
 Digital Object Identifier 10.1109/MCS.2011.940571

R
eceding horizon control (RHC), also known as model
predictive control (MPC), [1]–[5] is a feedback con-
trol technique that became popular in the 1980s.
With RHC, an optimization problem is solved
at each time step to determine a

plan of action over a fi xed time horizon.
The fi rst input from this plan is applied to
the system. At the next time step we repeat
the planning process, solving a new opti-
mization problem with the time horizon
shifted one step forward. The optimization
problem takes into account estimates of future quantities
based on available information at each time step. The con-
trol policy involves feedback since real-time measurements
are used to determine the control input.

RHC is a nonlinear control policy that handles input
constraints, output constraints, and various control objec-
tives. Using RHC, a system can be controlled near its physi-
cal limits, often obtaining performance superior to linear

control [5]–[7]. RHC applications include a
wide range of practical settings, such as
industrial and chemical process control [8],
supply chain management [9], stochastic
control in economics and finance [10], rev-
enue management [11], control of hybrid
vehicles [12], automotive applications [13]–

[15], and aerospace applications [16].
Although RHC is used for a wide range of applications,

it does not always outperform traditional control meth-
ods. For some problems, a skilled designer can achieve
similar performance by tuning a conventional linear con-
troller, such as a proportional-integral-derivative (PID)
controller modified to handle constraints, for example, by

52 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2011 1066-033X/11/$26.00©2011IEEE

AUTOMATIC GENERATION
OF HIGH-SPEED SOLVERS

JACOB MATTINGLEY,
YANG WANG, and
STEPHEN BOYD

 Date of publication: 16 May 2011

JUNE 2011 « IEEE CONTROL SYSTEMS MAGAZINE 53

saturating control inputs that are outside their limits.
These conventional methods are tractable for single-input,
single-output systems but become cumbersome for sys-
tems with multiple inputs and outputs, especially when
taking into account complex objectives, strongly nonlin-
ear dynamics, and constraints.

In RHC, the designer specifies the objective and con-
straints as part of an optimization problem, whereas in a
conventional design process, the designer adjusts control-
ler gains and coefficients to indirectly handle constraints,
often by trial and error. While sophisticated RHC tuning
procedures can be used to obtain the best performance
[5], [17], for many problems little tuning is required since
parameters are suggested directly by the application.
RHC can also explicitly incorporate additional control
information, such as future references and estimates of
future disturbances.

One requirement of RHC is that an optimization prob-
lem must be solved at each time step. Using conventional
numerical optimization techniques, the time taken to solve
this problem is often much longer than the time taken to
compute the control action for a linear controller. Applica-
tions of RHC are thus often limited to systems with sample
times measured in seconds, minutes, or hours.

Various techniques can be used to speed up the solu-
tion of the optimization problems that arise in RHC.
When the numbers of states, inputs, and constraints are
small, one approach is explicit MPC [18], [19], where a
closed-form expression for the solution of the optimiza-
tion problem, as a function of the current state, is com-
puted offline and stored. The online algorithm performs a
lookup table search, followed by control law evaluation,
which can be computed quickly. Another method, appli-
cable to a range of problem sizes, is to custom code online
optimization solvers that exploit the problem structure
that arises in RHC applications [20]–[23]. Although these
custom solvers can yield computation times that are sev-
eral orders of magnitude faster than generic solvers, their
development requires time-consuming hand coding as
well as significant expertise in optimization algorithms
and numerical computation.

In this article, we describe advances that facilitate the
development of custom RHC solvers. By combining a high-
level specification language for optimization and code-gen-
eration tools, a user of RHC can specify and generate fast,
reliable custom code. Since the user does not need expertise
in optimization, this tool makes RHC accessible to more
practitioners. Combined with automatic code generation,
RHC offers a framework for the rapid design of sophisti-
cated controllers for a wide range of problems, including
those that require kilohertz sample rates.

In the remainder of the article, we give a high-level
overview of RHC, briefly explain code generation for
RHC using the software package CVXGEN [24], and
illustrate the ideas with three examples. The examples

are chosen to show the variety of problems that can be
addressed and are simplified for pedagogical reasons.
See [25] for a more detailed account of convex optimiza-
tion, [26] for more on parser-solvers and convex pro-
gramming, and [27] and [28] for a discussion of code
generation for convex optimization.

We restrict attention to systems with linear dynamics,
convex objective functions, and convex constraints for
several reasons. First, many systems can be reasonably
modeled in this restricted form. Second, linearization
techniques can be used to extend these methods to sys-
tems with nonlinear dynamics. For nonlinear control, the
system is linearized around predicted state and input tra-
jectories, and a sequence of linear RHC problems is solved
to produce a plan of action [29]. This strategy, known as
sequential convex optimization [30], is implemented in
the software package NEWCON [31]. An example of
automatic code generation applied to nonlinear RHC can
be found in [32], while application to a two-link robot arm
is discussed in [33]. The toolbox ACADO [34] provides a
software package for solving RHC problems with nonlin-
ear dynamics.

FORMULATING RHC PROBLEMS

System Dynamics and Control
We consider the discrete-time linear dynamical system

xt115Atxt1 Btut1 ct,

where xt [Rn is the system state, ut [Rm is the control
input, and ct [Rn is an exogenous input. The matrices
At [Rn3n and Bt [Rn3m are the dynamics and input
matrices, respectively. The subscripts on At, Bt, and ct indi-
cate that these parameters may change with time.

The state and input must satisfy constraints, which are
expressed abstractly as

1xt, ut 2 [Ct,

where Ct # Rn 3 Rm is the constraint set at time t. The
instantaneous cost, which is denoted by ,t 1xt, ut 2 , depends
on both the current state and control action. The quality of
control is judged by the average cost

J5 lim sup
NS`

1
Na

N21

t50
,t 1xt, ut 2 .

If ,t 1xt, ut 2 is a random variable, we replace ,t 1xt, ut 2 with its
expected value E,t 1xt, ut 2 .

The control input ut is determined using the informa-
tion available to the controller at time t, including estimates
of quantities that are not known, based on information that
is known. These estimates are denoted by

Ât|t, B̂t|t, ĉt|t, Ĉt|t, ,̂t|t, x̂t|t,

©
 IN

G
R

A
M

 P
U

B
LI

S
H

IN
G

54 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2011

where the notation ẑt|t denotes an estimate of zt based on
information available at time t, where t $ t. Information
available at time t includes conventional information in a
control system, such as sensor measurements, as well as
known quantities and functions. The available information
may also include additional information that is not typi-
cally used in a traditional control system, such as historical
usage patterns, weather, price trends, and expert forecasts.

These estimates can be obtained in various ways. In the
ideal case, we know the quantity being estimated, in which
case we replace the estimates with the known value. For
example, if the controller has access to perfect measure-
ments of the current state xt, we take x̂t|t5 xt. A traditional
method for obtaining estimates is from a statistical model of
the uncertain quantities, in which case the estimates are
conditional expectations or other statistical estimates, based
on the information available at time t. For example, the
additive terms ct are often modeled as independent zero-
mean random variables, with the estimate ĉt|t5 Ect5 0.

However, the estimates need not be derived from statis-
tical models; for example, future prices can be obtained
from a futures market or from analysts who predict trends.
Another example arises when the system to be controlled is
nonlinear. In this case, Ât|t, B̂t|t, and ĉt|t are a linearization
of the nonlinear dynamics along a trajectory.

The controller design problem is to find a control policy
that chooses the input ut as a function of the available infor-
mation at time t, so that the constraints are satisfied and the
average cost J is made small.

Receding Horizon Control
The RHC procedure works as follows. At time t, we con-
sider a time interval extending T steps into the future,
t, t1 1, c, t1 T. We then carry out the following steps:

1) Form a predictive model. Replace all uncertain quanti-
ties over the time interval with their current esti-
mates using information available at time t.

2) Optimize. The RHC optimization problem takes the
form

minimize
1

T1 1
g t1T
t5t,

^
t|t 1 x̂t,ût 2

subject to x̂t115 Ât|tx̂t1B̂t|tût 1 ĉt|t, t 5 t, c, t1T
1 x̂t, ût 2 [Ĉt|t, t 5 t, c, t1T
x̂t5 x̂t|t, (1)

with variables x̂t, c, x̂t1T11 and ût, c, ût1T. The
objective in problem (1) is a finite-horizon approxi-
mation of the infinite-horizon cost function J. In prob-
lem (1), we seek to minimize the estimated objective
over the time interval t, t1 1, c, t1 T, subject to the
estimated dynamics and constraints. The parameters
in this RHC optimization problem are the estimates

 Ât|t, B̂t|t, ĉt|t, Ĉt|t, ,̂t|t,

for t 5 t, c, t1 T, and the current state estimate
x̂t|t. The optimal input trajectory of the RHC optimi-
zation problem (1), ût

w, c, ût1T
w , is a plan of action for

the next T steps.
3) Execute. We then choose ut5 ût

w to be the RHC input.
At the next time step, the process is repeated, with
updated estimates of the current state and future
quantities.

We assume that Ĉt and ,̂t are convex, which means that
the RHC problem (1) is a convex optimization problem and
can be solved using convex optimization tools [25]. Prob-
lems with nonconvex objectives and constraints can often
be handled using sequential convex optimization, where a
sequence of convex problems is solved to find local solu-
tions of the nonconvex problem [30].

In this article, we adopt certainty-equivalent RHC, where
the uncertain quantities are replaced with estimates.
Uncertainty can be dealt with in other ways, for example,
by formulating a robust or stochastic RHC optimization
problem [5], [7], [35]–[38]. In certainty-equivalent RHC, it
is standard practice to add a final state constraint or a final
state cost to the RHC problem. In the former case, we add
an equality constraint of the form xT115 xfinal, or a final
constraint set condition xT11 [Cfinal. In the latter case, we
add V 1xT11 2 to the objective, where V is a cost function for
the final state. For some problems, stability guarantees can
be obtained by adding specific terminal costs and con-
straints [1], [3], [5], [7], [39], [40].

Terminal costs and constraints also allow simpler, shorter-
horizon controllers to approximate the behavior of controllers
with longer horizons. Indeed, we can often obtain near-opti-
mal control performance with horizon T5 0 by choosing an
appropriate terminal cost function [41]. In this case the control
policy, which is also called a control-Lyapunov policy or
approximate dynamic programming policy, can be evaluated
on time scales measured in tens of microseconds, allowing
control at rates exceeding tens of kilohertz [42].

Combined with automatic code generation, RHC offers a framework

for the rapid design of sophisticated controllers for a wide range of problems,

including those that require kilohertz sample rates.

JUNE 2011 « IEEE CONTROL SYSTEMS MAGAZINE 55

For some applications, constraints on the state variables
can lead to an infeasible RHC optimization problem. This
problem can occur if an unexpected disturbance affects the
system, in which case there may not exist any control policy
that keeps the system within the constraints. Infeasibility can
also occur if the estimated system parameters are inaccurate
so that the RHC optimization problem does not reflect the
true system behavior. There are various ways to deal with
infeasibility. One strategy is to apply the planned control
input from the previous time step. Another method is to
allow constraint violations but penalize them in the objective
function. These constraints are referred to as soft constraints
as opposed to the original hard constraints, which cannot be
violated [5], [43]. Typically, the constraints that are softened
are constraints on the state variables for which some viola-
tion may be acceptable. Input constraints, such as actuator
limits and trading budgets, usually cannot be violated. Vari-
ous methods exist for deciding which constraints to relax,
based on importance rankings [5]. Although we cannot guar-
antee that these methods recover feasibility in future time
steps, they do allow the controller to compute an acceptable
control input when infeasibilities occur.

Except in special cases, the RHC policy is not an optimal
policy. In RHC we replace the infinite horizon average cost
J with a finite horizon approximation and uncertain quanti-
ties with their estimates. We do not solve the controller
design problem, which is an infinite-dimensional noncon-
vex problem, and is usually intractable. Thus, RHC may not
achieve the minimum possible average cost among policies
that respect the constraints. Instead, RHC is a sophisticated
heuristic, as demonstrated on various applications [8]–[16].

DESIGNING AND IMPLEMENTING
RHC CONTROLLERS

Designing an RHC Controller
To specify an RHC policy, we must describe three compo-
nents: a method for estimating uncertain quantities from
measurements, including, in particular, the system model;
the horizon T; and the terminal costs and constraints. For a
given choice of these components, the closed-loop system is
simulated offline to assess the performance, and, if needed,
the design choices are modified. Simulation of the RHC
system requires solving an optimization problem at each
time step.

Various software tools [44]–[46] are available for formu-
lating and solving convex problems. These parser-solvers take
a high-level specification and perform the necessary trans-
formations for solution by a generic convex optimization
solver [47]–[49]. Parser-solvers are convenient in design iter-
ation. The user is able to change the objective or constraints
in the RHC optimization problem and immediately see the
effects in simulation. Parser-solvers are convenient but may
lead to slow solve times since each problem instance is
parsed and transformed separately. During offline simula-

tion, however, solver speed is not a critical issue; if necessary,
simulations can run slower than the required sample rate.

Implementing an RHC Controller
The RHC solver implementation must, of course, run faster
than the sample rate. If the solver speed is much faster than
the sample rate, we can use a less powerful processor or
run the optimization on a processor performing multiple
tasks. For applications with a long sample time, measured
in seconds or minutes, a parser-solver might be fast enough.
However, in many applications a faster solver is required.
Even when a parser-solver is fast enough for real-time
implementation, we may prefer a simpler solver, involving
few or no external libraries, simpler memory management,
and a known maximum execution time.

The traditional route to develop such a solver is custom
code development, either using a toolbox or from scratch
[20], [50]. This process can be labor intensive. In addition, if
the problem statement changes, for example, by changing
the objective term, all code modifications must be made
laboriously, by hand. Small changes in the objective and
constraints may significantly change the sparsity pattern of
the KKT system, which is a system of linear equations that
is solved at every iteration in an optimization algorithm. As
a result, minor reformulations may lead to dramatic
changes in the code. After that, testing and correcting the
code must be done all over again.

Another approach is automatic generation of custom
solver code, directly from a high-level description of the
problem family. The user describes the problem to be
solved in a convenient high-level format; a solver code gen-
erator then generates source code for a custom solver of
problem instances from the given family. This source code
is then compiled, yielding a custom solver. See “Automatic
Code Generation” for a detailed comparison of a code gen-
erator with a traditional parser-solver.

Automatic code generation yields a solver that is much
faster and simpler than a parser-solver, for several reasons.
First, algorithm choices, such as the transformation to
canonical form or elimination ordering in the linear equa-
tion solver, can be made at code-generation time. Second,
the generated code can be split into an initialization part,
where memory is allocated, and a real-time part, which
involves no further memory allocation. The generated code
has few branches, which allows the compiler to perform
code optimization. Finally, a hard limit on the number of
iterations can be imposed, which translates into a known
maximum execution time.

In the examples presented in this article we use the
automatic code generation software CVXGEN [28], which
incorporates all the above features of automatic code gen-
eration. CVXGEN handles problems that can be trans-
formed to quadratic programs (QPs). The software
generates custom code for transforming the original prob-
lem data to the QP format, solving the QP using a

56 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2011

 primal-dual interior-point method, and transforming the
solution of the QP back to the solution of the original prob-
lem. We compare the CVXGEN computation times to the
traditional parser-solver CVX [45]. CVX calls either
Sedumi or SDPT3 [47], [49], which are generic semidefinite
program (SDP) solvers and are not specialized for the spe-
cific applications in this article. See “Why CVXGEN Code
Is Faster Than Parser-Solvers” for a detailed discussion of
why CVXGEN solvers are faster than parser-solvers such
as CVX.

EXAMPLES

Preordering

Problem Statement
We consider the problem of meeting a fluctuating
demand for a perishable commodity by preordering it
with different lead times and also purchasing it on the
spot market, all at possibly different prices. When we
place an order, we specify delivery for between 1 and n
time steps in the future, where faster delivery typically
incurs a higher unit cost. Let ut [R1

n represent new
orders, where 1ut 2 i is the amount, ordered at time t, to be
delivered at time t1 i. The state is the order book xt [R1

n ,

where 1xt 2 i is the quantity scheduled to arrive at time
t1 i2 1; in particular, 1xt 2 1 is the stock at hand. The
system dynamics are xt115Axt1 But, where A is the nil-
potent matrix with ones on the upper diagonal and zeros
everywhere else, and B5 I. The constraint has the form
ut $ 0, which is convex. In the model, we take
Ct5Rn 3 R1

n . Thus, in this example, there is no uncer-
tainty in either the dynamics or constraints.

The stage cost has two terms, namely the cost of placing
orders for future delivery, which is incurred when the
order is placed, and the cost of making up unmet demand
by purchasing on the spot market. The first term has the
form pt

Tut, where 1pt 2 i $ 0 is the cost of ordering one unit of
the commodity for delivery at time t1 i. The unmet
demand is 1dt2 1xt 2 1 21, where dt $ 0 is the demand at time
t, and 1 # 21 denotes the positive part. The cost of meeting the
excess demand on the spot market is pt

spot 1dt2 1xt 2 1 21,
where pt

spot $ 0 is the spot market price at time t. The over-
all stage cost is thus

 ,t 1xt, ut 2 5 pt
Tut1 pt

spot 1dt2 1xt 2 1 21,

which is a convex function of xt and ut. Typically, the prices
satisfy pt

spot . 1pt 2 1 .c. 1pt 2n, which means there is a
discount for longer lead time.

conventional parser-solver takes a

complete description of a problem in-

stance, including both the problem struc-

ture and the problem data. First, the pars-

er-solver transforms the problem data into

the standard form for a generic optimiza-

tion solver. The optimization problem is

then solved, and the result transformed

back into the original format. Figure S1(a)

shows this approach. Parser-solvers fa-

cilitate rapid prototyping by allowing the

user to change objectives and constraints

and re-solve the problem. However, when

we solve many problem instances with

the same problem structure, the parser-

solver carries out these steps for each

problem instance.

Instead of performing the same tasks for each problem

instance, code generation introduces an additional presolve

phase that makes various choices, such as transformations

to standard form, entirely offline. The presolve step performs

symbolic transformations from the problem family descrip-

tion to an optimization problem in standard form. Once the

problem is in standard form, the code generator spends time

examining the structure of the problem to determine efficient

linear algebra computations, such as factorization orderings,

and sparse matrix vector multiplies. The output of code gen-

eration is explicit, nearly branch-free C code for transform-

ing the problem into standard form, solving the problem, and

transforming the result back. Each step is optimized specifi-

cally for the particular problem family, saving significant time

when solving each problem instance. The approach is shown

in Figure S1(b).

Automatic Code Generation

A Problem
Instance

General Solver
x *

x *

(a)

Source Code
Code

Generator
Problem Family

Description
Custom
Solver

Embedded
Solver

Compiler

Problem
Instance

(b)

FIGURE S1 (a) shows a general-purpose parser-solver, which takes a single prob-
lem instance and outputs the optimal solution. (b) shows a code generator, which
takes a problem family description, and produces C code that can be compiled into
a customized solver for the problem family. That solver can then be used to solve
problem instances.

JUNE 2011 « IEEE CONTROL SYSTEMS MAGAZINE 57

We consider the case in which the preorder and spot
market prices are known and do not vary with time, that is,
pt5 p [R1

n , pt
spot5 pspot $ 0, and demand is modeled as a

stochastic process. We assume that demand is a stationary
log-normal process, which means that log dt is a stationary
Gaussian process with

 E log dt5m, E 11 log dt2m 2 1 log dt1t 2 m 22 5 rt.

The mean demand is E dt5 exp 1m1 r0/2 2 .
At time t, the controller has access to the current order

book xt, and the current and N most recent values of
demand, dt, dt21, c, dt2N, in addition to the various con-
stants, the prices p and pspot, the log demand mean m, and
the log demand autocovariance rt. The orders made at time
t are based on this information.

Related Work
An overview of work on supply chain planning without the
optimization component is given in [51]. Application of
RHC to supply chain problems is discussed in [9] and [52].
In [53], Monte-Carlo simulation of RHC is used to test the
sensitivity of various policies, while [54] explores the

effects of decentralization. Finally, supply chain optimiza-
tion with mixed-integer constraints is discussed in [55],
while planning under uncertainty is considered in [56].

Receding Horizon Policy
The RHC policy requires estimates of future stage costs,
which depend on the unknown future demand. To esti-
mate these costs, we take the exponential of the conditional
mean of log demand, given the previous N demand values,

 d̂t|t5 expE 1 log dt|dt, c, dt2N 2 . (2)

Since we know the current demand, we take d̂t|t5 dt. The
demand is a stationary log-normal process, which means
that the conditional expectation of log dt is an affine func-
tion of log dt, c, log dt2N. Therefore, it follows from (2)

 d̂t|t5 exp 1at2t
T 1 log dt, c, log dt2N 2 1 b 2 ,

for t 5 t1 1, c, t1 T, where aj [RN11 and b [R can be
found from the data m and r0, c, rN1T11. For this example
we also add a terminal constraint 1Tx̂t1T115 n E dt, where

CVXGEN uses a primal-dual interior-point method, which is

an iterative algorithm that computes a sequence of points

converging to the optimum. The majority of the computa-

tional effort is spent factoring and solving a system of linear

equations called the KKT system [25, §10]. Solving an opti-

mization problem requires solving the KKT system around

5–25 times.

One major advantage of code generation is that it allows

us to form, factor, and solve the KKT system much faster than

with a traditional approach. With code generation we know

the problem structure ahead of time, allowing us to move

some computational tasks to an offline phase, which is car-

ried out only once. This phase includes determining the re-

quired transformations to cast the problem in standard form,

determining the required data structures, and choosing an ef-

ficient permutation for factoring the KKT system. In contrast,

a parser-solver performs these tasks at solve time for each

problem instance. Thus, if multiple instances from the same

problem family are to be solved, making these choices offline

saves considerable time online.

For RHC problems, the KKT system is often sparse [20].

When solving the KKT system, we look for a permutation that

yields sparse factor matrices since the number of nonzero

entries approximately corresponds to the computational ef-

fort of factoring and solving the system. A generic optimiza-

tion solver cannot spend much time finding an efficient per-

mutation since this task must be done when solving each

problem instance. With CVXGEN, the permutation is deter-

mined offline, and, therefore, compared with a generic opti-

mization solver, a large amount of time can be used to find

an efficient permutation so that the online solve time is as

fast as possible.

Another advantage of code generation is in the style of

code generated. Since we know the full problem structure

offline, code generation allows more explicit code with no de-

pendencies on external linear algebra libraries. For matrix

vector multiplication, for example, each entry in the output

vector is calculated using a line of C code that refers directly

to the relevant entries in the sparse coefficient matrix. This

code avoids using sparse matrix routines that unpack, in-

spect, and repack sparse matrices with each operation, thus

reducing computational effort.

For problems with a few tens of variables, CVXGEN

produces compact solvers that require less than 100 KB

in RAM and ROM combined, which is much less than the

memory needed for the bulky external libraries that general

purpose solvers use. Thus, for small-sized and medium-

sized optimization problems, CVXGEN code is more suited

for implementation on an embedded processor, which may

have memory restrictions. For larger problems with more

than a few thousand variables, CVXGEN produces pro-

hibitively large binary sizes of more than a few megabytes.

Code generation can be scaled to larger problems using

various methods, but these methods are not yet imple-

mented in CVXGEN. For more details on the implementa-

tion see [68].

Why CVXGEN Code Is Faster Than Parser-Solvers

58 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2011

E dt5 exp 1m1 r0/2 2 . This constraint ensures that we do not
myopically reduce cost by exhausting inventory at the end
of the horizon.

The RHC optimization problem (1) becomes

 minimize
1

T1 1
g t1T
t5t pTût 1 pspot 1 d̂t|t2 1 x̂t 2 121

subject to x̂t115Ax̂t 1 ût, t 5 t, c, t1 T,

ût $ 0, t 5 t, c, t1 T,
1Tx̂t1T115 n Edt, x̂t5 xt,

with variables x̂t, c, x̂t1T11 and ût, c, ût1T. This optimi-
zation problem is convex and can be reduced to an LP.

Constant-Order Policy
We compare the RHC policy with the following policy. At
each time t, we let ut5 10, c, 0, u 2 . Assuming that the max-
imum lead-time corresponds to the lowest price, we let
u5 E dt5 exp 1m1 r0 /2 2 . Thus, in this policy we order with
maximum lead-time, an amount equal to the average demand.

Numerical Example
We consider an example with n5 5 order lead times and
prices

 pspot5 1, p5 1g, g2, g3, g4, g5 2 ,
where g5 0.7. Thus, we have a constant 30% discount for
each step of lead time. The demand process data are m5 0
and rt 5 0.1 10.95t 2 . The RHC controller uses horizon
T5 30, and we estimate future demand using the N5 100
most recent demands.

Results
We simulate the RHC and constant-order policies for 1000
steps with the same demand realization. The constant-
order policy incurs an average cost J5 0.37, while the RHC
policy performs better, with an average cost J5 0.28. Some
example trajectories are shown in Figure 1. We compare
the costs incurred by the RHC policy (blue) and constant-
order policy (red), over 500 time steps. The plots show
demand, preorder cost and spot market costs, and overall
stage cost. In Figure 2 we show the log-demand trajecto-
ries for a selected time region. The vertical lines show
exp 1 log d̂t|220 6 st 2 , where st5 1E 1 log dt2 log d̂t|220 2 2 1/2.
We see that although the predicted trajectory captures the
trend, there is a large prediction error.

The CVXGEN code, shown in Figure 3, requires up to
250 ms to solve at each time step, which is 40003 faster than
CVX. When this speed is much faster than needed for a
particular application, the extra speed is useful for testing
different scenarios and ordering strategies, which require
Monte Carlo simulation. Computational performance
details are collected in Table 1.

Processor Speed Control

Problem Statement
In this example, a single processor handles jobs from a set
of n queues. At each time step the processor adjusts the
work rate for each queue. The total work rate determines
the processor clock speed, which in turn determines the

Time Period t

d t
J t

p
J t

J t
s

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200

(a)

(b)

(c)

(d)
300 400 500

0
1
2

0
1
2

0
0.5

1
1.5

0

2

4

FIGURE 1 Comparison of policies for the preorder example. This
figure compares the receding horizon control (RHC) policy (blue)
and constant order policy (red) for the preorder example. The plots
are (a) demand (dt), (b) reorder cost (Jt

p5 pTut), (c) spot market
cost (Jt

s5 pspot 1dt2 1xt2121), and (d) stage cost 1Jt5 , 1xt, ut 2 2 . The
RHC policy performs better overall compared with the constant
order policy because it incurs a much smaller spot market cost.

Time Period t

Lo
g-

D
em

an
d

200 210 220 230 240 250 260 270
0.5

1

1.5

2

2.5

3

FIGURE 2 Actual and predicted demands for the preorder exam-
ple. This plot compares actual (black) and predicted (blue) log-
demands for the preorder example. The vertical error bars show
log d̂t |220 6 st. Although the predictions capture the trend, the
prediction error can be large.

JUNE 2011 « IEEE CONTROL SYSTEMS MAGAZINE 59

power dissipated by the processor. The goal is to adjust the
rates to optimally balance average processor power dissi-
pation and queue length.

We use a discrete-time formulation, with state xt [R1
n

and input ut [R1
n , where 1xt 2 i is the amount of work to

be done in queue i, and 1ut 2 i is the work rate for queue i,
at time t. The dynamics are xt115 xt2 ut1 at, where
at [R1

n denotes the new work arriving in each queue
between times t and t1 1. At each time we cannot pro-
cess more than the available work in each queue, which
means that ut # xt. The total work rate of the processor
over all queues is 1Tut.

The processor speed at time t is a function of the work
rate vector ut, namely,

 st5max5Smin, 1Tut6,
where Smin is the minimum allowed processor speed. The
processor has the maximum allowed processor speed, Smax,
which translates to the constraint 1Tut # Smax. The proces-
sor power dissipation is modeled as ast

2, where a . 0.
With each queue we associate a linear-plus-quadratic

cost ci 1xt 2 i1 di 1xt 2 i2, where ci and di are positive weights. We
can interpret ci as relative queue priorities, when the queues
are small, and ci/di as the queue length at which the cost is
twice the linear cost alone. When the queue lengths are
random variables, the expected value of the queue cost is ci
times the mean queue length, plus di times the mean-square
queue length. The overall stage cost is

 , 1xt, ut 2 5a
max5Smin, 1Tut621 cTxt1 dTxt

2,

where xt
2 is interpreted componentwise.

For this example the dynamics matrices, constraints,
and stage costs are assumed to be known. The only uncer-
tainty is the arrivals at, which we assume has the form

 1at 2 i5 exp 1li
sin 12pt/M2 ui 2 1 1wt 2 i 2 , i5 1, c, n,

where M is the period, li, ui are known constants, and wt is
a white Gaussian process with mean m and covariance S.
At time t, the controller chooses the work rates ut based on
knowledge of the current state xt, as well as the data Smin,
Smax, a, a, b, l, u, m, S, and M.

Related Work
Overviews of power-aware processor design are given in the
survey papers [57]–[59]. Closely related work appears in [60],
which uses a dynamic speed scaling scheme, motivated by
queueing theory, to balance energy consumption and mean
response time in a multiprocessor system. In [60], the problem
is formulated as a stochastic dynamic program, with an upper
bound used instead of an exact solution. In [61], a related prob-
lem considered, where the goal is to maximize processing
speed while respecting system temperature limits.

Receding Horizon Policy
In the RHC policy, we take estimates of the arrivals to be

1 ât|t 2 i5 E 1at 2 i5 exp 1li sin 12pt/M2 ui 2 1mi1 0.5Sii 2 ,
 i5 1, c, n, t 5 t, c, t1 T.

FIGURE 3 CVXGEN code segment for the preorder example. The
problem is formulated in a high-level specification language.
CVXGEN parses this description and generates code for a solver
function, which accepts the declared parameters as input argu-
ments, and solves the optimization problem. Parameters can be
declared with attributes. For example, in the above code segment
the parameter pspot is declared with the attribute positive,
which is required to ensure that the objective function is convex.

TABLE 1 CVXGEN computational performance comparisons.
This table summarizes the performance of the automatically
generated code for each example. In all cases, the solve
times are on the order of milliseconds, which means a
receding horizon controller can be implemented at kilohertz
sampling rates. Although Computer 1 is around a factor of
ten slower than Computer 3, it uses far less power, namely,
2 W instead of 95 W, as shown in Table 2. We also see that
CVXGEN-customized code is more than 10003 faster than
the generic solvers Sedumi or SDPT3.

Preorder Storage Processor
CVX (ms) 970 1290 4190
Variables, original 310 153 112
Variables, transformed 341 153 279
Constraints, transformed 373 357 465
KKT matrix nonzeros 1116 1121 1960
KKT factor fill-in 1.64 1.45 1.65
Max steps required 10 16 19
CVXGEN, Computer 1 (ms) 2.34 4.01 7.80
CVXGEN, Computer 2 (ms) 0.96 1.98 3.64
CVXGEN, Computer 3 (ms) 0.25 0.36 0.85

60 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2011

The RHC optimization problem becomes

minimize
1

T1 1a
t1T

t5t
amax5Smin, 1Tût621 cTx̂t1 dTx̂t

2

subject to x̂t115 x̂t 2 ût 1 ât|t, t 5 t, c, t1 T,
0 # ût # x̂t, 1Tût # Smax, t 5 t, c, t1 T,
x̂t5 xt,

(3)

where the variables are x̂t, c, x̂t1T11 and ût, c, ût1T. This
optimization problem can be transformed into a QP.

Proportional Policy
A simple policy is to set the work rates to be proportional to
the amount of work left in each queue. Specifically, we take

 1ut 2 i5min5 1xt 2 i, 1 1xt 2 i/1Txt 2Smax6.
Taking the minimum ensures that ut # xt is satisfied. The
constraint st # Smax is also satisfied by this policy.

Numerical Instance
We consider a numerical example with n5 3 queues and
problem data

 Smin5 1, Smax5 5, a5 2, c5 11, 1, 12 , d5 10.5, 0.5, 0.52 ,
and

l5 13, 3.5, 3.2 2 , u 5 10, 1, 2 2 , m5 122, 22, 222 ,
 S5 diag 110.04, 0.04, 0.04 22 .
Typical arrival trajectories are shown in Figure 4. For the
RHC policy we use the horizon T5 30.

Results
We simulate both policies for 1000 time steps with the same
arrival realization. The RHC policy incurs an average cost

of J5 71.3, while the proportional policy achieves J5 95.3,
which is around 34% worse. Figure 6 shows some sample
trajectories. We compare the RHC policy with the propor-
tional policy.

The CVXGEN code, shown in Figure 5, takes at most 0.9
ms to solve at each time step, which is 50003 faster than with
CVX. Thus, a processor can adjust work rates at 1 kHz
using RHC. Alternatively, the same processor can use 1% of
its processing power to adjust its own rates at 10 Hz.

Energy Storage

Problem Statement
We consider an energy storage system that can be charged
or discharged from a source with varying energy price. An
example is a battery connected to a power grid. The goal is
to alternate between charging and discharging to maxi-
mize the average revenue.

Let qt $ 0 denote the charge in the energy store at time
step t. The energy store has capacity C, and thus qt # C. The
amount of energy taken from the source at time t to charge
the energy store is denoted by ut

c $ 0, and the amount of

A
rr

iv
al

s

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

Time Period t

FIGURE 4 Job arrivals for processor speed control. The sample tra-
jectories correspond to 1at 21 (blue), 1at 22 (red), and 1at 23 (black).
Note that the arrivals in different queues have different magnitudes
and arrival times.

FIGURE 5 CVXGEN code segment for processor speed control. The
problem is specified in a high-level language in a form that resem-
bles the mathematical problem statement. This approach is conve-
nient for debugging the receding horizon control policy and making
changes to the objective and constraints.

JUNE 2011 « IEEE CONTROL SYSTEMS MAGAZINE 61

energy discharged into the source from the energy store is
denoted by ut

d $ 0. For the problem we consider, at most
one of these is positive; that is, we never charge and dis-
charge the store simultaneously. The charging and dis-
charging rates must satisfy

 ut
c # Cmax, ut

d # Dmax,

where Cmax and Dmax are the maximum charge and dis-
charge rates.

Charging increases the energy in the store by kcut
c, where

kc [10, 1 2 is the charge efficiency; discharging decreases
the energy in the store by ut

d/kd, where kd [10, 1 2 is the
 discharge efficiency. In each time step the energy store
leaks, losing energy proportional to its charge, with leak-
age coefficient h [10, 1 2 . Incorporating all these effects,
the system dynamics are

 qt115hqt1k
cut

c2 ut
d/kd.

In the context of the framework for this article, the dynam-
ics matrices are A5h and B5 1kc, 1/kd 2T, with ut5 1ut

c, ut
d 2 .

The revenue at time t is given by pt 1ut
d2 ut

c 2 , where pt is
the energy price at time t. To discourage excessive charging
and discharging, a penalty of the form g 1ut

c1 ut
d 2 is added,

where g $ 0 is a parameter. An alternative interpretation of
this term is a transaction cost, with bid-ask spread g.
Energy is purchased at price pt1g, and sold back at price
pt2g. The stage cost is

 ,t 1qt, ut2 5 pt 1ut
c2 ut

d2 1g 1ut
c1 ut

d 2 5 1pt1g2ut
c2 1pt2g2ut

d,

which can be interpreted as the negative profit, at time t.
We model the energy price as a stationary log-normal

process with

 E log pt5m, E 1 log pt2m 2 1 log pt1t 2 m 2 5 rt.

At time step t the controller has access to the current
charge level qt, the data C, Cmax, Dmax, kc, kd, h, g, the current
and N most recent prices pt, pt21, c, pt2N, as well as the
mean and autocovariance m and rt. The future prices are
not known.

Related Work
A distributed energy system where individual grid-con-
nected households use an MPC-based controller to control
micro combined heat and power plants is considered in

[62]. For more on distributed generation and variable pric-
ing, see, respectively, [63] and [64]. On the generation side,
[65] applies MPC in a case study to wind turbines with bat-
teries to smooth the power produced. A related application
is to hybrid vehicles, where MPC-based approaches are
developed in [66] or [67]. A vehicle with multiple energy
storage units is considered in [12].

Receding Horizon Policy
To implement the receding horizon policy, we take the esti-
mates of future prices to be

 p̂t|t5 expE 1 log pt|pt, c, pt2N 2 , t 5 t1 1, c, t1 T.

Note that p̂t|t is not the same as E 1pt|pt, c, pt2N 2 , which
can also be computed and used as an estimate. The esti-
mates of future stage costs are

 ,̂t 1 q̂t, ût 2 5 1 p̂t|t1g 2 ûtc 2 1 p̂t|t2g 2 ûtd.

Time Period t

(x
t)

1
(x

t)
2

(x
t)

3
(x

t,
 u

t)

50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

50 100 150 200 250 300 350 400

50 100 150 200

(a)

(d)

(c)

(b)
250 300 350 400

0
200
400

0
10
20

0
10
20

0
10
20

FIGURE 6 Comparison of policies for the processor speed control
example. The plots are (a) queue lengths 1xt 21, (b) 1xt 22, (c) 1xt 23,
and (d) stage cost , 1xt, ut 2 for the receding horizon control (RHC)
policy (blue) and the proportional policy (red). The proportional
policy performs better for queue 1; however, the RHC policy per-
forms better than the proportional policy for queues 2 and 3, and
achieves a lower cost overall.

Receding horizon control offers a straightforward method for

designing feedback controllers that deliver good performance while

respecting complex constraints.

62 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2011

Thus, the RHC optimization problem becomes

minimize a
t1T

t5t
,̂t 1 q̂t, ût 2

subject to q̂t115hq̂t 1 k
cût

c 2 ût
d/kd,

0 # ût
c # Cmax, 0 # ût

d # Dmax, t 5 t, c, t1 T,
0 # q̂t # C, t 5 t, c, t1 T1 1,
q̂t 5 qt,

(4)

with variables q̂t, c, q̂t1T11, ût
c, c, ût1T

c , and ût
d, c, ût1T

d .
This optimization problem can be transformed into an LP.

Thresholding Policy
We compare the receding horizon policy with a threshold-
ing policy, which takes

 ut
c5 emin 1Cmax, C2 q 2 pt # pthc

0 otherwise,

 ut
d5 emin 1Dmax, q 2 pt $ pthd

0 otherwise.

In other words, the policy charges at the maximum rate if
the price is below the threshold pthc, and discharges at the
maximum rate if the price is above the threshold pthd. If the
price is between pthc and pthd we do not charge or discharge.
The minimum is taken to ensure that the charge and dis-
charge constraints are satisfied.

Numerical Example
Let h5 0.98, kc5 0.98, kd5 0.98, Cmax5 10, Dmax5 10,
C5 50, g5 0.02, q05 0, m5 0, and rt 5 0.1 10.99tcos 10.1t 22 .
For the receding horizon policy we use a time horizon of
T5 50 steps along with N5 100 previous prices to estimate
future prices.

Results
The simulations are carried out for 1000 time steps. Figure 7
shows the cumulative profit

 rt5 a
t

t50
pt 1utd2 ut

c 2 2g 1utd1 ut
c 2 ,

for the RHC policy (blue) and the thresholding policy (red),
over 500 time steps. For the thresholding policy, we adjust
the charge and discharge thresholds using trial and error
to achieve good performance. The final thresholds, after

Receding horizon co ntrol combined with automatic code

generation is a framework for designing and implementing

feedback controllers.

Time Period t

Lo
g-

P
ric

e

2.5

2

1.5

1

0.5

0
100 150 200 250

FIGURE 8 Actual and predicted prices for energy storage. Here we
compare actual (black) and predicted (blue) log-prices for the stor-
age example. The vertical error bars show log p̂t |150 6 st. As with the
preorder example, the predictions capture the price trend, although
the prediction error increases toward the end of the horizon.

Time Period t

P
ric

e
C

ha
rg

e
P

ro
fit

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300

(a)

(b)

(c)
400 500

−50
0

50
100
150

0
20
40
60

0

1

2

3

FIGURE 7 Comparison of policies for energy storage. This
figure compares the receding horizon control (RHC) policy
(blue) and the thresholding policy (red) for the storage exam-
ple. The plots are (a) price (pt), (b) charge (qt), and (c) cumula-
tive profit (rt). By charging and discharging at the right times,
we see that RHC achieves a greater cumulative profit than the
thresholding policy.

JUNE 2011 « IEEE CONTROL SYSTEMS MAGAZINE 63

trial and error, are pthc5 0.8 and pthd5 1.3. We see that the
RHC policy outperforms the thresholding policy. The
 average profit achieved for the RHC policy is 0.23 per step,
whereas thresholding achieves a profit of 0.029 per step,
averaged over 1000 time steps.

Figure 8 shows the actual (black) and predicted (blue) log-
price trajectories starting at t5 150. The vertical lines show
exp 1 log p̂t|150 6 st 2 , where st5 1E 1 log pt2 log p̂t|150 2 2 1/2.
The CVXGEN code, shown in Figure 9, takes at most 360 m
s to solve at each time step, which is 35003 faster than CVX.
Further computational performance details are collected in
Table 1.

CVXGEN PERFORMANCE
To give an overview of the performance of CVXGEN, we
test the code generated by CVXGEN for each example on
three different computers. Several extensions can further
improve performance, often reducing speed by an order of
magnitude or more. First, single-precision floats can be
used in place of double precision since the scale of data is
known ahead of time. Second, the time horizon selected
for the examples is long. With a suitable choice of final
state cost, the horizon can be reduced, giving a speedup
proportional to the horizon [41]. Finally, the problems are
solved to high numerical precision, which requires up to
15–20 steps. With a small amount of tuning, adequate con-
trol performance is achievable using a fixed step limit of
around five steps [20]. Thus, all of the numerical results
are only preliminary upper bounds on performance. The
computer properties are summarized in Table 2. We use
gcc-4.4 on each processor, with the compiler optimiza-
tion flag -0s.

In each case, we ensure the computer is idle and then
solve the optimization problem instances continuously for
at least 1 s. We calculate the maximum time taken to solve
an instance, ensuring that each problem is solved to suffi-
cient accuracy so that control performance is not affected.

To compare these computation times to a traditional
parser-solver, we also test the performance of CVX on the
fastest computer, Computer 3, using Matlab 7.9 and CVX
1.2. For preorder and storage we set the solver used by
CVX to Sedumi 1.2; for proc_speed we select SDPT3 4.0.
A comparison of the computation times is shown in Table 1.
The times listed for CVX are actual solver times and do not
include the time required to transform the problem into
standard form.

CONCLUSIONS
In this article we have shown that receding horizon control
offers a straightforward method for designing feedback
controllers that deliver good performance while respecting
complex constraints. A designer specifies the RHC control-
ler by specifying the objective, constraints, prediction
method, and horizon, each of which has a natural choice
suggested directly by the application. In more traditional
approaches, such as PID control, a designer tunes the con-
troller coefficients, often using trial and error, to handle the
objectives and constraint s indirectly. In contrast, RHC con-
trollers can often obtain good performance w ith little tuning.

In addition to the straightforwa rd design process, we
have seen that RHC controllers can be implemented in real
time at kilohertz sampling rates. These spee ds are useful
for both real-time implementation of the controller as well
as rapid Monte Carlo simulation for design and testing

TABLE 2 Computer properties. This table summarizes the properties of the computers used to test the performance of the
code generated by CVXGEN. The computers vary widely in speed, cache size, and power consumption.

OS Processor Cache Size Max Speed Max Power
Computer 1 Linux 2.6 Intel Atom Z530 512 kB 1.60 GHz 2 W
Computer 2 Linux 2.6 Intel Core Duo T2300 2 MB 1.66 GHz 31 W
Computer 3 OS X 10.6 Intel Core i7-860 8 MB 3.46 GHz 95 W

FIGURE 9 CVXGEN code segment for energy storage. This figure
shows the CVXGEN code segment for the storage example. The
parameters can also be hard coded in the problem specification if
their values are known ahead of time. For testing and simulation pur-
poses, however, it is often better to declare the problem data as
parameters so that they can be changed without having to regenerate
the solver.

64 IEEE CONTROL SYSTEMS MAGAZINE » JUNE 2011

 purposes. Thus, receding horizon control can no longer be
 conside red a slow, computationally intensive policy. Indeed,
RHC can be applied to a wide range of control problems,
including applications involving fast dynamics.

With advances in automatic code generation, RHC con-
 trollers can now be rapidly designed and implemented.
The RHC optimization problem can be specified in a hig h-
level description language, and custom solvers for the
problem family can be automatically generated by a soft-
ware tool, such as CVXGEN. The generated code is opti-
mized for the specific problem family and is often orders of
magnitude faster than a general optimization solver, such
as Sedumi or SDPT3. In addit ion, the generated code has
few external library dependencies, which facilitates imple-
mentation on different real-time platforms.

Receding horizon co ntrol combined with automatic code
generation is a framework for designing and implementing
feedback controllers. This framework allows designers with
little optimization expertise to rapidly design and imple-
men t sophisticated high-performance controllers for a wide
range of real-time applications.

AUTHOR INFORMATION
Jacob Mattingley is an electrical engineering Ph.D. student
at the Information Systems Laboratory at Stanford Univer-
sity. He received the B.E. (Hons) degree in electrical and
computer engineering from the University of Canterbury in
2005 and the M.S. degree in electrical engineering at Stan-
ford University in 2007. He is currently working on auto-
matic code generation, as well as computer modeling and
engineering applications of convex optimization.

Yang Wang (yw224@stanford.edu) received B.A. and
M.Eng. degrees in electrical and information engineering
from Cambridge University in 2006. He is currently pursu-
ing a Ph.D. degree in electrical engineering at the Informa-
tion Systems Laboratory at Stanford University. His research
interests include convex optimization with applications to
control, signal processing, and machine learning. He is sup-
ported by a Rambus Corporation Stanford Graduate Fellow-
ship. He can be contacted at Packard Electrical Engineering,
Room 243, 350 Serra Mall, Stanford, California 94305 USA.

Stephen Boyd is the Samsung Professor of Engineering
and professor of Electrical Engineering in the Information
Systems Laboratory at Stanford University. He received the
A.B. degree in mathematics from Harvard University in
1980 and the Ph.D. in electrical engineering and computer
science from the University of California, Berkeley. He has
been a faculty member at Stanford since 1985. His current
research focus is on convex optimization applications in
control, signal processing, and circuit design.

REFERENCES
[1] W. H. Kwon and S. Han, Receding Horizon Control. New York: Springer-
Verlag, 2005.

[2] P. Whittle, Optimization Over Time. NY: Wiley, 1982.

[3] S. S. Keerthi and E. G. Gilbert, “Optimal infinite-horizon feedback
laws for a general class of constrained discrete-time systems: Stability and
moving-horizon approximations,” J. Optim. Theory Appl., vol. 57, no. 2, pp.
265–293, 1988.

[4] G. C. Goodwin, M. M. Seron, and J. A. De Doná, Constrained Control and
Estimation. New York: Springer-Verlag, 2005.

[5] J . M. Maciejowski, Predictive Control with Constraints. Englewood Cliffs,
NJ: Prentice-Hall, 2002.

[6] P . Scokaert and J. B. Rawlings, “Constrained linear quadratic regula-
tion,” IEEE Trans. Automat. Contr., vol. 43, no. 8, pp. 1163–1169, Aug. 1998.

[7] J . B. Rawlings and D. Mayne, Model Predictive Control: Theory and Design.
Nob Hill Publishing, 2009.

[8] S . J. Qin and T. A. Badgwell, “A survey of industrial model predictive
control technology,” Control Eng. Pract., vol. 11, no. 7, pp. 733–764, 2003.

[9] E . G. Cho, K. A. Thoney, T. J. Hodgson, and R. E. King, “Supply chain
planning: Rolling horizon scheduling of multi-factory supply chains,” in
Proc. 35th Conf. Winter Simulation: Driving Innovation, New Orleans, LA,
2003, pp. 1409–1416.

[10] F . Herzog. (2005). Strategic portfolio management for long-term invest-
ments: An optimal control approach. Ph.D. thesis. ETH, Zurich [Online].
Available: http://e-collection.ethbib.ethz.ch/view/eth:28198

[11] K . T. Talluri and G. J. Van Ryzin, The Theory and Practice of Revenue Man-
agement. New York: Springer-Verlag, 2004.

[12] M . J. West, C. M. Bingham, and N. Schofield, “Predictive control for en-
ergy management in all/more electric vehicles with multiple energy stor-
age units,” in Proc. IEEE Int. Electric Machines and Drives Conf., Madison, WI,
2003, vol. 1, pp. 222–228.

[13] G . Stewart and F. Borrelli, “A model predictive control framework for
industrial turbodiesel engine control,” in Proc. 47th IEEE Conf. Decision and
Control, Cancun, Mexico, 2008, pp. 5704–5711.

[14] S . Di Cairano, D. Yanakiev, A. Bemporad, I. Kolmanovsky, and D. Hro-
vat, “An MPC design flow for automotive control and applications to idle
speed regulation,” in Proc. 47th IEEE Conf. Decision and Control, Cancun,
Mexico, 2008, pp. 5686–5691.

[15] P . Falcone, F. Borrelli, J. Asgari, E. H. Tseng, and D. Hrovat, “Predictive
active steering control for autonomous vehicle systems,” IEEE Trans. Contr.
Syst. Technol., vol. 15, no. 3, pp. 566–580, 2007.

[16] R . Franz, M. Milam, and J. Hauser, “Applied receding horizon control
of the Caltech ducted fan,” in Proc. American Control Conf., Anchorage, AK,
2002, pp. 3735–3740.

[17] S . Di Cairano and A. Bemporad, “Model predictive control tuning by
controller matching,” IEEE Trans. Automat. Contr., vol. 55, no. 1, pp. 185–190,
2010.

[18] A . Bemporad and C. Filippi, “Suboptimal explicit receding horizon
control via approximate multiparametric quadratic programming,” J. Op-
tim. Theory Appl., vol. 117, no. 1, pp. 9–38, Nov. 2004.

[19] A . Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, 2002.

[20] Y . Wang and S. Boyd, “Fast model predictive control using online op-
timization,” in Proc. IFAC World Congress, Seoul, South Korea, July 2008,
pp. 6974–6997.

[21] M . Diehl, R. Findeisen, S. Schwarzkopf, I. Uslu, F. Allgöwer, H. G. Bock,
E. D. Gilles, and J. P. Schlöder, “An efficient algorithm for nonlinear model
predictive control of large-scale systems. Part I: Description of the meth-
od,” Automatisierungstechnik, vol. 50, no. 12, pp. 557–567, 2002.

[22] M. Åkerblad and A. Hansson, “Efficient solution of second order cone
program for model predictive control,” Int. J. Control, vol. 77, no. 1, pp. 55–77,
Jan. 2004.

[23] C. V . Rao, S. J. Wright, and J. B. Rawlings, “Application of interior point
methods to model predictive control,” J. Optim. Theory Appl., vol. 99, no. 3,
pp. 723–757, Nov. 2004.

[24] J. E . Mattingley and S. Boyd. (2010, Apr.) CVXGEN: Automatic convex
optimization code generation (web page and software) [Online]. Available:
http://cvxgen.com/

JUNE 2011 « IEEE CONTROL SYSTEMS MAGAZINE 65

[25] S. B oyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[26] M. G rant, S. Boyd, and Y. Ye, “Disciplined convex programming,” in
Global Optimization: From Theory to Implementation, L. Liberti and N. Macu-
lan, Eds. New York: Springer-Verlag, 2006, pp. 155–210.

[27] J. E . Mattingley and S. Boyd, “Real-time convex optimization in sig-
nal processing,” IEEE Signal Processing Mag., vol. 23, no. 3, pp. 50–61,
2009.

[28] J. E . Mattingley and S. Boyd, “Automatic code generation for real-time
convex optimization,” in Convex Optimization in Signal Processing and Com-
munications, D. P. Palomar and Y. C. Eldar, Eds. Cambridge, U.K.: Cam-
bridge Univ. Press, 2010, pp. 1–41.

[29] M. D iehl, H. G. Bock, and J. P. Schlöder, “A real-time iteration scheme
for nonlinear optimization in optimal feedback control,” SIAM J. Control
Optim., vol. 43, no. 5, pp. 1714–1736, 2005.

[30] R. H. Byrd, J. C. Gilbert, and J. Nocedal, “A trust region method based
on interior point techniques for nonlinear programming,” Math. Program.
A, vol. 89, no. 1, pp. 149–185, 2000.

[31] A. Ro manenko and L. O. Santos, “A nonlinear model predictive control
framework as free software: Outlook and progress report,” in Assessment
and Future Directions of Nonlinear Model Predictive Control, R. Findeisen, F.
Allgöwer, and L. Biegler, Eds. New York: Springer-Verlag, 2007, pp. 229–238.

[32] T. Oht suka and A. Kodama, “Automatic code generation system for
nonlinear receding horizon control,” Trans. Soc. Instrum. Contr. Eng., vol. 38,
no. 7, pp. 617–623, July 2002.

[33] T. Oht suka, “A continuation/GMRES method for fast computation of
nonlinear receding horizon control,” Automatica, vol. 40, no. 4, pp. 563–574,
Apr. 2004.

[34] B. Hou ska and H. J. Ferreau. (2008, Aug.) ACADO toolkit: Automat-
ic control and dynamic optimization (Web page and software) [Online].
Available: http://www.acadotoolkit.org/

[35] A. Bem porad and M. Morari, “Robust model predictive control: A sur-
vey,” in Robustness in Identification and Control, A. Garulli, A. Tesi, and A.
Vicino, Eds. New York: Springer-Verlag, 1999, pp. 207–226.

[36] P. J. Goulart, E. C. Kerrigan, and J. M. Maciejowski, “Optimization over
state feedback policies for robust control with constraints,” Automatica, vol.
42, no. 4, pp. 523–533, 2006.

[37] M. Can non, P. Couchman, and B. Kouvaritakis, “MPC for stochastic
systems,” in Assessment and Future Directions of Nonlinear Model Predictive
Control, R. Findeisen, F. Allgöwer, and L. T. Biegler, Eds. New York: Spring-
er-Verlag, 2007, pp. 255–268.

[38] M. Shin and J. A. Primbs, “A fast algorithm for stochastic model predic-
tive control with probabilistic constraints,” in Proc. American Control Conf.,
Baltimore, MD, 2010, pp. 5489–5494.

[39] D. Q. M ayne, J. B. Rawlings, and P. O. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp.
789–814, 2000.

[40] E. Cama cho and C. Bordons, Model Predictive Control. New York:
Springer-Verlag, 2004.

[41] Y. Wang and S. Boyd, “Performance bounds for linear stochastic con-
trol,” System Control Lett., vol. 53, no. 3, pp. 178–182, Mar. 2009.

[42] Y. Wang and S. Boyd. (2010). Fast evaluation of quadratic control—Ly-
apunov policy. IEEE Trans. Contr. Syst. Technol. [Online]. Available: http://
www.stanford.edu/ boyd/papers/fast_clf.html

[43] J. A. P rimbs, “A soft constraint approach to stochastic receding horizon
control,” in Proc. 46th IEEE Conf. Decision and Control, New Orleans, LA,
2007, pp. 4797–4802.

[44] J. Löfb erg. (2004). YALMIP: A toolbox for modeling and optimization
in MATLAB. presented at CACSD Conference, Taipei, Taiwan [Online].
Available: http://control.ee.ethz.ch/ joloef/yalmip.php

[45] M. Grant and S. Boyd. (2008, July). CVX: Matlab software for disci-
plined convex programming (Web page and software) [Online]. Available:
http://www.stanford.edu/boyd/cvx/

[46] J. E. Ma ttingley and S. Boyd. (2008, Aug.). CVXMOD: Convex optimi-
zation software in Python (Web page and software) [Online]. Available:
http://cvxmod.net/

[47] K. C. To h, M. J. Todd, and R. H. Tütüncü, “SDPT3—A Matlab software
package for semidefinite programming, version 1.3,” Optim. Methods Soft-
ware, vol. 11, no. 1, pp. 545–581, 1999.

[48] R. Tütüncü, K. Toh, and M. J. Todd, “Solving semidefinite-quadratic-
linear programs using SDPT3,” Math. Program., vol. 95, no. 2, pp. 189–217,
2003.

[49] J. Sturm. (199 9). Using SeDuMi 1.02, a MATLAB toolbox for optimiza-
tion over symmetric cones. Optim. Methods Software [Online]. 11, pp. 625–
653. Available: http://sedumi.ie.lehigh.edu/

[50] A. Bemporad, “ Model predictive control design: New trends and
tools,” in Proc. 45th IEEE Conf. Decision and Control, San Diego, CA, 2006,
pp. 6678–6683.

[51] T. C. Miller, Hierarchical Operations and Supply Chain Planning. New
York: Springer-Verlag, 2002.

[52] J. D. Schwartz , W. Wang, and D. E. Rivera, “Simulation-based opti-
mization of process control policies for inventory management in supply
chains,” Automatica, vol. 42, no. 8, pp. 1311–1320, 2006.

[53] S. Bose and J. F. Pekny, “A model predictive framework for planning
and scheduling problems: A case study of consumer goods supply chain,”
Comput. Chem. Eng., vol. 24, no. 2–7, pp. 329–335, 2000.

[54] E. Mestan, M. Turkay, and Y. Arkun, “Optimization of operations in
supply chain systems using hybrid systems approach and model predictive
control,” Ind. Eng. Chem. Res., vol. 45, no. 19, pp. 6493–6503, 2006.

[55] E. Perea-Lopez , B. E. Ydstie, and I. E. Grossmann, “A model predictive
control strategy for supply chain optimization,” Comput. Chem. Eng., vol. 27,
no. 8–9, pp. 1201–1218, 2003.

[56] A. Gupta and C . D. Maranas, “Managing demand uncertainty in sup-
ply chain planning,” Comput. Chem. Eng., vol. 27, no. 8–9, pp. 1219–1227, 2003.

[57] S. Irani and K . Pruhs, “Algorithmic problems in power management,”
SIGACT News, vol. 36, no. 2, pp. 63–76, 2005.

[58] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware computer systems: Opportunities and
challenges,” IEEE Micro, vol. 23, no. 6, pp. 52–61, 2003.

[59] J. Donald and M. Martonosi, “Techniques for multicore thermal man-
agement: Classification and new exploration,” in Proc. 33rd Int. Symp. Com-
puter Architecture (ISCA’06), 2006, pp. 78–88.

[60] A. Wierman, L. L. H. Andrew, and A. Tang, “Power-aware speed scal-
ing in processor sharing systems,” in Proc. IEEE INFOCOM, Rio de Janeiro,
Brazil, 2009, pp. 2007–2015.

[61] A. Mutapcic, S . Boyd, S. Murali, D. Atienza, G. De Micheli, and R. Gup-
ta, “Processor speed control with thermal constraints,” IEEE Trans. Circuits
Syst., vol. 56, no. 9, pp. 1994–2007, 2009.

[62] M. Houwing, R. R. Negenborn, B. De Schutter, P. W. Heijnen, and H.
Hellendoorn, “Least-cost model predictive control of residential energy
resources when applying µCHP,” in Proc. Power Tech, July 2007, vol. 291,
pp. 425–430.

[63] E. Handschin, F . Neise, H. Neumann, and R. Schultz, “Optimal op-
eration of dispersed generation under uncertainty using mathematical
programming,” Int. J. Elect. Power Energy Syst., vol. 28, no. 9, pp. 618–626,
2006.

[64] S. D. Braithwai t, “Real-time pricing and demand response can work
within limits,” Natural Gas Electricity, vol. 21, no. 11, pp. 1–9, 2005.

[65] M. Khalid and A . V. Savkin, “Model predictive control for wind power
generation smoothing with controlled battery storage,” in Proc. Joint IEEE
Conf. Decision and Control and Chinese Control, Shanghai, China, 2009, pp.
7849–7853.

[66] R. Kumar and B. Yao, “Model based power-split and control for electric
energy system in a hybrid electric vehicle,” in Proc. IMECE 2006, Chicago,
IL, 2006, pp. 335–341.

[67] Z. Preitl, P. B auer, B. Kulcsar, G. Rizzo, and J. Bokor, “Control solutions
for hybrid solar vehicle fuel consumption minimization,” in Proc. 2007 IEEE
Intelligent Vehicles Symp., Istanbul, Turkey, 2007, pp. 767–772.

[68] J. E. Mattingle y and S. Boyd. (2010, Nov.). CVXGEN: A code generator
for embedded convex optimization [Online]. Available: http://stanford.
edu/ boyd/papers/code_gen_impl.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

