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Abstract— Fast gradient methods are known to be non-
monotone algorithms, and oscillations typically occur around
the solution. To avoid this behavior, we propose in this paper
a fast gradient method with restart, and analyze its con-
vergence rate. The proposed algorithm bears similarities to
other algorithms in the literature, but differs in a key point
that enables theoretical convergence rate results. The efficiency
of the proposed method is demonstrated by two numerical
examples.

I. INTRODUCTION

In his seminal paper from the mid 80’s [8], Nesterov

presents a fast gradient method that achieves the (up to a

constant) optimal convergence rate as described in [7]. The

fast gradient method by Nesterov was largely unrecognized

for two decades, even though Nesterov presented another

optimal gradient method in [9]. From the mid 00’s, fast

gradient methods have been extended and generalized in

several directions. Contributions include [10], where among

other things a projected fast gradient method is presented,

and [2], where composite objective functions are considered,

and [16], that presents a unified framework for many of the

fast gradient methods presented in the literature. For more on

fast gradient methods and other methods suitable for solving

composite optimization problems, the reader is referred to

[14].

One characteristic of fast gradient methods, is that the

iterates are not monotone. That is, the function values

may increase for a couple of iterates, before decreasing

again. This is sometimes an undesirable property that has

been addressed in [1], [11], where monotone versions of

different fast gradient methods have been proposed. In these

methods, the function values of the current and the previous

iterates are compared, and appropriate measures are taken

to ensure monotonicity. These methods share the O(1/k2)
convergence rate of the fast gradient method when applied to

smooth functions, and the performance is often similar to the

performance of the corresponding non-monotone algorithm.

In [12], an algorithm that exploits the non-monotonicity to

achieve a faster convergence is presented. They observed that

if the algorithm is restarted when a non-monotone behavior

is detected, the restarted algorithm often proceeds in a good

direction in terms of function value progress. Besides using a

monotonicity-test to restart the algorithm, the authors in [12]

also propose a gradient-based test that indicates if the iterates

tend to oscillate away from the solution. Both these restart

schemes often perform well in practice, especially when

medium to high accuracy is desired. In [12], these adaptive
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restart fast gradient methods are shown to converge linearly

for strongly convex and smooth functions, but convergence

rate results for non-strongly convex and smooth functions

are still missing.

In this paper, we will analyze a restart scheme for fast

gradient methods that is a slight variation of the method in

[12]. This modification of the algorithm allows for proving

a O(1/k2) convergence rate for the restarted fast gradient

method when solving smooth problems. We show that the

constant in the O(1/k2) convergence rate is the same as

in the standard fast gradient method, except for one term

that is added and one term that is subtracted every time the

algorithm is restarted. We will argue that the net addition

typically is negative when restarted at non-monotonicity.

Thus, to restart the algorithm at non-monotonicity, typically

improves constant in the convergence rate bound of the

algorithm.

We evaluate the performance of the proposed restart

scheme by applying it to one randomly generated lasso

optimization problem and one model predictive control op-

timization problem, where the pitch angle of an aircraft is

controlled. The numerical examples show that by restarting

the algorithm at non-monotonicity, the convergence of the

algorithm is often improved.

A. Notation

We denote by R, Rn, and R
m×n the sets of real numbers,

real column vectors of size n, and real matrices of size

m × n respectively. Further, R = R ∪ {∞} denotes the

extended real line. Moreover, S
n (Sn

++) [Sn
+] denote the

sets of (positive [semi] definite) symmetric matrices of size

n × n. We consider Euclidean spaces with inner product

〈x, y〉 = xT y and norm ‖x‖2 =
√
xTx. We also consider

Euclidean spaces with scaled norms, i.e. spaces with inner

product 〈x, y〉 = xT y and scaled norm ‖x‖L =
√
xTLx.

These spaces are denoted by EL. Finally, we define strong

convexity and smoothness.

Definition 1: A function f : R
n → R is β-strongly

convex w.r.t. EL if

f(x) ≥ f(y) + 〈u, x− y〉+ β
2
‖x− y‖2L

holds for all x, y ∈ R
n and u ∈ ∂f(y).

Definition 2: A function f : R
n → R is β-smooth w.r.t.

EL if it is convex, differentiable and if L ∈ S
n
++ is such that

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ β
2
‖x− y‖2L

holds for all x, y ∈ R
n.
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II. FAST GRADIENT METHOD WITH RESTART

Fast proximal gradient methods can be applied to solve

problems of the form

minimize f(x) + g(x) (1)

where x ∈ R
n, and f : R

n → R and g : R
n → R

satisfy the following assumptions:

Assumption 1:

a) The function f : R
n → R is 1-smooth w.r.t. EL.

b) The (extended-valued) function g : R
n → R is proper,

closed and convex.

Fast proximal gradient methods can be applied on different

spaces. Here, we consider applying fast gradient methods on

the space EL. The standard Euclidean fast proximal gradient

method is obtained by letting L = βI , where β is a Lipschitz

constant to ∇f . The fast gradient method on EL is stated

below:

Algorithm 1: Fast proximal gradient method

Set: x0 = x−1 ∈ domg, θ0 = θ−1 = 1
For k ≥ 0
⌊

yk = xk + θk(θ
−1

k−1
− 1)(xk − xk−1)

xk+1 = proxg
(

yk − L−1∇f(yk)
)

where on the space EL, the prox operator is defined as:

proxg(y) := argmin
x

{

g(x) + 1

2
‖x− y‖2L

}

In the first step of Algorithm 1, an auxiliary variable yk

is computed that is a specific linear combination, described

by the θk-sequence, of the two previous xk iterates. To

guarantee fast convergence of the algorithm, the θk:s must

satisfy (see [16])

1− θk+1

θ2k+1

≤ 1

θ2k
. (2)

This is, e.g., satisfied for θk = 2

k+2
. Another option that

decays slightly faster towards zero than θk = 2

k+2
, is

obtained by solving (2) with equality:

θk+1 =

√

θ4k + 4θ2k − θ2k
2

<
2

k + 3
(3)

see [16]. A straight-forward generalization of [16, Corollary

2], gives that if Assumption 1 holds, then Algorithm 1 with

θk satisfying (3) converges with the rate

fg(x
k)− fg(x

⋆) ≤
2
∥

∥x⋆ − x0
∥

∥

2

L

(k + 2)2
(4)

where fg := f + g and x⋆ is an optimal solution to (1).

In this paper, we will analyze the convergence behavior of

the following generalized fast gradient method with restart.

In this algorithm, which is inspired by the adaptive restart

method in [12], the algorithm iterates are restarted when-

ever a certain restart condition holds. The objective of the

restart scheme is to improve the performance compared to

Algorithm 1 by avoiding a non-monotone behavior.

Algorithm 2:

Generalized fast proximal gradient method w/ restart

Set: x0 = x−1 ∈ R
n, θ0 = θ−1 = 1

For k ≥ 0








yk = xk + θk(θ
−1

k−1
− 1)(xk − xk−1)

xk+1 = proxg
(

yk − L−1∇f(yk)
)

if restart test holds
⌊

yk = xk

xk+1 = proxg
(

yk − L−1∇f(yk)
)

In the convergence rate analysis of Algorithm 2, we do not

rely on a specific restart test, we only assume that the restart

test is satisfied for a finite number of iterates. A discussion on

different restart tests can be found in Section III. Before we

state the convergence rate result of Algorithm 2, we introduce

the following function

ℓ(y, x) = f(y) + 〈∇f(y), x− y〉+ g(x)

and note that the xk+1-update can be written as

xk+1 = proxg
(

yk − L−1∇f(yk)
)

= argmin
x

{

g(x) + 〈∇f(yk), x〉+ 1

2
‖x− yk‖2L

}

= argmin
x

{

ℓ(yk+1, x) + 1

2
‖x− yk‖2L

}

. (5)

In the proof of the convergence rate result, we also need the

following lemma. A general version of this lemma is stated

in [16, Property 1], but here, a different proof is provided.

Lemma 1: Suppose that ψ : R
n → R is closed, proper,

and convex, that L ∈ S
n
++, and that

x+ = argmin
x

{ψ(x) + 1

2
‖x− z‖2L}. (6)

Then for all x ∈ domψ:

ψ(x) + 1

2
‖x− z‖2L ≥ ψ(x+) + 1

2
‖x+ − z‖2L + 1

2
‖x+ − x‖2L.

Proof. Denote by hz(x) := ψ(x) + 1

2
‖x − z‖2L. Then 1-

strong convexity of hz w.r.t EL implies that the following

holds for all u ∈ ∂hz(x
+):

hz(x) ≥ hz(x
+) + 〈u, x− x+〉+ 1

2
‖x+ − x‖2L

≥ hz(x
+) + 1

2
‖x+ − x‖2L

where the second inequality holds due to first order optimal-

ity conditions of (6): 〈u, x− x+〉 ≥ 0 for all x ∈ domhz =
domψ and u ∈ ∂hz(x

+). Recalling the definition of hz gives

the result. �

Now, we are ready to state the convergence rate result, the

proof of which is inspired by the convergence rate result in

[16] for fast gradient method applied on Hilbert spaces.

Theorem 1: Suppose that Assumption 1 holds and that the

restart test is satisfied at iterations k = k1, . . . , kp. Then
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Algorithm 2 with θk satisfying (3), converges with the rate

fg(x
k+1)− fg(x

⋆) ≤ 2

(k + 2)2

(

‖x⋆ − x0‖2L

+
∑

ki≤k

{

‖x⋆ − xki‖2L − ‖x⋆ − zki‖2L
}

)

(7)

where zk = xk−1 + θ−1

k−1
(xk − xk−1).

Proof. Following the proof of [16, Proposition 2], we let

y = (1− θk)x
k + θkx and conclude for k 6= ki that

fg(x
k+1) ≤ ℓ(yk, xk+1) + 1

2
‖yk − xk+1‖2L

≤ ℓ(yk, y) + 1

2
‖yk − y‖2L − 1

2
‖xk+1 − y‖2L

= ℓ(yk, y) + 1

2
‖(1− θk)x

k + θkx− yk‖2L
− 1

2
‖(1− θk)x

k + θkx− xk+1‖2L
= ℓ(yk, y) + θ2k

1

2
‖x+ θ−1

k (xk − yk)− xk‖2L
− θ2k

1

2
‖x+ θ−1

k (xk − xk+1)− xk‖2L
= ℓ(yk, y) + θ2k

1

2
‖x− zk‖2L − θ2k

1

2
‖x− zk+1‖2L

= ℓ(yk, (1− θk)x
k + θkx) + θ2k

1

2
‖x− zk‖2L

− θ2k
1

2
‖x− zk+1‖2L

≤ (1− θk)ℓ(y
k, xk) + θkℓ(y

k, x) + θ2k
1

2
‖x− zk‖2L

− θ2k
1

2
‖x− zk+1‖2L

≤ (1− θk)fg(x
k) + θkfg(x) + θ2k

1

2
‖x− zk‖2L

− θ2k
1

2
‖x− zk+1‖2L (8)

where the first inequality holds since f is 1-smooth w.r.t. EL,

the second equality is due to (5) and Lemma 1, the first and

second equalities insert y and rearrange, the third equality

inserts yk and identifies zk, the fourth equality inserts y, the

third inequality uses convexity of ℓ(·, x) and that θk ∈ (0, 1],
and the last inequality uses convexity of f which implies that

f(x) ≥ f(y) + 〈∇f(y), x− y〉, and that θk ∈ (0, 1].
For k = ki, we have yk = xk, which implies that in the

third equality in (8), we get

‖x+ θ−1

k (xk − yk)− xk‖2L = ‖x− xk‖2L (9)

instead of ‖x − zk‖2L. Performing the computations in (8)

again, using (9) in the third equality, gives for k = ki:

fg(x
k+1) ≤ (1− θk)fg(x

k) + θkfg(x)

+ θ2k
1

2
‖x− xk‖2L − θ2k

1

2
‖x− zk+1‖2L. (10)

Letting x = x⋆, dividing (8) by θ2k, and rearranging the terms

give

1

θ2
k

(fg(x
k+1)− fg(x

⋆)) ≤ 1−θk
θ2
k

(fg(x
k)− fg(x

⋆)) (11)

+ 1

2
‖x⋆ − zk‖2L − 1

2
‖x⋆ − zk+1‖2L

for k 6= ki. Similarly, letting x = x⋆, dividing (10) by θ2k,

and rearranging the terms give

1

θ2
k

(fg(x
k+1)− fg(x

⋆)) ≤ 1−θk
θ2
k

(fg(x
k)− fg(x

⋆)) (12)

+ 1

2
‖x⋆ − xk‖2L − 1

2
‖x⋆ − zk+1‖2L

for k = ki. Further, due to (2) and (3) we have 1

θ2
k

=
1−θk+1

θ2
k+1

, which enables telescope summation of (11) and (12).

Summing from k = ki to ki + 1 ≤ k ≤ ki+1 − 1 for any

i = 0, . . . , p (where we define k0 = 0 and kp+1 = ∞), gives

1

θ2
k

(fg(x
k+1)−fg(x⋆)) ≤ 1−θki

θ2
ki

(fg(x
ki)− fg(x

⋆))

+ 1

2
‖x⋆ − xki‖2L − 1

2
‖x⋆ − zk+1‖2L (13)

and especially, if summing from ki to ki+1 − 1, we get

1

θ2
ki+1−1

(fg(x
ki+1)− fg(x

⋆)) ≤ 1−θki

θ2
ki

(fg(x
ki)− fg(x

⋆))

+ 1

2
‖x⋆ − xki‖2L − 1

2
‖x⋆ − zki+1‖2L. (14)

Again performing telescope summation of (13) and (14)

gives for any k ≥ 0 that

fg(x
k+1)− fg(x

⋆)

≤ θ2k
2

(

‖x− x0‖2L +
∑

ki≤k

{

‖x⋆ − xki‖2L − ‖x⋆ − zki‖2L
}

)

≤ 2

(k + 2)2

(

‖x⋆ − x0‖2L

+
∑

ki≤k

{

‖x⋆ − xki‖2L − ‖x⋆ − zki‖2L
}

)

since θ0 = 1, z0 = x0, and θk ≤ 2

k+2
(as noted in (3)). This

concludes the proof. �

Remark 1: If Algorithm 2 never enters the if-clause, the

sum in (7) is zero, and the theoretical convergence rate

for Algorithm 2 reduces to the convergence rate (4) for

Algorithm 1, which is Algorithm 2 without restart.

The convergence result in Theorem 1 suggests how to

improve the performance of fast gradient methods using a

restart scheme; if the algorithm is restarted for iterates ki that

satisfy ‖x⋆ − xki‖2L − ‖x⋆ − zki‖2L < 0 then the constant in

the theoretical convergence rate expression of Algorithm 2 is

improved. However, this test cannot be used in practice since

it involves the optimal solution x⋆. In the following section,

we will analyze typical situations when ‖x⋆−xki‖2L−‖x⋆−
zki‖2L < 0. This analysis will guide us in developing tests

that typically imply ‖x⋆−xki‖2L−‖x⋆− zki‖2L < 0. Before

we proceed to discuss possible restart tests, we conclude this

section with a remark on similarities and differences between

Algorithm 2 and other similar algorithms from the literature.

Remark 2: As mentioned, Algorithm 2 bears similarities

to the algorithm in [12]. The main difference is that after

a restart test holds in [12], θk = θk−1 = 1, while in our

algorithm, the θk is unaffected. This difference makes it

possible to prove a O(1/k2) convergence rate of Algorithm 2

when applied to composite problems with one smooth and

one non-smooth component. Such results are not available

for the algorithm in [12]. Further, numerical experiments

suggest that, when using the same restart rule, Algorithm 2

perform slightly better in practice than the algorithm in [12].

Algorithm 2 also has similarities with the monotone fast

gradient method in [1]. In [1], the yk-update after non-

monotonicity is constructed such the third equality in (8)
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holds. This implies that the sum in the convergence rate result

of Theorem 1 disappears. Thus, the monotone fast gradient

method in [1] has the same theoretical convergence rate (4)

as the non-monotone version. Numerical experiments also

verify that the monotone algorithm in [1] often performs

similarly to its non-monotone counterpart, and that it is often

outperformed by Algorithm 2 if medium to high accuracy is

desired.

III. RESTART CONDITIONS

In this section, we present some tests that can be used

for restarting Algorithm 2. These tests should ideally imply

that ‖x⋆ − xk‖2L < ‖x⋆ − zk‖2L, which, if holds, improves

the constant in the convergence rate expression of Algo-

rithm 2, see Theorem 1. To gain some intuition on when

‖x⋆ − xk‖2L < ‖x⋆ − zk‖2L might hold, Figure 1 shows

the {xk} and {zk}-sequences when solving a 2-d QP using

Algorithm 1 (i.e. the proximal fast gradient method without

restart) with L = βI , and Figure 2 shows the corresponding

function value progress. In Figure 2, we see an almost non-

monotone behavior starting at around iteration 11 and a non-

monotone behaviour starting at iteration 49. These iteration

numbers are also marked in Figure 1. We see around iteration

11, that ‖z11 − x⋆‖2 ≈ ‖x11 − x⋆‖2 (note that the level

curves in Figure 1 are level curves for the function value,

not for the Euclidean distance, and note that we compare in

Euclidean distances since L = βI). However, for iteration 49

we clearly have ‖z49−x⋆‖2 > ‖x49−x⋆‖2. This implies that

restarting the algorithm at iteration 49, would improve the

theoretical convergence rate. This simple example suggests

that ‖zk − x⋆‖2 is greater than ‖xk − x⋆‖2 for k where

non-monotonicity is detected. Also, the more non-monotone

the behavior, the greater the difference. Although this is

only a simple unconstrained 2-dimensional example, we

have observed that the same pattern emerges also in higher

dimensions and on problems with an additional non-smooth

term.

Figures 1 and 2 also indicate that the non-monotone

behavior of f(xk) and the large over-shoot for the zk

iterates, occur when the xk trajectory is changing its principal

direction. This clearly happens at around iteration 11, in

Figure 1, but also at iteration 49 when the xk sequence starts

to decelerate to get back towards the optimal solution. Here,

the momentum term pushes the xk trajectory past the optimal

solution, and a restart of the momentum at this point could

have great positive impact on the convergence.

The preceding discussion suggests that a good detector

for ‖x⋆−xk‖2L < ‖x⋆−zk‖2L is to detect non-monotonicity.

Sometimes, for instance in duality based optimization, func-

tion evaluations are expensive, and other methods might be

better suited for the restart test. Next, we propose a computa-

tionally inexpensive method that implies non-monotonicity.

The method relies on a generalization of a result in [2,

Lemma 2.3], namely:

Lemma 2: Suppose that Assumption 1 holds. Then for any

−0.5 0 0.5 1 1.5
0.5

1

1.5

2

2.5

3

3.5

 

 
xk

zk

iter. # 11
iter. # 49

Fig. 1. x
k and z

k-trajectories for a 2-d QP without constraints.
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Fig. 2. Function value progress for the x
k trajectory in Figure 1.

x, y ∈ domg

fg(x)− fg(x̄) ≥
1

2
‖x̄− y‖2L + 〈y − x, L(x̄− y)〉 (15)

where x̄ = proxg
(

y − L−1∇f(y)
)

.

The case where L is restricted to be a multiple of the iden-

tity matrix, i.e. the Euclidean fast proximal gradient method

case, is considered in [2, Lemma 2.3]. The generalization to

arbitrary L ∈ S
n
++ is straight-forward and omitted here for

space considerations.

Letting x = xk+1 and y = yk−1 in Lemma 2, where xk

and yk are generated by Algorithm 2, gives

fg(x
k+1)− fg(x

k)

≥ 1

2
‖xk − yk−1‖2L + 〈yk−1 − xk+1, L(xk − yk−1)〉

= 〈L(yk−1 − xk), xk+1 − 1

2
(xk + yk−1)〉

since xk = proxg
(

yk−1 − L−1∇f(yk−1)
)

. Thus

〈L(yk−1 − xk), xk+1 − 1

2
(xk + yk−1)〉 > 0

implies that f(xk+1) > f(xk). This test cannot be

used at the first iterate after a restart, since then xk 6=
proxg

(

yk−1 − L−1∇f(yk−1)
)

, which is an assumption for

Lemma 2 to hold.

Besides the exact monotonicity test, a gradient based test

is also proposed in [12], namely

〈L(yk − xk+1), xk+1 − xk〉 > 0.

This is referred to as a gradient-based test since L(yk −
xk+1) is the gradient mapping (which is a generalization of

the gradient) for the xk+1-update. It is in [12] noted that
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this approach can have advantageous numerical properties

compared to the exact non-monotonicity test. Further, for

problems where function evaluations are expensive, it is often

a computationally cheaper method.

To summarize, we will use three tests to detect when it

might be beneficial to restart the algorithm. The tests are:

T1: Exact non-monotonicity test:

f(xk+1)− f(xk) > 0
T2: Gradient-mapping based test:

〈L(yk − xk+1), xk+1 − xk〉 > 0
T3: Non-monotonicity implying test:

〈L(yk−1 − xk), xk+1 − 1

2
(xk + yk−1)〉 > 0

We will refer to these tests as T1, T2, and T3 respectively.

IV. NUMERICAL EXAMPLES

In this section, we evaluate the proposed restart scheme for

fast gradient methods by applying it to optimization problems

arising in compressed sensing and model predictive control.

A. Compressed sensing

In this section, Algorithm 2 is evaluated by applying it to

the following lasso problem

minimize 1

2
‖Ax− b‖22 + γ‖x‖1 (16)

where A ∈ R
100×1000 is a sparse matrix with approximate

density of 0.07 and each non-zero element is drawn from a

Gaussian distribution with zero mean and unit variance, b ∈
R

100 has all elements drawn from a Gaussian distribution

with zero mean and unit variance, x ∈ R
1000 is the decision

variable and γ = 1. Problem (16) satisfies Assumption 1 by

letting f(x) := 1

2
‖Ax− b‖22 and g(x) := γ‖x‖1.

In Figure 3, Algorithm 2 is compared to the restart

algorithm in [12], to MFISTA in [1] which is a monotone

version of FISTA [2], and to Algorithm 1 which is a fast

gradient method without restart. Algorithm 2 and the restart

algorithm in [12] both use the exact function value test, i.e.

test T1. Figure 3 reveals that MFISTA performs similarly

to Algorithm 1 without restart, but exhibits a monotone

behavior. Figure 3 also shows that Algorithm 2 and the restart

algorithm in [12] perform much better than Algorithm 1 and

MFISTA, at least in the medium to high accuracy range. The

figure also indicates that the performance of Algorithm 2 is

very similar to the performance of the restart algorithm in

[12].

In Figure 4, we compare the restart tests proposed in

Section III. The figure reveals that the exact function value

test, T1, and the gradient-mapping based test, T2, introduced

in [12], perform better than the test that implies non-

monotone behavior, T3. Obviously, the non-monotonicity

implying test, T3, need not directly indicate when non-

monotonicity occurs. This implies that the algorithm is

restarted more often using the exact function value test, T1,

than using the non-monotonicity implying test, T3. We have

also observed that the gradient-mapping test, T2, tend to be

satisfied slightly more often than the exact function value

test, T1. This implies that Algorithm 2 with the gradient-

mapping test, T2, is typically restarted most often, then
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Fig. 3. Function value progress for Algorithm 2, Algorithm 1, and the
algorithms in [12], [1]. Algorithm 2 and the algorithm in [12] use the exact
monotonicity restart test T1.
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Fig. 4. Function value progress for Algorithm 1, and Algorithm 2 with
restart tests T1, T2, and T3.

Algorithm 2 with the exact function value test, T1, and

least often is Algorithm 2 with non-monotonicity implying

test, T3, restarted. Often, the monotonicity test, T1, performs

well. However, sometimes it is beneficial to restart slightly

more often, i.e. to use T2, while sometimes it beneficial to

restart slightly more seldom, i.e. to use T3. However, the

most typical scenario we have encountered is depicted in

Figure 4.

B. Model predictive control

We further evaluate Algorithm 2 by using it in model

predictive control of the AFTI-16 aircraft model in [6], [3].

As in [3], the continuous time model from [6] is sampled

using zero-order hold every 0.05 s. The system has four

states x = (x1, x2, x3, x4), two outputs y = (y1, y2), two

inputs u = (u1, u2), and obeys the following dynamics

x+ =

[

0.999 −3.008 −0.113 −1.608
−0.000 0.986 0.048 0.000
0.000 2.083 1.009 −0.000
0.000 0.053 0.050 1.000

]

x+

[

−0.080 −0.635
−0.029 −0.014
−0.868 −0.092
−0.022 −0.002

]

u,

y = [ 0 1 0 0
0 0 0 1 ]x

where x+ denotes the state in the next time step. The

dynamics, input, and output matrices are denoted by Φ, Γ,

C respectively, i.e. we have x+ = Φx + Γu, y = Cx. The
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TABLE I

COMPARISON BETWEEN DIFFERENT MONOTONICITY SCHEMES.

exec time (ms) nbr iters
Alg. Test avg. max avg. max

Alg. 1 - 1.9 9.7 31.9 175
Alg. 2 T1 2.7 9.1 19.6 69
[12] T1 3.1 11.4 22.2 84
Alg. 2 T2 1.7 5.7 19.9 72
[12] T2 1.9 6.4 22.3 82
Alg. 2 T3 1.9 6.3 21.1 74
[12] T3 2.1 6.9 23.3 80
MFISTA, [1] - 4.3 20.0 31.3 144

system is unstable, the magnitude of the largest eigenvalue

of the dynamics matrix is 1.313. The outputs are the attack

and pitch angles, while the inputs are the elevator and

flaperon angles. The inputs are physically constrained to

satisfy |ui| ≤ 25◦, i = 1, 2. The outputs are soft constrained

to satisfy −s1 − 0.5 ≤ y1 ≤ 0.5 + s2 and −s3 − 100 ≤
y2 ≤ 100 + s4 respectively, where s = (s1, s2, s3, s4) ≥ 0
are slack variables. The cost in each time step is

ℓ(x, u, s) =
1

2

(

(x− xr)
TQ(x− xr) + uTRu+ sTSs

)

where Q = CTQyC + Qx, where Qy = 102I and Qx =
diag(10−4, 0, 10−3, 0), xr is such that yr = Cxr where yr
is the output reference that can vary in each step, R = 10−2I ,

and S = 106I . This gives condition number 1010 of the full

cost matrix. Further, the terminal cost is Q, and the control

and prediction horizon is N = 10. The numerical data is

obtained by following a reference trajectory on the output.

The objective is to change the pitch angle from 0◦ to 10◦ and

then back to 0◦ while the angle of attack satisfies the output

constraints −0.5◦ ≤ y1 ≤ 0.5◦. The constraints on the angle

of attack limits the rate on how fast the pitch angle can be

changed.

We use the same splitting as in [15], [13] (which, among

other splittings, is also used in [4]) to pose the optimal

control problem for the pitch control. The dual to this

optimization problem is preconditioned using the method

in [5] and solved using Algorithm 1, Algorithm 2, and the

algorithms in [12] and [1]. See [4] for details on how the

problem is formulated. To create an easily transferable and

fair termination criterion between algorithms, the optimal

solution to each optimization problem x⋆ is computed to high

accuracy using an interior point solver. Then, the termination

criterion is ‖xk − x⋆‖2/‖x⋆‖2 ≤ 0.001, where xk here

denotes the primal iterate in the algorithm.

Table I reveals that MFISTA requires fewer iterations than

Algorithm 1, but that the execution time is worse because of

the function evaluations needed for the monotonicity tests.

However, both these algorithms perform worse than the

proposed Algorithm 2 and the algorithm in [12]. Table I

also shows that for all tests (T1, T2, T3) Algorithm 2

performs very similarly to the algorithm in [12]. It further

says that in terms of iteration count, the tests T1, T2, and

T3 perform similarly, with a slight bias towards T1, then

T2. However, the execution time of T1, which is the exact

function evaluation test, is much higher. This is due to the

high computational cost associated with computing the dual

function value, since it is implicitly defined as the optimal

value of an optimization problem.

V. CONCLUSIONS

We have proposed a restart method for fast gradient meth-

ods and proven a O(1/k2) convergence rate for composite

optimization problems with one smooth and one non-smooth

term. The proposed method is similar to the one in [12],

but differs in a key point that enables for the O(1/k2)
convergence rate to be proven. Two numerical examples are

provided that demonstrate the efficiency of the proposed

method when medium to high accuracy of the solution is

desired.
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