kauf-

mann Publishers Inc, Burlington (2011)
30. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. II, Grundlehren

der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 306.
Springer-Verlag, Berlin (1993). Advanced theory and bundle methods

31. Hu, M., Xiao, J.W., Cui, S.C., Wang, Y.W.: Distributed real-time demand response for energy man-
agement scheduling in smart grid. Int. J. Electr. Power Energy Syst. 99, 233–245 (2018)

123

http://docs.mosek.com/9.2/intro.pdf

Allocation of fungible resources via a fast… 621

32. Kambadur, M., Moseley, T., Hank, R., Kim, M.: Measuring interference between live datacenter appli-
cations. In: Proceedings of the InternationalConference onHighPerformanceComputing,Networking,
Storage and Analysis (SC’12), pp. 1–12. IEEE (2012)

33. Kelly, F., Maulloo, A., Tan, D.: Rate control for communication networks: shadow prices, proportional
fairness and stability. J. Oper. Res. Soc. 49(3), 237–252 (1998)

34. Kelly, J., Jr.: A new interpretation of information rate. IRE Trans. Inf. Theory 2(3), 185–189 (1956)
35. Komodakis, N., Paragios, N., Tziritas, G.: Mrf optimization via dual decomposition: Message-passing

revisited. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)
36. Liu, D., Nocedal, J.: On the limited memory BFGs method for large scale optimization. Math. Pro-

gramm. 45(1–3), 503–528 (1989)
37. MacLean, L., Thorp, E., Ziemba, W.: The Kelly Capital Growth Investment Criterion: Theory and

Practice, vol. 3. World Scientific, Singapore (2011)
38. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)
39. Mattingley, J., Boyd, S.: CVXGEN: a code generator for embedded convex optimization. Optim. Eng.

13(1), 1–27 (2012)
40. Mo, J., Walrand, J.: Fair end-to-end window-based congestion control. IEEE/ACM Trans. Netw. 8(5),

556–567 (2000)
41. Narayanan, D., Santhanam, K., Kazhamiaka, F., Phanishayee, A., Zaharia, M.: Heterogeneity-aware

cluster scheduling policies for deep learning workloads. In: 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pp. 481–498 (2020)

42. Nocedal, J.: Updating quasi-newton matrices with limited storage. Math Comput. 35(151), 773–782
(1980)

43. Palomar, D.P., Chiang, M.: A tutorial on decomposition methods for network utility maximization.
IEEE J. Select. Areas Commun. 24(8), 1439–1451 (2006)

44. Paszke,A., Gross, S.,Massa, F., Lerer, A., Bradbury, J., Chanan,G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al.: PyTorch: An imperative style, high-performance deep learning library. In: Advances
in Neural Information Processing Systems, pp. 8024–8035 (2019)

45. Pratt, J.: Risk aversion in the small and in the large. Econometrica 32(1/2), 122–136 (1964)
46. Rantzer, A.: Dynamic dual decomposition for distributed control. In: 2009 American Control Confer-

ence, pp. 884–888. IEEE (2009)
47. Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1970)
48. Rostykus, B., Hartman, G.: Predictive cpu isolation of containers at netflix (2019). https://medium.

com/netflix-techblog/predictive-cpu-isolation-of-containers-at-netflix-91f014d856c7
49. Schütz, P., Tomasgard, A., Ahmed, S.: Supply chain design under uncertainty using sample average

approximation and dual decomposition. Eur. J. Oper. Res. 199(2), 409–419 (2009)
50. Shanno,D.: Conditioning of quasi-newtonmethods for functionminimization.Math. Comput. 24(111),

647–656 (1970)
51. Shor, N.: Minimization Methods for Non-Differentiable Functions, Springer Series in Computational

Mathematics, vol. 3. Springer-Verlag. Translated from Russian by K. Kiwiel and A, Ruszczyński
(1985)

52. Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S.: OSQP: An operator splitting solver for
quadratic programs. Math. Program. Comput. (2020)

53. Tobin, J.: Liquidity preference as behavior towards risk. Rev. Econom. Stud. 25(2), 65–86 (1958)
54. Tobin, J., et al.: The theory of portfolio selection. Theory Interest Rates 364, 364 (1965)
55. Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.: Large-scale cluster

management at google with borg. In: Proceedings of the Tenth European Conference on Computer
Systems, pp. 1–17 (2015)

56. Wang, Y., Boyd, S.: Fast evaluation of quadratic control-Lyapunov policy. IEEE Trans. Control Syst.
Technol. 19(4), 939–946 (2010)

57. Xiao, L., Johansson, M., Boyd, S.P.: Simultaneous routing and resource allocation via dual decompo-
sition. IEEE Trans. Commun. 52(7), 1136–1144 (2004)

58. Yu, W., Lui, R.: Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE
Trans. Commun. 54(7), 1310–1322 (2006)

59. Zhang, X., Tune, E., Hagmann, R., Jnagal, R., Gokhale, V., Wilkes, J.:CP I 2: CPU performance isola-
tion for shared compute clusters. In: Proceedings of the 8th ACM European Conference on Computer
Systems, pp. 379–391 (2013)

123

https://medium.com/netflix-techblog/predictive-cpu-isolation-of-containers-at-netflix-91f014d856c7
https://medium.com/netflix-techblog/predictive-cpu-isolation-of-containers-at-netflix-91f014d856c7

622 A. Agrawal et al.

60. Zhang, Y., Gatsis, N., Giannakis, G.B.: Robust energy management for microgrids with high-
penetration renewables. IEEE Trans. Sustain. Energy 4(4), 944–953 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Allocation of fungible resources via a fast, scalable price discovery method
	Abstract
	1 Introduction
	1.1 Related work

	2 Resource allocation problem
	2.1 Resource allocation to jobs
	2.2 Utility
	2.3 Utility interpretations
	2.4 Resource allocation problem

	3 Duality and resource prices
	4 Solving the subproblem
	4.1 Parametric solution of the LP
	4.2 Solving the subproblem

	5 Price discovery algorithm
	6 Numerical examples
	6.1 Implementation
	6.2 A medium size problem
	6.3 A large problem
	6.4 Scaling with jobs and resources

	7 Conclusion
	7.1 Extensions and variations

	References

