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R
eceding horizon control (RHC), also known as model 
predictive control (MPC), [1]–[5] is a feedback con-
trol technique that became popular in the 1980s. 
With RHC, an optimization problem is solved 
at each time step to determine a 

plan of action over a fi xed time horizon. 
The fi rst input from this plan is applied to 
the system. At the next time step we repeat 
the planning process, solving a new opti-
mization problem with the time horizon 
shifted one step forward. The optimization 
problem takes into account estimates of future quantities 
based on available information at each time step. The con-
trol policy involves feedback since real-time measurements 
are used to determine the control input. 

RHC is a nonlinear control policy that handles input 
constraints, output constraints, and various control objec-
tives. Using RHC, a system can be controlled near its physi-
cal limits, often obtaining performance superior to linear 

control [5]–[7]. RHC applications include a 
wide range of practical settings, such as 
industrial and chemical process control [8], 
supply chain management [9], stochastic 
control in economics and finance [10], rev-
enue management [11], control of hybrid 
vehicles [12], automotive applications [13]–

[15], and aerospace applications [16]. 
Although RHC is used for a wide range of applications, 

it does not always outperform traditional control meth-
ods. For some problems, a skilled designer can achieve 
similar performance by tuning a conventional linear con-
troller, such as a proportional-integral-derivative (PID) 
controller modified to handle constraints, for example, by 
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saturating control inputs that are outside their limits. 
These conventional methods are tractable for single-input, 
single-output systems but become cumbersome for sys-
tems with multiple inputs and outputs, especially when 
taking into account complex objectives, strongly nonlin-
ear dynamics, and constraints. 

In RHC, the designer specifies the objective and con-
straints as part of an optimization problem, whereas in a 
conventional design process, the designer adjusts control-
ler gains and coefficients to indirectly handle constraints, 
often by trial and error. While sophisticated RHC tuning 
procedures can be used to obtain the best performance 
[5], [17], for many problems little tuning is required since 
parameters are suggested directly by the application. 
RHC can also explicitly incorporate additional control 
information, such as future references and estimates of 
future disturbances. 

One requirement of RHC is that an optimization prob-
lem must be solved at each time step. Using conventional 
numerical optimization techniques, the time taken to solve 
this problem is often much longer than the time taken to 
compute the control action for a linear controller. Applica-
tions of RHC are thus often limited to systems with sample 
times measured in seconds, minutes, or hours. 

Various techniques can be used to speed up the solu-
tion of the optimization problems that arise in RHC. 
When the numbers of states, inputs, and constraints are 
small, one approach is explicit MPC [18], [19], where a 
closed-form expression for the solution of the optimiza-
tion problem, as a function of the current state, is com-
puted offline and stored. The online algorithm performs a 
lookup table search, followed by control law evaluation, 
which can be computed quickly. Another method, appli-
cable to a range of problem sizes, is to custom code online 
optimization solvers that exploit the problem structure 
that arises in RHC applications [20]–[23]. Although these 
custom solvers can yield computation times that are sev-
eral orders of magnitude faster than generic solvers, their 
development requires time-consuming hand coding as 
well as significant expertise in optimization algorithms 
and numerical computation. 

In this article, we describe advances that facilitate the 
development of custom RHC solvers. By combining a high-
level specification language for optimization and code-gen-
eration tools, a user of RHC can specify and generate fast, 
reliable custom code. Since the user does not need expertise 
in optimization, this tool makes RHC accessible to more 
practitioners. Combined with automatic code generation, 
RHC offers a framework for the rapid design of sophisti-
cated controllers for a wide range of problems, including 
those that require kilohertz sample rates. 

In the remainder of the article, we give a high-level 
overview of RHC, briefly explain code generation for 
RHC using the software package CVXGEN [24], and 
illustrate the ideas with three examples. The examples 

are chosen to show the variety of problems that can be 
addressed and are simplified for pedagogical reasons. 
See [25] for a more detailed account of convex optimiza-
tion, [26] for more on parser-solvers and convex pro-
gramming, and [27] and [28] for a discussion of code 
generation for convex optimization. 

We restrict attention to systems with linear dynamics, 
convex objective functions, and convex constraints for 
several reasons. First, many systems can be reasonably 
modeled in this restricted form. Second, linearization 
techniques can be used to extend these methods to sys-
tems with nonlinear dynamics. For nonlinear control, the 
system is linearized around predicted state and input tra-
jectories, and a sequence of linear RHC problems is solved 
to produce a plan of action [29]. This strategy, known as 
sequential convex optimization [30], is implemented in 
the software package NEWCON [31]. An example of 
automatic code generation applied to nonlinear RHC can 
be found in [32], while application to a two-link robot arm 
is discussed in [33]. The toolbox ACADO [34] provides a 
software package for solving RHC problems with nonlin-
ear dynamics. 

FORMULATING RHC PROBLEMS

System Dynamics and Control
We consider the discrete-time linear dynamical system 

xt115Atxt1 Btut1 ct,

where xt [ Rn is the system state, ut [ Rm is the control 
input, and ct [ Rn is an exogenous input. The matrices 
At [ Rn3n and Bt [ Rn3m are the dynamics and input 
matrices, respectively. The subscripts on At, Bt, and ct indi-
cate that these parameters may change with time. 

The state and input must satisfy constraints, which are 
expressed abstractly as 

1xt, ut 2 [ Ct,

where Ct # Rn 3 Rm is the constraint set at time t. The 
instantaneous cost, which is denoted by ,t 1xt, ut 2 , depends 
on both the current state and control action. The quality of 
control is judged by the average cost 

J5 lim sup
NS`

1
Na

N21

t50
,t 1xt, ut 2 .

If ,t 1xt, ut 2  is a random variable, we replace ,t 1xt, ut 2  with its 
expected value E,t 1xt, ut 2 .

The control input ut is determined using the informa-
tion available to the controller at time t, including estimates 
of quantities that are not known, based on information that 
is known. These estimates are denoted by 

Ât|t, B̂t|t, ĉt|t, Ĉt|t, ,̂t|t, x̂t|t,
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where the notation ẑt|t denotes an estimate of zt based on 
information available at time t, where t $ t. Information 
available at time t includes conventional information in a 
control system, such as sensor measurements, as well as 
known quantities and functions. The available information 
may also include additional information that is not typi-
cally used in a traditional control system, such as historical 
usage patterns, weather, price trends, and expert forecasts. 

These estimates can be obtained in various ways. In the 
ideal case, we know the quantity being estimated, in which 
case we replace the estimates with the known value. For 
example, if the controller has access to perfect measure-
ments of the current state xt, we take x̂t|t5 xt. A traditional 
method for obtaining estimates is from a statistical model of 
the uncertain quantities, in which case the estimates are 
conditional expectations or other statistical estimates, based 
on the information available at time t. For example, the 
additive terms ct are often modeled as independent zero-
mean random variables, with the estimate ĉt|t5 Ect5 0. 

However, the estimates need not be derived from statis-
tical models; for example, future prices can be obtained 
from a futures market or from analysts who predict trends. 
Another example arises when the system to be controlled is 
nonlinear. In this case, Ât|t, B̂t|t, and ĉt|t are a linearization 
of the nonlinear dynamics along a trajectory. 

The controller design problem is to find a control policy 
that chooses the input ut as a function of the available infor-
mation at time t, so that the constraints are satisfied and the 
average cost J is made small. 

Receding Horizon Control
The RHC procedure works as follows. At time t, we con-
sider a time interval extending T steps into the future, 
t, t1 1, c, t1 T. We then carry out the following steps: 

1) Form a predictive model. Replace all uncertain quanti-
ties over the time interval with their current esti-
mates using information available at time t. 

2) Optimize. The RHC optimization problem takes the 
form 

minimize
1

T1 1
g t1T
t5t,

^
t|t 1 x̂t,ût 2

subject to x̂t115 Ât|tx̂t1B̂t|tût 1 ĉt|t,  t 5 t, c, t1T
1 x̂t, ût 2 [ Ĉt|t,  t 5 t, c, t1T
x̂t5 x̂t|t, (1) 

with variables x̂t, c, x̂t1T11 and ût, c, ût1T. The 
objective in problem (1) is a finite-horizon approxi-
mation of the infinite-horizon cost function J. In prob-
lem (1), we seek to minimize the estimated objective 
over the time interval t, t1 1, c, t1 T, subject to the 
estimated dynamics and constraints. The parameters 
in this RHC optimization problem are the estimates 

 Ât|t,  B̂t|t,  ĉt|t,  Ĉt|t,  ,̂t|t, 

for t 5 t, c, t1 T, and the current state estimate 
x̂t|t. The optimal input trajectory of the RHC optimi-
zation problem (1), ût

w, c, ût1T
w , is a plan of action for 

the next T steps. 
3) Execute. We then choose ut5 ût

w to be the RHC input. 
At the next time step, the process is repeated, with 
updated estimates of the current state and future 
quantities.

We assume that Ĉt and ,̂t are convex, which means that 
the RHC problem (1) is a convex optimization problem and 
can be solved using convex optimization tools [25]. Prob-
lems with nonconvex objectives and constraints can often 
be handled using sequential convex optimization, where a 
sequence of convex problems is solved to find local solu-
tions of the nonconvex problem [30]. 

In this article, we adopt certainty-equivalent RHC, where 
the uncertain quantities are replaced with estimates. 
Uncertainty can be dealt with in other ways, for example, 
by formulating a robust or stochastic RHC optimization 
problem [5], [7], [35]–[38]. In certainty-equivalent RHC, it 
is standard practice to add a final state constraint or a final 
state cost to the RHC problem. In the former case, we add 
an equality constraint of the form xT115 xfinal, or a final 
constraint set condition xT11 [ Cfinal. In the latter case, we 
add V 1xT11 2  to the objective, where V is a cost function for 
the final state. For some problems, stability guarantees can 
be obtained by adding specific terminal costs and con-
straints [1], [3], [5], [7], [39], [40]. 

Terminal costs and constraints also allow simpler, shorter-
horizon controllers to approximate the behavior of controllers 
with longer horizons. Indeed, we can often obtain near-opti-
mal control performance with horizon T5 0 by choosing an 
appropriate terminal cost function [41]. In this case the control 
policy, which is also called a control-Lyapunov policy or 
approximate dynamic programming policy, can be evaluated 
on time scales measured in tens of microseconds, allowing 
control at rates exceeding tens of kilohertz [42]. 

Combined with automatic code generation, RHC offers a framework 

for the rapid design of sophisticated controllers for a wide range of problems, 

including those that require kilohertz sample rates.
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For some applications, constraints on the state variables 
can lead to an infeasible RHC optimization problem. This 
problem can occur if an unexpected disturbance affects the 
system, in which case there may not exist any control policy 
that keeps the system within the constraints. Infeasibility can 
also occur if the estimated system parameters are inaccurate 
so that the RHC optimization problem does not reflect the 
true system behavior. There are various ways to deal with 
infeasibility. One strategy is to apply the planned control 
input from the previous time step. Another method is to 
allow constraint violations but penalize them in the objective 
function. These constraints are referred to as soft constraints 
as opposed to the original hard constraints, which cannot be 
violated [5], [43]. Typically, the constraints that are softened 
are constraints on the state variables for which some viola-
tion may be acceptable. Input constraints, such as actuator 
limits and trading budgets, usually cannot be violated. Vari-
ous methods exist for deciding which  constraints to relax, 
based on importance rankings [5]. Although we cannot guar-
antee that these methods recover feasibility in future time 
steps, they do allow the controller to compute an acceptable 
control input when infeasibilities occur. 

Except in special cases, the RHC policy is not an optimal 
policy. In RHC we replace the infinite horizon average cost 
J with a finite horizon approximation and uncertain quanti-
ties with their estimates. We do not solve the controller 
design problem, which is an infinite-dimensional noncon-
vex problem, and is usually intractable. Thus, RHC may not 
achieve the minimum possible average cost among policies 
that respect the constraints. Instead, RHC is a sophisticated 
heuristic, as demonstrated on various applications [8]–[16]. 

DESIGNING AND IMPLEMENTING 
RHC CONTROLLERS

Designing an RHC Controller
To specify an RHC policy, we must describe three compo-
nents: a method for estimating uncertain quantities from 
measurements, including, in particular, the system model; 
the horizon T; and the terminal costs and constraints. For a 
given choice of these components, the closed-loop system is 
simulated offline to assess the performance, and, if needed, 
the design choices are modified. Simulation of the RHC 
system requires solving an optimization problem at each 
time step. 

Various software tools [44]–[46] are available for formu-
lating and solving convex problems. These parser-solvers take 
a high-level specification and perform the necessary trans-
formations for solution by a generic convex optimization 
solver [47]–[49]. Parser-solvers are convenient in design iter-
ation. The user is able to change the objective or constraints 
in the RHC optimization problem and immediately see the 
effects in simulation. Parser-solvers are convenient but may 
lead to slow solve times since each problem instance is 
parsed and transformed separately. During offline simula-

tion, however, solver speed is not a critical issue; if necessary, 
simulations can run slower than the required sample rate. 

Implementing an RHC Controller
The RHC solver implementation must, of course, run faster 
than the sample rate. If the solver speed is much faster than 
the sample rate, we can use a less powerful processor or 
run the optimization on a processor performing multiple 
tasks. For applications with a long sample time, measured 
in seconds or minutes, a parser-solver might be fast enough. 
However, in many applications a faster solver is required. 
Even when a parser-solver is fast enough for real-time 
implementation, we may prefer a simpler solver, involving 
few or no external libraries, simpler memory management, 
and a known maximum execution time. 

The traditional route to develop such a solver is custom 
code development, either using a toolbox or from scratch 
[20], [50]. This process can be labor intensive. In addition, if 
the problem statement changes, for example, by changing 
the objective term, all code modifications must be made 
laboriously, by hand. Small changes in the objective and 
constraints may significantly change the sparsity pattern of 
the KKT system, which is a system of linear equations that 
is solved at every iteration in an optimization algorithm. As 
a result, minor reformulations may lead to dramatic 
changes in the code. After that, testing and correcting the 
code must be done all over again. 

Another approach is automatic generation of custom 
solver code, directly from a high-level description of the 
problem family. The user describes the problem to be 
solved in a convenient high-level format; a solver code gen-
erator then generates source code for a custom solver of 
problem instances from the given family. This source code 
is then compiled, yielding a custom solver. See “Automatic 
Code Generation” for a detailed comparison of a code gen-
erator with a traditional parser-solver. 

Automatic code generation yields a solver that is much 
faster and simpler than a parser-solver, for several reasons. 
First, algorithm choices, such as the transformation to 
canonical form or elimination ordering in the linear equa-
tion solver, can be made at code-generation time. Second, 
the generated code can be split into an initialization part, 
where memory is allocated, and a real-time part, which 
involves no further memory allocation. The generated code 
has few branches, which allows the compiler to perform 
code optimization. Finally, a hard limit on the number of 
iterations can be imposed, which translates into a known 
maximum execution time. 

In the examples presented in this article we use the 
automatic code generation software CVXGEN [28], which 
incorporates all the above features of automatic code gen-
eration. CVXGEN handles problems that can be trans-
formed to quadratic programs (QPs). The software 
generates custom code for transforming the original prob-
lem data to the QP format, solving the QP using a 
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 primal-dual interior-point method, and transforming the 
solution of the QP back to the solution of the original prob-
lem. We compare the CVXGEN computation times to the 
traditional parser-solver CVX [45]. CVX calls either 
Sedumi or SDPT3 [47], [49], which are generic semidefinite 
program (SDP) solvers and are not specialized for the spe-
cific applications in this article. See “Why CVXGEN Code 
Is Faster Than Parser-Solvers” for a detailed discussion of 
why CVXGEN solvers are faster than parser-solvers such 
as CVX. 

EXAMPLES

Preordering

Problem Statement
We consider the problem of meeting a fluctuating 
demand for a perishable commodity by preordering it 
with different lead times and also purchasing it on the 
spot market, all at possibly different prices. When we 
place an order, we specify delivery for between 1 and n 
time steps in the future, where faster delivery typically 
incurs a higher unit cost. Let ut [ R1

n  represent new 
orders, where 1ut 2 i is the amount, ordered at time t, to be 
delivered at time t1 i. The state is the order book xt [ R1

n , 

where 1xt 2 i is the quantity scheduled to arrive at time 
t1 i2 1; in particular, 1xt 2 1 is the stock at hand. The 
system dynamics are xt115Axt1 But, where A is the nil-
potent matrix with ones on the upper diagonal and zeros 
everywhere else, and B5 I. The constraint has the form 
ut $ 0, which is convex. In the model, we take 
Ct5Rn 3 R1

n . Thus, in this example, there is no uncer-
tainty in either the dynamics or constraints. 

The stage cost has two terms, namely the cost of placing 
orders for future delivery, which is incurred when the 
order is placed, and the cost of making up unmet demand 
by purchasing on the spot market. The first term has the 
form pt

Tut, where 1pt 2 i $ 0 is the cost of ordering one unit of 
the commodity for delivery at time t1 i. The unmet 
demand is 1dt2 1xt 2 1 21, where dt $ 0 is the demand at time 
t, and 1 # 21 denotes the positive part. The cost of meeting the 
excess demand on the spot market is pt

spot 1dt2 1xt 2 1 21, 
where pt

spot $ 0 is the spot market price at time t. The over-
all stage cost is thus 

 ,t 1xt, ut 2 5 pt
Tut1 pt

spot 1dt2 1xt 2 1 21, 

which is a convex function of xt and ut. Typically, the prices 
satisfy pt

spot . 1pt 2 1 .c. 1pt 2n, which means there is a 
discount for longer lead time. 

conventional parser-solver takes a 

complete description of a problem in-

stance, including both the problem struc-

ture and the problem data. First, the pars-

er-solver transforms the problem data into 

the standard form for a generic optimiza-

tion solver. The optimization problem is 

then solved, and the result transformed 

back into the original format. Figure S1(a) 

shows this approach. Parser-solvers fa-

cilitate rapid prototyping by allowing the 

user to change objectives and constraints 

and re-solve the problem. However, when 

we solve many problem instances with 

the same problem structure, the parser-

solver carries out these steps for each 

problem instance.

Instead of performing the same tasks for each problem 

instance, code generation introduces an additional presolve 

phase that makes various choices, such as transformations 

to standard form, entirely offline. The presolve step performs 

symbolic transformations from the problem family descrip-

tion to an optimization problem in standard form. Once the 

problem is in standard form, the code generator spends time 

examining the structure of the problem to determine efficient 

linear algebra computations, such as factorization orderings, 

and sparse matrix vector multiplies. The output of code gen-

eration is explicit, nearly branch-free C code for transform-

ing the problem into standard form, solving the problem, and 

transforming the result back. Each step is optimized specifi-

cally for the particular problem family, saving significant time 

when solving each problem instance. The approach is shown 

in Figure S1(b). 

Automatic Code Generation

A Problem
Instance

General Solver
x *

x *

(a)

Source Code
Code

Generator
Problem Family

Description
Custom
Solver

Embedded
Solver

Compiler

Problem
Instance

(b)

FIGURE S1 (a) shows a general-purpose parser-solver, which takes a single prob-
lem instance and outputs the optimal solution. (b) shows a code generator, which 
takes a problem family description, and produces C code that can be compiled into 
a customized solver for the problem family. That solver can then be used to solve 
problem instances.
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We consider the case in which the preorder and spot 
market prices are known and do not vary with time, that is, 
pt5 p [ R1

n , pt
spot5 pspot $ 0, and demand is modeled as a 

stochastic process. We assume that demand is a stationary 
log-normal process, which means that log dt is a stationary 
Gaussian process with 

 E log dt5m,   E 11 log dt2m 2 1 log dt1t 2 m 22 5 rt.

The mean demand is E dt5 exp 1m1 r0/2 2 . 
At time t, the controller has access to the current order 

book xt, and the current and N most recent values of 
demand, dt, dt21, c, dt2N, in addition to the various con-
stants, the prices p and pspot, the log demand mean m, and 
the log demand autocovariance rt. The orders made at time 
t are based on this information. 

Related Work
An overview of work on supply chain planning without the 
optimization component is given in [51]. Application of 
RHC to supply chain problems is discussed in [9] and [52]. 
In [53], Monte-Carlo simulation of RHC is used to test the 
sensitivity of various policies, while [54] explores the 

effects of decentralization. Finally, supply chain optimiza-
tion with mixed-integer constraints is discussed in [55], 
while planning under uncertainty is considered in [56]. 

Receding Horizon Policy
The RHC policy requires estimates of future stage costs, 
which depend on the unknown future demand. To esti-
mate these costs, we take the exponential of the conditional 
mean of log demand, given the previous N demand values, 

 d̂t|t5 expE 1 log dt|dt, c, dt2N 2 . (2)

Since we know the current demand, we take d̂t|t5 dt. The 
demand is a stationary log-normal process, which means 
that the conditional expectation of log dt is an affine func-
tion of log dt, c, log dt2N. Therefore, it follows from (2) 

 d̂t|t5 exp 1at2t
T 1 log dt, c, log dt2N 2 1 b 2 , 

for t 5 t1 1, c, t1 T, where aj [ RN11 and b [ R can be 
found from the data m and r0, c, rN1T11. For this example 
we also add a terminal constraint 1Tx̂t1T115 n E dt, where 

CVXGEN uses a primal-dual interior-point method, which is 

an iterative algorithm that computes a sequence of points 

converging to the optimum. The majority of the computa-

tional effort is spent factoring and solving a system of linear 

equations called the KKT system [25, §10]. Solving an opti-

mization problem requires solving the KKT system around 

5–25 times.

One major advantage of code generation is that it allows 

us to form, factor, and solve the KKT system much faster than 

with a traditional approach. With code generation we know 

the problem structure ahead of time, allowing us to move 

some computational tasks to an offline phase, which is car-

ried out only once. This phase includes determining the re-

quired transformations to cast the problem in standard form, 

determining the required data structures, and choosing an ef-

ficient permutation for factoring the KKT system. In contrast, 

a parser-solver performs these tasks at solve time for each 

problem instance. Thus, if multiple instances from the same 

problem family are to be solved, making these choices offline 

saves considerable time online. 

For RHC problems, the KKT system is often sparse [20]. 

When solving the KKT system, we look for a permutation that 

yields sparse factor matrices since the number of nonzero 

entries approximately corresponds to the computational ef-

fort of factoring and solving the system. A generic optimiza-

tion solver cannot spend much time finding an efficient per-

mutation since this task must be done when solving each 

problem instance. With CVXGEN, the permutation is deter-

mined offline, and, therefore, compared with a generic opti-

mization solver, a large amount of time can be used to find 

an efficient permutation so that the online solve time is as 

fast as possible. 

Another advantage of code generation is in the style of 

code generated. Since we know the full problem structure 

offline, code generation allows more explicit code with no de-

pendencies on external linear algebra libraries. For matrix 

vector multiplication, for example, each entry in the output 

vector is calculated using a line of C code that refers directly 

to the relevant entries in the sparse coefficient matrix. This 

code avoids using sparse matrix routines that unpack, in-

spect, and repack sparse matrices with each operation, thus 

reducing computational effort. 

For problems with a few tens of variables, CVXGEN 

produces compact solvers that require less than 100 KB 

in RAM and ROM combined, which is much less than the 

memory needed for the bulky external libraries that general 

purpose solvers use. Thus, for small-sized and medium-

sized optimization problems, CVXGEN code is more suited 

for implementation on an embedded processor, which may 

have memory restrictions. For larger problems with more 

than a few thousand variables, CVXGEN produces pro-

hibitively large binary sizes of more than a few megabytes. 

Code generation can be scaled to larger problems using 

various methods, but these methods are not yet imple-

mented in CVXGEN. For more details on the implementa-

tion see [68].

Why CVXGEN Code Is Faster Than Parser-Solvers
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E dt5 exp 1m1 r0/2 2 . This constraint ensures that we do not 
myopically reduce cost by exhausting inventory at the end 
of the horizon. 

The RHC optimization problem (1) becomes 

 minimize
1

T1 1
g t1T
t5t  pTût 1 pspot 1 d̂t|t2 1 x̂t 2 121

 
subject to x̂t115Ax̂t 1 ût,  t 5 t, c, t1 T, 

ût $ 0,  t 5 t, c, t1 T, 
1Tx̂t1T115 n Edt,  x̂t5 xt, 

with variables x̂t, c, x̂t1T11 and ût, c, ût1T. This optimi-
zation problem is convex and can be reduced to an LP. 

Constant-Order Policy
We compare the RHC policy with the following policy. At 
each time t, we let ut5 10, c, 0, u 2 . Assuming that the max-
imum lead-time corresponds to the lowest price, we let 
u5 E dt5 exp 1m1 r0 /2 2 . Thus, in this policy we order with 
maximum lead-time, an amount equal to the average demand. 

Numerical Example
We consider an example with n5 5 order lead times and 
prices 

 pspot5 1,   p5 1g, g2, g3, g4, g5 2 , 
where g5 0.7. Thus, we have a constant 30% discount for 
each step of lead time. The demand process data are m5 0 
and rt 5 0.1 10.95t 2 . The RHC controller uses horizon 
T5 30, and we estimate future demand using the N5 100 
most recent demands. 

Results
We simulate the RHC and constant-order policies for 1000 
steps with the same demand realization. The constant-
order policy incurs an average cost J5 0.37, while the RHC 
policy performs better, with an average cost J5 0.28. Some 
example trajectories are shown in Figure 1. We compare 
the costs incurred by the RHC policy (blue) and constant-
order policy (red), over 500 time steps. The plots show 
demand, preorder cost and spot market costs, and overall 
stage cost. In Figure 2 we show the log-demand trajecto-
ries for a selected time region. The vertical lines show 
exp 1 log  d̂t|220 6 st 2 , where st5 1E 1 log dt2 log d̂t|220 2 2 1/2. 
We see that although the predicted trajectory captures the 
trend, there is a large prediction error. 

The CVXGEN code, shown in Figure 3, requires up to 
250 ms to solve at each time step, which is 40003 faster than 
CVX. When this speed is much faster than needed for a 
particular application, the extra speed is useful for testing 
different scenarios and ordering strategies, which require 
Monte Carlo simulation. Computational performance 
details are collected in Table 1. 

Processor Speed Control

Problem Statement
In this example, a single processor handles jobs from a set 
of n queues. At each time step the processor adjusts the 
work rate for each queue. The total work rate determines 
the processor clock speed, which in turn determines the 
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FIGURE 1 Comparison of policies for the preorder example. This 
figure compares the receding horizon control (RHC) policy (blue) 
and constant order policy (red) for the preorder example. The plots 
are (a) demand (dt), (b) reorder cost (Jt

p5 pTut), (c) spot market 
cost (Jt

s5 pspot 1dt2 1xt2121), and (d) stage cost 1Jt5 , 1xt, ut 2 2 . The 
RHC policy performs better overall compared with the  constant 
order policy because it incurs a much smaller spot market cost.
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log d̂t |220 6 st. Although the predictions capture the trend, the 
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power dissipated by the processor. The goal is to adjust the 
rates to optimally balance average processor power dissi-
pation and queue length. 

We use a discrete-time formulation, with state xt [ R1
n  

and input ut [ R1
n , where 1xt 2 i is the amount of work to 

be done in queue i, and 1ut 2 i is the work rate for queue i, 
at time t. The dynamics are xt115 xt2 ut1 at, where 
at [ R1

n  denotes the new work arriving in each queue 
between times t and t1 1. At each time we cannot pro-
cess more than the available work in each queue, which 
means that ut # xt. The total work rate of the processor 
over all queues is 1Tut. 

The processor speed at time t is a function of the work 
rate vector ut, namely, 

 st5max5Smin, 1Tut6, 
where Smin is the minimum allowed processor speed. The 
processor has the maximum allowed processor speed, Smax, 
which translates to the constraint 1Tut # Smax. The proces-
sor power dissipation is modeled as ast

2, where a . 0. 
With each queue we associate a linear-plus-quadratic 

cost ci 1xt 2 i1 di 1xt 2 i2, where ci and di are positive weights. We 
can interpret ci as relative queue priorities, when the queues 
are small, and ci/di as the queue length at which the cost is 
twice the linear cost alone. When the queue lengths are 
random variables, the expected value of the queue cost is ci 
times the mean queue length, plus di times the mean-square 
queue length. The overall stage cost is 

 , 1xt, ut 2 5a 
max5Smin, 1Tut621 cTxt1 dTxt

2, 

where xt
2 is interpreted componentwise. 

For this example the dynamics matrices, constraints, 
and stage costs are assumed to be known. The only uncer-
tainty is the arrivals at, which we assume has the form 

 1at 2 i5 exp 1li 
sin 12pt/M2 ui 2 1 1wt 2 i 2 ,  i5 1, c, n, 

where M is the period, li, ui are known constants, and wt is 
a white Gaussian process with mean m and covariance S. 
At time t, the controller chooses the work rates ut based on 
knowledge of the current state xt, as well as the data Smin, 
Smax, a, a, b, l, u, m, S, and M. 

Related Work
Overviews of power-aware processor design are given in the 
survey papers [57]–[59]. Closely related work appears in [60], 
which uses a dynamic speed scaling scheme, motivated by 
queueing theory, to balance energy consumption and mean 
response time in a multiprocessor system. In [60], the problem 
is formulated as a stochastic dynamic program, with an upper 
bound used instead of an exact solution. In [61], a related prob-
lem considered, where the goal is to maximize processing 
speed while respecting system temperature limits. 

Receding Horizon Policy
In the RHC policy, we take estimates of the arrivals to be 

1 ât|t 2 i5 E 1at 2 i5 exp 1li sin 12pt/M2 ui 2 1mi1 0.5Sii 2 ,
 i5 1, c, n,  t 5 t, c, t1 T.

FIGURE 3 CVXGEN code segment for the preorder example. The 
problem is formulated in a high-level specification language. 
CVXGEN parses this description and generates code for a solver 
function, which accepts the declared parameters as input argu-
ments, and solves the optimization problem. Parameters can be 
declared with attributes. For example, in the above code segment 
the parameter pspot is declared with the attribute positive, 
which is required to ensure that the objective function is convex.

TABLE 1 CVXGEN computational performance comparisons. 
This table summarizes the performance of the automatically 
generated code for each example. In all cases, the solve 
times are on the order of milliseconds, which means a 
receding horizon controller can be implemented at kilohertz 
sampling rates. Although Computer 1 is around a factor of 
ten slower than Computer 3, it uses far less power, namely, 
2 W instead of 95 W, as shown in Table 2. We also see that 
CVXGEN-customized code is more than 10003 faster than 
the generic solvers Sedumi or SDPT3.

Preorder Storage Processor
CVX (ms) 970 1290 4190 
Variables, original 310 153 112 
Variables, transformed 341 153 279 
Constraints, transformed 373 357 465 
KKT matrix nonzeros 1116 1121 1960 
KKT factor fill-in 1.64 1.45 1.65 
Max steps required 10 16 19 
CVXGEN, Computer 1 (ms) 2.34 4.01 7.80 
CVXGEN, Computer 2 (ms) 0.96 1.98 3.64 
CVXGEN, Computer 3 (ms) 0.25 0.36 0.85 
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The RHC optimization problem becomes 

minimize
1

T1 1a
t1T

t5t
amax5Smin, 1Tût621 cTx̂t1 dTx̂t

2

subject to x̂t115 x̂t 2 ût 1 ât|t,  t 5 t, c, t1 T,
0 # ût # x̂t,  1Tût # Smax,  t 5 t, c, t1 T,
x̂t5 xt, 

 
(3)

where the variables are x̂t, c, x̂t1T11 and ût, c, ût1T. This 
optimization problem can be transformed into a QP. 

Proportional Policy
A simple policy is to set the work rates to be proportional to 
the amount of work left in each queue. Specifically, we take 

 1ut 2 i5min5 1xt 2 i, 1 1xt 2 i/1Txt 2Smax6.
Taking the minimum ensures that ut # xt is satisfied. The 
constraint st # Smax is also satisfied by this policy. 

Numerical Instance
We consider a numerical example with n5 3 queues and 
problem data 

 Smin5 1, Smax5 5, a5 2, c5 11, 1, 12 , d5 10.5, 0.5, 0.52 , 
and 

l5 13, 3.5, 3.2 2 ,  u 5 10, 1, 2 2 ,  m5 122, 22, 222 ,
 S5 diag 110.04, 0.04, 0.04 22 .
Typical arrival trajectories are shown in Figure 4. For the 
RHC policy we use the horizon T5 30. 

Results
We simulate both policies for 1000 time steps with the same 
arrival realization. The RHC policy incurs an average cost 

of J5 71.3, while the proportional policy achieves J5 95.3, 
which is around 34% worse. Figure 6 shows some sample 
trajectories. We compare the RHC policy with the propor-
tional policy. 

The CVXGEN code, shown in Figure 5, takes at most 0.9 
ms to solve at each time step, which is 50003 faster than with 
CVX. Thus, a processor can adjust work rates at 1 kHz 
using RHC. Alternatively, the same processor can use 1% of 
its processing power to adjust its own rates at 10 Hz. 

Energy Storage

Problem Statement
We consider an energy storage system that can be charged 
or discharged from a source with varying energy price. An 
example is a battery connected to a power grid. The goal is 
to alternate between charging and discharging to maxi-
mize the average revenue. 

Let qt $ 0 denote the charge in the energy store at time 
step t. The energy store has capacity C, and thus qt # C. The 
amount of energy taken from the source at time t to charge 
the energy store is denoted by ut

c $ 0, and the amount of 
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FIGURE 4 Job arrivals for processor speed control. The sample tra-
jectories correspond to 1at 21 (blue), 1at 22 (red), and 1at 23 (black). 
Note that the arrivals in different queues have different magnitudes 
and arrival times.

FIGURE 5 CVXGEN code segment for processor speed control. The 
problem is specified in a high-level language in a form that resem-
bles the mathematical problem statement. This approach is conve-
nient for debugging the receding horizon control policy and making 
changes to the objective and constraints.
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energy discharged into the source from the energy store is 
denoted by ut

d $ 0. For the problem we consider, at most 
one of these is positive; that is, we never charge and dis-
charge the store simultaneously. The charging and dis-
charging rates must satisfy 

 ut
c # Cmax,  ut

d # Dmax, 

where Cmax and Dmax are the maximum charge and dis-
charge rates. 

Charging increases the energy in the store by kcut
c, where 

kc [ 10, 1 2  is the charge efficiency; discharging decreases 
the energy in the store by ut

d/kd, where kd [ 10, 1 2  is the 
 discharge efficiency. In each time step the energy store 
leaks, losing energy proportional to its charge, with leak-
age coefficient h [ 10, 1 2 . Incorporating all these effects, 
the system dynamics are 

 qt115hqt1k
cut

c2 ut
d/kd.

In the context of the framework for this article, the dynam-
ics matrices are A5h and B5 1kc, 1/kd 2T, with ut5 1ut

c, ut
d 2 . 

The revenue at time t is given by pt 1ut
d2 ut

c 2 , where pt is 
the energy price at time t. To discourage excessive charging 
and discharging, a penalty of the form g 1ut

c1 ut
d 2  is added, 

where g $ 0 is a parameter. An alternative interpretation of 
this term is a transaction cost, with bid-ask spread g. 
Energy is purchased at price pt1g, and sold back at price 
pt2g. The stage cost is 

 ,t 1qt, ut2 5 pt 1ut
c2 ut

d2 1g 1ut
c1 ut

d 2 5 1pt1g2ut
c2 1pt2g2ut

d, 

which can be interpreted as the negative profit, at time t. 
We model the energy price as a stationary log-normal 

process with 

 E log pt5m,  E 1 log  pt2m 2 1 log  pt1t 2 m 2 5 rt.

At time step t the controller has access to the current 
charge level qt, the data C, Cmax, Dmax, kc, kd, h, g, the current 
and N most recent prices pt, pt21, c, pt2N, as well as the 
mean and autocovariance m and rt. The future prices are 
not known. 

Related Work
A distributed energy system where individual grid-con-
nected households use an MPC-based controller to control 
micro combined heat and power plants is considered in 

[62]. For more on distributed generation and variable pric-
ing, see, respectively, [63] and [64]. On the generation side, 
[65] applies MPC in a case study to wind turbines with bat-
teries to smooth the power produced. A related application 
is to hybrid vehicles, where MPC-based approaches are 
developed in [66] or [67]. A vehicle with multiple energy 
storage units is considered in [12]. 

Receding Horizon Policy
To implement the receding horizon policy, we take the esti-
mates of future prices to be 

 p̂t|t5 expE 1 log pt|pt, c, pt2N 2 ,  t 5 t1 1, c, t1 T.

Note that p̂t|t is not the same as E 1pt|pt, c, pt2N 2 , which 
can also be computed and used as an estimate. The esti-
mates of future stage costs are 

 ,̂t 1 q̂t, ût 2 5 1 p̂t|t1g 2 ûtc 2 1 p̂t|t2g 2 ûtd.
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FIGURE 6 Comparison of policies for the processor speed control 
example. The plots are (a) queue lengths 1xt 21, (b) 1xt 22, (c) 1xt 23, 
and (d) stage cost , 1xt, ut 2  for the receding horizon control (RHC) 
policy (blue) and the proportional policy (red). The proportional 
policy performs better for queue 1; however, the RHC policy per-
forms better than the proportional policy for queues 2 and 3, and 
achieves a lower cost overall.

Receding horizon control offers a straightforward method for 

designing feedback controllers that deliver good performance while 

respecting complex constraints.
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Thus, the RHC optimization problem becomes 

minimize a
t1T

t5t
,̂t 1 q̂t, ût 2

subject to q̂t115hq̂t 1 k
cût

c 2 ût
d/kd,

0 # ût
c # Cmax, 0 # ût

d # Dmax, t 5 t, c, t1 T,
0 # q̂t # C, t 5 t, c, t1 T1 1,
q̂t 5 qt,

 
(4)

with variables q̂t, c, q̂t1T11, ût
c, c, ût1T

c , and ût
d, c, ût1T

d . 
This optimization problem can be transformed into an LP.

Thresholding Policy
We compare the receding horizon policy with a threshold-
ing policy, which takes 

 ut
c5 emin 1Cmax, C2 q 2 pt # pthc

0 otherwise,

 ut
d5 emin 1Dmax, q 2 pt $ pthd

0 otherwise.

In other words, the policy charges at the maximum rate if 
the price is below the threshold pthc, and discharges at the 
maximum rate if the price is above the threshold pthd. If the 
price is between pthc and pthd we do not charge or discharge. 
The minimum is taken to ensure that the charge and dis-
charge constraints are satisfied. 

Numerical Example
Let h5 0.98, kc5 0.98, kd5 0.98, Cmax5 10, Dmax5 10, 
C5 50, g5 0.02, q05 0, m5 0, and rt 5 0.1 10.99tcos 10.1t 22 . 
For the receding horizon policy we use a time horizon of 
T5 50 steps along with N5 100 previous prices to estimate 
future prices. 

Results
The simulations are carried out for 1000 time steps. Figure 7 
shows the cumulative profit 

 rt5 a
t

t50
pt 1utd2 ut

c 2 2g 1utd1 ut
c 2 ,

for the RHC policy (blue) and the thresholding policy (red), 
over 500 time steps. For the thresholding policy, we adjust 
the charge and discharge thresholds using trial and error 
to achieve good performance. The final thresholds, after 

Receding horizon co ntrol combined with automatic code 

generation is a framework for designing and implementing 

feedback controllers.
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FIGURE 8 Actual and predicted prices for energy storage. Here we 
compare actual (black) and predicted (blue) log-prices for the stor-
age example. The vertical error bars show log p̂t |150 6 st. As with the 
preorder example, the predictions capture the price trend, although 
the prediction error increases toward the end of the horizon.
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FIGURE 7 Comparison of policies for energy storage. This 
figure compares the receding horizon control (RHC) policy 
(blue) and the thresholding policy (red) for the storage exam-
ple. The plots are (a) price (pt), (b) charge (qt), and (c) cumula-
tive profit (rt). By charging and discharging at the right times, 
we see that RHC achieves a greater cumulative profit than the 
thresholding policy.
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trial and error, are pthc5 0.8 and pthd5 1.3. We see that the 
RHC policy outperforms the thresholding policy. The 
 average profit achieved for the RHC policy is 0.23 per step, 
whereas thresholding achieves a profit of 0.029 per step, 
averaged over 1000 time steps. 

Figure 8 shows the actual (black) and predicted (blue) log-
price trajectories starting at t5 150. The vertical lines show 
exp 1 log p̂t|150 6 st 2 , where st5 1E 1 log pt2 log p̂t|150 2 2 1/2. 
The CVXGEN code, shown in Figure 9, takes at most 360 m
s to solve at each time step, which is 35003 faster than CVX. 
Further computational performance details are collected in 
Table 1. 

CVXGEN PERFORMANCE
To give an overview of the performance of CVXGEN, we 
test the code generated by CVXGEN for each example on 
three different computers. Several extensions can further 
improve performance, often reducing speed by an order of 
magnitude or more. First, single-precision floats can be 
used in place of double precision since the scale of data is 
known ahead of time. Second, the time horizon selected 
for the examples is long. With a suitable choice of final 
state cost, the horizon can be reduced, giving a speedup 
proportional to the horizon [41]. Finally, the problems are 
solved to high numerical precision, which requires up to 
15–20 steps. With a small amount of tuning, adequate con-
trol performance is achievable using a fixed step limit of 
around  five steps [20]. Thus, all of the numerical results 
are only preliminary upper bounds on performance. The 
computer properties are summarized in Table 2. We use 
gcc-4.4 on each processor, with the compiler optimiza-
tion flag -0s. 

In each case, we ensure the computer is idle and then 
solve the optimization problem instances continuously for 
at least 1 s. We calculate the maximum time taken to solve 
an instance, ensuring that each problem is solved to suffi-
cient accuracy so that control performance is not affected. 

To compare these computation times to a traditional 
parser-solver, we also test the performance of CVX on the 
fastest computer, Computer 3, using Matlab 7.9 and CVX 
1.2. For preorder and storage we set the solver used by 
CVX to Sedumi 1.2; for proc_speed we select SDPT3 4.0. 
A comparison of the computation times is shown in Table 1. 
The times listed for CVX are actual solver times and do not 
include the time required to transform the problem into 
standard form. 

CONCLUSIONS
In this article we have shown that receding horizon control 
offers a straightforward method for designing feedback 
controllers that deliver good performance while respecting 
complex constraints. A designer specifies the RHC  control-
ler by specifying the objective, constraints,  prediction 
method, and horizon, each of which has  a natural choice 
suggested directly by the application. In more traditional 
approaches, such as PID control, a designer tunes the con-
troller coefficients, often using trial and error, to handle the 
objectives and constraint s indirectly. In contrast, RHC con-
trollers can often obtain good performance w ith little tuning. 

In addition to the straightforwa rd design process, we 
have seen that RHC controllers can be implemented in  real 
time at kilohertz sampling rates. These spee ds are useful 
for both real-time implementation of the controller as well 
as rapid Monte Carlo simulation for design and testing 

TABLE 2 Computer properties. This table summarizes the properties of the computers used to test the performance of the 
code generated by CVXGEN. The computers vary widely in speed, cache size, and power consumption.

OS Processor Cache Size Max Speed Max Power
Computer 1 Linux 2.6 Intel Atom Z530 512 kB 1.60 GHz 2 W 
Computer 2 Linux 2.6 Intel Core Duo T2300 2 MB 1.66 GHz 31 W 
Computer 3 OS X 10.6 Intel Core i7-860 8 MB 3.46 GHz 95 W 

FIGURE 9 CVXGEN code segment for energy storage. This figure 
shows the CVXGEN code segment for the storage example. The 
parameters can also be hard coded in the problem specification if 
their values are known ahead of time. For testing and simulation pur-
poses, however, it is often better to declare the problem data as 
parameters so that they can be changed without having to regenerate 
the solver.
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 purposes. Thus, receding horizon control can no longer be 
 conside red a slow, computationally intensive policy. Indeed, 
RHC can be applied to a wide range of control problems, 
including applications involving fast dynamics. 

With advances in automatic code generation, RHC con-
 trollers can now be rapidly designed and implemented. 
The RHC optimization problem can be specified in a hig h-
level description language, and custom solvers for the 
problem family  can be automatically generated by a soft-
ware tool, such as CVXGEN. The generated code is opti-
mized for the specific problem family and is often orders of 
magnitude faster than a general optimization solver, such 
as Sedumi or SDPT3. In addit ion, the generated code has 
few external library dependencies, which facilitates imple-
mentation on different real-time platforms. 

Receding horizon co ntrol combined with automatic code 
generation is a framework for designing and implementing 
feedback controllers. This framework allows designers with 
little optimization expertise to rapidly design and imple-
men t sophisticated high-performance controllers for a wide 
range of real-time applications. 
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