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1.1 INTRODUCTION

Consider the n dimensional sensor array depicted in Fig. 1. Let a(θ) ∈ Cn denote
the response of the array to a plane wave of unit amplitude arriving from direction θ;
we shall refer to a(·) as the array manifold. We assume that a narrow-band source
s(t) is impinging upon the array from angle θ and that the source is in the far-field of
the array. The vector array output y(t) ∈ Cn is then:

y(t) = a(θ)s(t) + v(t), (1.1)

where a(θ) includes effects such as coupling between elements and subsequent
amplification; v(t) is a vector of additive noises representing the effect of undesired
signals, such as thermal noise or interference. We denote the sampled array output
by y(k). Similarly, the combined beamformer output is given by

yc(k) = w∗y(k) = w∗a(θ)s(k) + w∗v(k)

where w ∈ Cn is a vector of weights, i.e., design variables, and (·)∗ denotes the
conjugate transpose.
The goal is to make w∗a(θ) ≈ 1 and w∗v(t) small, in which case, yc(t) recovers s(t),
i.e., yc(t) ≈ s(t). The gain of the weighted array response in direction θ is |w∗a(θ)|;
the expected effect of the noise and interferences at the combined output is given by
w∗Rvw, where Rv = E vv∗ and E denotes the expected value. If we presume a(θ)
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Fig. 1.1 Beamformer block diagram.

and Rv are known, we may choose w as the optimal solution of

minimize w∗Rvw
subject to w∗a(θd) = 1.

(1.2)

Minimum variance beamforming is a variation on (1.2) in which we replace Rv with
an estimate of the received signal covariance derived from recently received samples
of the array output, e.g.,

Ry =
1

N

k
∑

i=k−N+1

y(i)y(i)∗ ∈ Cn×n. (1.3)

The minimum variance beamformer (MVB) is chosen as the optimal solution of

minimize w∗Ryw
subject to w∗a(θ) = 1.

(1.4)

This is commonly referred to as Capon’s method [10]. Equation (1.4) has an analytical
solution given by

wmv =
R−1

y a(θ)

a(θ)∗R−1
y a(θ)

. (1.5)

Equation (1.4) also differs from (1.2) in that the power expression we are minimizing
includes the effect of the desired signal plus noise. The constraint w∗a(θ) = 1 in
(1.4) prevents the gain in the direction of the signal from being reduced.
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A measure of the effectiveness of a beamformer is given by the signal-to-interference-
plus-noise ratio, commonly abbreviated as SINR, given by

SINR =
σ2

d|w∗a(θ)|2
w∗Rvw

, (1.6)

where σ2
d is the power of the signal of interest. The assumed value of the array

manifold a(θ) may differ from the actual value for a host of reasons including
imprecise knowledge of the signal’s angle of arrival θ. Unfortunately, the SINR of
Capon’s method can degrade catastrophically for modest differences between the
assumed and actual values of the array manifold. We now review several techniques
for minimizing the sensitivity of MVB to modeling errors in the array manifold.

1.1.1 Previous work

One popular method to address uncertainty in the array response or angle of arrival
is to impose a set of unity-gain constraints for a small spread of angles around
the nominal look direction. These are known in the literature as point mainbeam
constraints or neighboring location constraints [25]. The beamforming problem with
point mainbeam constraints can be expressed as

minimize w∗Ryw
subject to C∗w = f,

(1.7)

where C is a n×L matrix of array responses in the L constrained directions and f is an
L×1 vector specifying the desired response in each constrained direction. To achieve
wider responses, additional constraint points are added. We may similarly constrain
the derivative of the weighted array output to be zero at the desired look angle. This
constraint can be expressed in the same framework as (1.7); in this case, we let C be
the derivative of the array manifold with respect to look angle and f = 0. These are
called derivative mainbeam constraints; this derivative may be approximated using
regularization methods. Point and derivative mainbeam constraints may also be used
in conjunction with one another. The minimizer of (1.7) has an analytical solution
given by:

wopt = R−1
y C(C∗R−1

y C)−1f. (1.8)

Each constraint removes one of the remaining degrees of freedom available to reject
undesired signals; this is particularly significant for an array with a small number of
elements. We may overcome this limitation by using a low-rank approximation to
the constraints [24]. The best rank k approximation to C, in a least squares sense,
is given by UΣV ∗, where Σ is a diagonal matrix consisting of the largest k singular
values, U is a n×k matrix whose columns are the corresponding left singular vectors
of C, and V is a L × k matrix whose columns are the corresponding right singular
vectors of C. The reduced rank constraint equations can be written as V ΣT U∗w = f,
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or equivalently:
U∗w = Σ†V ∗f, (1.9)

where † denotes the Moore-Penrose pseudoinverse. Using (1.8), we compute the
beamformer using the reduced rank constraints as

wepc = R−1
y U(U∗R−1

y U)−1Σ†V ∗f.

This technique, used in source localization, is referred to as minimum variance
beamforming with environmental perturbation constraints (MV-EPC), see [25] and
the references contained therein.
Unfortunately, it is not clear how best to pick the additional constraints, or, in the
case of the MV-EPC, the rank of the constraints. The effect of additional constraints
on the design specifications appears difficult to predict.
Regularization methods [37] have also been used in beamforming. One technique,
referred to in the literature as diagonal loading, chooses the beamformer to minimize
the sum of the weighted array output power plus a penalty term, proportional to the
square of the norm of the weight vector. The gain in the assumed angle of arrival
(AOA) of the desired signal is constrained to be unity. The beamformer is chosen as
the optimal solution of:

minimize w∗Ryw + µw∗w
subject to w∗a(θ) = 1.

(1.10)

The parameter µ > 0 penalizes large values of w and has the general effect of
detuning the beamformer response. The regularized least squares problem (1.10) has
an analytical solution given by:

wreg =
(Ry + µI)−1a(θ)

a(θ)∗(Ry + µI)−1a(θ)
. (1.11)

Gershman [15] and Johnson and Dudgeon [22] provide a survey of these methods;
see also the references contained therein. Similar ideas have been used in adaptive
algorithms, see [20].
Beamformers using eigenvalue thresholding methods to achieve robustness have also
been used; see [19]. The beamformer is computed according to Capon’s method,
using a covariance matrix which has been modified to ensure no eigenvalue is less
than a factor µ times the largest, where 0 ≤ µ ≤ 1. Specifically, let V ΛV ∗ denote
the eigenvalue/eigenvector decomposition of Ry, where Λ is a diagonal matrix, the
ith entry (eigenvalue) of which is given by λi, i.e.,

Λ =







λ1

. . .
λn






.
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Without loss of generality, assume λ1 ≥ λ2 . . . ≥ λn. We form the diagonal matrix
Λthr, the ith entry of which is given by max{µλ1, λi}; viz.,

Λthr =











λ1

max{µλ1, λ2}
. . .

max{µλ1, λn}











.

The modified covariance matrix is computed according to Rthr = V ΛthrV
∗. The

beamformer using eigenvalue thresholding is given by

wthr =
R−1

thra(θ)

a(θ)∗R−1
thra(θ)

. (1.12)

The parameter µ corresponds to the reciprocal of the condition number of the covari-
ance matrix. A variation on this approach is to use a fixed value for the minimum
eigenvalue threshold. One interpretation of this approach is to incorporate a-priori
knowledge of the presence of additive white noise when the sample covariance is
unable to observe said white noise floor due to short observation time [19]. The
performance of this beamformer appears similar to that of the regularized beam-
former using diagonal loading; both usually work well for an appropriate choice of
the regularization parameter µ.

We see two limitations with regularization techniques for beamformers. First, it is
not clear how to efficiently pick µ. Second, this technique does not take into account
any knowledge we may have about variation in the array manifold, e.g., that the
variation may not be isotropic.
In §1.1.3, we describe a beamforming method that explicitly uses information about
the variation in the array response a(·), which we model explicitly as an uncertainty
ellipsoid in R2n. Prior to this, we introduce some notation for describing ellipsoids.

1.1.2 Ellipsoid descriptions

An n-dimensional ellipsoid can be defined as the image of an n-dimensional Eu-
clidean ball under an affine mapping from Rn to Rn; i.e.,

E = {Au + c | ‖u‖ ≤ 1}, (1.13)

where A ∈ Rn×n and c ∈ Rn. The set E describes an ellipsoid whose center is c
and whose principal semiaxes are the unit-norm left singular vectors of A scaled by
the corresponding singular values. We say that an ellipsoid is flat if this mapping is
not injective, i.e., one-to-one. Flat ellipsoids can be described by (1.13) in the proper
affine subspaces of Rn. In this case, A ∈ Rn×l and u ∈ Rl. An interpretation of a
flat uncertainty ellipsoid is that some linear combinations of the array manifold are
known exactly [5].
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Unless otherwise specified, an ellipsoid in Rn will be parameterized in terms of its
center c ∈ Rn and a symmetric non-negative definite configuration matrix Q ∈ Rn×n

as
E(c,Q) = {Q1/2u + c | ‖u‖ ≤ 1} (1.14)

where Q1/2 is any matrix square root satisfying Q1/2(Q1/2)T = Q. When Q is full
rank, the non-degenerate ellipsoid E(c,Q) may also be expressed as

E(c,Q) = {x | (x− c)T Q−1(x− c) ≤ 1} (1.15)

or by the equivalent quadratic function

E(c,Q) = {x | T (x) ≤ 0}, (1.16)

where T (x) = xT Q−1x−2cT Q−1x+xT
c Q−1xc−1. The first representation (1.14)

is more natural when E is degenerate or poorly conditioned. Using the second
description (1.15), one may easily determine whether a point lies within the ellipsoid.
The third representation (1.16) will be used in §1.6.1 to compute the minimum-volume
ellipsoid covering the union of ellipsoids.
We will express the values of the array manifold a ∈ Cn as the direct sum of its real
and imaginary components in R2n; i.e.,

zi = [ Re(a1) · · · Re(an) Im(a1) · · · Im(an)]
T

. (1.17)

While it is possible to cover the field of values with a complex ellipsoid in Cn, doing
so implies a symmetry between the real and imaginary components which generally
results in a larger ellipsoid than if the direct sum of the real and imaginary components
are covered in R2n.

1.1.3 Robust minimum variance beamforming

A generalization of (1.4) that captures our desire to minimize the weighted power
output of the array in the presence of uncertainties in a(θ) is then:

minimize w∗Ryw
subject to Re w∗a ≥ 1 ∀a ∈ E , (1.18)

where Re denotes the real part. Here, E is an ellipsoid that covers the possible range
of values of a(θ) due to imprecise knowledge of the array manifold a(·), uncertainty
in the angle of arrival θ, or other factors. We shall refer to the optimal solution of
(1.18) as the robust minimum variance beamformer (RMVB).
We use the constraint Re w∗a ≥ 1 for all a ∈ E in (1.18) for two reasons. First,
while normally considered a semi-infinite constraint, we show in §1.3 that it can
be expressed as a second-order cone constraint. As a result, the robust minimum
variance beamforming problem (1.18) can be solved reliably and efficiently. Second,
the real part of the response is an efficient lower bound for the magnitude of the
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response, as the objective w∗Ryw is unchanged if the weight vector w is multiplied
by an arbitrary shift ejφ. This is particularly true when the uncertainty in the array
response is relatively small. It is unnecessary to constrain the imaginary part of the
response to be nominally zero.
Our approach differs from the previously mentioned beamforming techniques in that
the weight selection uses the a-priori uncertainties in the array manifold in a precise
way; the RMVB is guaranteed to satisfy the minimum gain constraint for all values
in the uncertainty ellipsoid.
Recently, several papers have addressed uncertainty in a similar framework. Wu and
Zhang [43] observe that the array manifold may be described as a polyhedron and
that the robust beamforming problem can be cast as a quadratic program. While the
polyhedron approach is less conservative, the size of the description and hence the
complexity of solving the problem grows with the number of vertices. Vorobyov
et al. [40], [41], and [16] describe the use of second-order cone programming for
robust beamforming in the case where the uncertainty is in the array response is
isotropic, i.e., a Euclidean ball. Our method, while derived differently, yields the
same beamformer as proposed by Li et al. [35], [29], [28].
In this chapter, we consider the case in which the uncertainty is anisotropic [33], [32],
[31]. We also show how the beamformer weights can be computed efficiently.

1.1.4 Outline of the chapter

The rest of this chapter is organized as follows. In §1.2, we motivate the need for
robustness with a simple array which includes the effect of coupling between antenna
elements. In §1.3 we discuss the RMVB. A numerically efficient technique based
on Lagrange multiplier methods is described; we will see that the RMVB can be
computed with the same order of complexity as its non-robust counterpart. A nu-
merical example is given in §1.4. In §1.5 we describe ellipsoidal modeling methods
which make use of simulated or measured values of the array manifold. In §1.6 we
discuss more sophisticated techniques, based on ellipsoidal calculus, for propagat-
ing uncertainty ellipsoids. In particular, we describe a numerically efficient method
for approximating the numerical range of the Hadamard (element-wise) product of
two ellipsoids. This form of uncertainty arises when the array outputs are sub-
ject to multiplicative uncertainties. A numerical beamforming example considering
multiplicative uncertainties is given in §1.7. Our conclusions are given in §1.8.

1.2 A PRACTICAL EXAMPLE

Our goals for this section are twofold:

• to make the case that antenna elements may behave very differently in free
space than as part of closely spaced arrays, and

• to motivate the need for robustness in beamforming.
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Fig. 1.2 The four-element array. For this array, we simulate the array response which includes
the effect of coupling between elements. In this example, the gains g1, . . . , g4 are all assumed
nominal. Later we consider the effect of multiplicative uncertainties.

Consider the four-element linear array of half-wave dipole antennas depicted in
Figure 1.2. Let the frequency of operation be 900 MHz and the diameter of the
elements be 1.67 mm. Assume each dipole is terminated into a 100 ohm load. The
length of the dipole elements was chosen such that an isolated dipole in free space
matched this termination impedance.
The array was simulated using the Numerical Electromagnetics Code, version 4
(NEC-4) [9]. Each of the radiating elements was modeled with six wire segments.
The nominal magnitude and phase responses are given in Figures 1.3 and 1.4, re-
spectively. Note that the amplitude is not constant for all angles of arrival or the
same for all elements. This will generally be the case with closely spaced antenna
elements due to the high level of inter-element coupling.
In Figure 1.5, we see that the vector norm of the array response is not a constant
function of AOA, despite the fact that the individual elements, in isolation, have an
isotropic response.
Next, let us compare the performance of the RMVB with Capon’s method using this
array, with nominal termination impedances. Assume the desired signal impinges
on the array from an angle θsig = 127◦ and has a signal-to-noise ratio (SNR) of 20
decibels (dB). We assume that an interfering signal arrives at an angle of θint = 150◦

with amplitude twice that of the desired signal. For Capon’s method, we assume an
AOA of θnom = 120◦. For the RMVB, we compute a minimum-volume ellipsoid
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covering the numerical range of the array manifold for all angles of arrival between
112◦ and 128◦. The details of this calculation will be described in §1.5. Let wmv ∈ C4

denote the beamformer vector produced by Capon’s method and wrmvb ∈ C4 the
robust minimum-variance beamformer, i.e., the optimal solution of (1.18).
A plot of the response of the minimum-variance beamformer (MVB) and the robust
minimum-variance beamformer (RMVB) as a function of angle of arrival is shown
in Figure 1.6. By design, the response of the MVB has unity gain in the direction
of the assumed AOA, i.e., w∗

mva(θnom) = 1, where a : R → C4 denotes the
array manifold. The MVB produces a deep null in the direction of the interference:
w∗

mva(θint) = −0.0061 + 0i. Unfortunately, the MVB also strongly attenuates the
desired signal, with w∗

mva(θsig) = −0.0677 + 0i. The resulting post-beamforming
signal-to-interference-plus-noise ratio (SINR) is -10.5 dB,appreciably worse than the
SINR obtained using a single antenna without beamforming.
While the robust beamformer does not cast as deep a null in the direction of the
interfering signal, i.e., w∗

rmvba(θint) = −0.0210+0i, it maintains greater than unity
gain for all angles of arrival in our design specification. The SINR obtained using
the RMVB is 12.4 dB.
When the actual AOA of the desired signal equals the assumed 120◦, the SINR of
the MVB is an impressive 26.5 dB, compared to 10.64 dB for the RMVB. It is
tempting then to consider methods to reduce the uncertainty and potentially realize
this substantial improvement in SINR. Such efforts are unlikely to be fruitful. For
example, a 1◦ error in the assumed AOA reduces the SINR of Capon’s method
by more than 20 dB to 4.0 dB. Also, the mathematical values of the array model
differ from the actual array response for a number of reasons, of which error in the
assumed AOA is but one. In the presence of array calibration errors, variations due to
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termination impedances, and multiplicative gain uncertainties, non-robust techniques
simply don’t work reliably.
In our example, we considered only uncertainty in the angle of arrival; verifying
the performance for the non-robust method involved evaluating points in a one-
dimensional interval. Had we considered the additional effect of multiplicative
gain variations, for example, the numerical cost of verifying the performance of the
beamformer for a dense grid of possible array values could dwarf the computational
complexity of the robust method. The approach of the RMVB is different; it makes
specific use of the uncertainty in the array response. We compute either a worst-
case optimal vector for the ellipsoidal uncertainty region or a proof that the design
specification is infeasible. No subsequent verification of the performance is required.

1.3 ROBUST WEIGHT SELECTION

Recall from §1.1 that the RMVB was the optimal solution to

minimize w∗Ryw
subject to Re w∗a ≥ 1 ∀a ∈ E . (1.19)

For purposes of computation, we will express the weight vector w and the values
of the array manifold a as the direct sum of the corresponding real and imaginary
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components

x =

[

Rew
Imw

]

and z =

[

Re a
Im a

]

. (1.20)

The real and imaginary components of the product w∗a can be expressed as

Rew∗a = xT z (1.21)

and
Imw∗a = xT Uz, (1.22)

where U is the orthogonal matrix

U =

[

0 In

−In 0

]

,

and In is an n× n identity matrix. The quadratic form w∗Ryw may be expressed in
terms of x as xT Rx, where

R =

[

ReRy − ImRy

ImRy ReRy

]

.

Assume R is positive definite; with sufficient sample support, it is with probability
one.
Let E = {Au + c | ‖u‖ ≤ 1} be an ellipsoid covering the possible values of x, i.e.,
the real and imaginary components of a. The ellipsoid E is centered at c; the matrix
A determines its size and shape. The constraint Re w∗a ≥ 1 for all a ∈ E in (1.18)
can be expressed

xT z ≥ 1 ∀z ∈ E , (1.23)

which is equivalent to

uT AT x ≤ cT x− 1 for all u s.t. ‖u‖ ≤ 1. (1.24)

Now, (1.24) holds for all ‖u‖ ≤ 1 if and only if it holds for the value of u that
maximizes uT AT x, namely u = − AT x

‖AT x‖
. By the Cauchy-Schwartz inequality, we

see that (1.23) is equivalent to the constraint

‖AT x‖ ≤ cT x− 1, (1.25)

which is called a second-order cone constraint [30]. We can then express the robust
minimum-variance beamforming problem (1.18) as

minimize xT Rx
subject to ‖AT x‖ ≤ cT x− 1,

(1.26)

which is a second-order cone program. See [30], [4], and [27]. The subject of robust
convex optimization is covered in [8], [34], [13], [3], [2],and [5].
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By assumption, R is positive definite and the constraint ‖AT x‖ ≤ cT x− 1 in (1.26)
precludes the trivial minimizer of xT Rx. Hence, this constraint will be tight for any
optimal solution and we may express (1.26) in terms of real-valued quantities as

minimize xT Rx
subject to cT x = 1 + ‖AT x‖. (1.27)

Compared to the MVB, the RMVB adds a margin that scales with the size of the
uncertainty. In the case of no uncertainty where E is a singleton whose center is
c = [Re a(θd)

T
Im a(θd)

T ]T , (1.27) reduces to Capon’s method and admits an
analytical solution given by the MVB (1.5). Unlike the use of additional point or
derivative mainbeam constraints or a regularization term, the RMVB is guaranteed
to satisfy the minimum gain constraint for all values in the uncertainty ellipsoid. In
the case of isotropic array uncertainty, the optimal solution of (1.18) yields the same
weight vector (to a scale factor) as the regularized beamformer for the proper the
proper choice of µ.

1.3.1 Lagrange multiplier methods

We may compute the RMVB efficiently using Lagrange multiplier methods. See, for
example, [14], [18], [17, §12.1.1], and [6]. The RMVB is the optimal solution of

minimize xT Rx
subject to ‖AT x‖2 = (cT x− 1)2

(1.28)

if we impose the additional constraint that cT x ≥ 1. We define the Lagrangian
L : Rn × R→ R associated with (1.28) as

L(x, λ) = xT Rx + λ(‖AT x‖2 − (cT x− 1)2)

= xT (R + λQ)x + 2λcT x− λ,
(1.29)

where Q = AAT − ccT . To calculate the stationary points, we differentiate L(x, y)
with respect to x and λ; setting these partial derivatives equal to zero yields the
Lagrange equations:

(R + λQ)x = −λc (1.30)

and
xT Qx + 2cT x− 1 = 0. (1.31)

To solve for the Lagrange multiplier λ, we note that equation (1.30) has an analytical
solution given by

x = −λ(R + λQ)−1c;

applying this to (1.31) yields

f(λ) = λ2cT (R + λQ)−1Q(R + λQ)−1c
−2λcT (R + λQ)−1c− 1.

(1.32)
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The optimal value of the Lagrange multiplier λ∗ is then a zero of (1.32).
We proceed by computing the eigenvalue/eigenvector decomposition

V ΓV T = R−1/2Q(R−1/2)T

to diagonalize (1.32), i.e.,

f(λ) = λ2c̄T (I + λΓ)−1Γ(I + λΓ)−1c̄

−2λc̄T (I + λΓ)−1c̄− 1,
(1.33)

where c̄ = V T R−1/2c. Equation (1.33) reduces to the following scalar secular
equation:

f(λ) = λ2

n
∑

i=1

c̄2
i γi

(1 + λ γi)2
− 2λ

n
∑

i=1

c̄2
i

(1 + λ γi)
− 1, (1.34)

where γ ∈ Rn are the diagonal elements of Γ. The values of γ are known as the
generalized eigenvalues of Q and R and are the roots of the equation det(Q−λR) =
0. Having computed the value of λ∗ satisfying f(λ∗) = 0, the RMVB is computed
according to

x∗ = −λ∗(R + λ∗Q)−1c. (1.35)

Similar techniques have been used in the design of filters for radar applications; see
Stutt and Spafford [36] and Abramovich and Sverdlik [1].
In principle, we could solve for all the roots of (1.34) and choose the one that results
in the smallest objective value xT Rx and satisfies the constraint cT x > 1, assumed
in (1.28). In the next section, however, we show that this constraint is only met for
values of the Lagrange multiplier λ greater than a minimum value, λmin. We will see
that there is a single value of λ > λmin that satisfies the Lagrange equations.

1.3.2 A lower bound on the Lagrange multiplier

We begin by establishing the conditions under which (9) has a solution. Assume
R = RT Â 0, i.e., R is symmetric and positive definite.

Lemma 1 For A ∈ Rn×n full rank, there exists an x ∈ Rn for which ‖AT x‖ =
cT x− 1 if and only if cT (AAT )−1c > 1.

Proof: To prove the if direction, define

x(λ) =
“

cc
T − AA

T − λ
−1

R
”

−1

c. (1.36)

By the matrix inversion lemma, we have

cT x(λ) − 1 = cT (ccT − AAT − λ−1R)−1c − 1

= 1
cT (AAT +λ−1R)−1c−1

.
(1.37)
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For λ > 0, cT (AAT + λ−1R)−1c is a monotonically increasing function of λ;
therefore, for cT (AAT )−1c > 1, there exists a λmin ∈ R+ for which

c
T (AA

T + λ
−1
minR)−1

c = 1. (1.38)

This implies that the matrix (R + λminQ) is singular. Since

limλ→∞ cT x(λ) − 1 = −cT (AAT − ccT )−1c − 1

= 1
cT (AAT )−1c−1

> 0,

cT x(λ) − 1 > 0 for all λ > λmin.

As in (1.32) and (1.34), let f(λ) = ‖AT x‖2 − (cT x − 1)2. Examining (1.32),
we see

lim
λ→∞

f(λ) = −c
T (AA

T − cc
T )−1

c − 1

=
1

cT (AAT )−1c − 1
> 0.

Evaluating (1.32) or (1.34), we see lim
λ→λ

+

min

f(λ) = −∞. For all λ >

λmin, cT x > 1 and f(λ) is continuous. Hence f(λ) assumes the value of 0,
establishing the existence of a λ > λmin for which cT x(λ) − 1 = ‖AT x(λ)‖.

To show the only if direction, assume x satisfies ‖AT x‖ ≤ cT x − 1. This
condition is equivalent to

z
T
x ≥ 1 ∀z ∈ E = {Au + c | ‖u‖ ≤ 1}. (1.39)

For (1.39) to hold, the origin cannot be contained in ellipsoid E , which implies
cT (AAT )−1c > 1. ¤

Remark: The constraints (cT x − 1)2 = ‖AT x‖2 and cT x − 1 > 0 in (1.28),
taken together, are equivalent to the constraint cT x − 1 = ‖AT x‖ in (1.27). For
R = RT Â 0, A full rank and cT (AAT )−1c > 1, (1.27) has a unique minimizer x∗.
For λ > λmin, (λ−1R + Q) is full rank, and the Lagrange equation (1.30)

(λ−1R + Q)x∗ = −c

holds for only a single value of λ. This implies there is a unique value of λ > λmin,
for which the secular equation (1.34) equals zero.

Lemma 2 For x = −λ(R+λQ)−1c ∈ Rn with A ∈ Rn×n full rank, cT (AAT )−1c >
1, and λ > 0, cT x > 1 if and only if the matrix (R + λ(AAT − ccT )) has a negative
eigenvalue.

Proof: Consider the matrix

M =

»

λ−1R + AAT c

cT 1

–

.
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We define the inertia of M as the triple In{M} = {n+, n−, n0}, where n+ is
the number of positive eigenvalues, n− is the number of negative eigenvalues,
and n0 is the number of zero eigenvalues of M. See Kailath et al. [23, pp.729-
730].
Since both block diagonal elements of M are invertible,

In{M} = In{λ−1R + AAT } + In{∆1}

= In{1} + In{∆2},
(1.40)

where ∆1 = 1 − cT (λ−1R + AAT )−1c, the Schur complement of the (1,1)
block in M, and ∆2 = λ−1R + AAT − ccT , the Schur complement of the
(2,2) block in M. We conclude cT (λ−1R + AAT )−1c > 1 if and only if the
matrix (λ−1R+AAT −ccT ) has a negative eigenvalue. By the matrix inversion
lemma,

1

cT (λ−1R + AAT )−1c − 1
= −c

T (λ−1
R + AA

T − cc
T )−1

c − 1. (1.41)

Inverting a scalar preserves its sign, therefore,

c
T
x − 1 = −c

T (λ−1
R + AA

T − cc
T )−1

c − 1 > 0 (1.42)

if and only if λ−1R + AAT − ccT has a negative eigenvalue. ¤

Remark: Applying Sylvester’s law of inertia to equations (1.32) and (1.34), we see
that

λmin = − 1

γj
, (1.43)

where γj is the single negative generalized eigenvalue. Using this fact and (1.34),
we can readily verify limλ→λ+

min

f(λ) = −∞, as stated in Lemma 1.

Two immediate consequences follow from Lemma 2. First, we may exclude from
consideration any value of λ less than λmin. Second, for all λ > λmin, the matrix
R + λQ has a single negative eigenvalue. We now use these facts to obtain a tighter
lower bound on the value of the optimal Lagrange multiplier.
We begin by rewriting (1.34) as

n
∑

i=1

c̄2
i (−2− λγi)

(1 + λγi)2
=

1

λ
. (1.44)

Recall exactly one of the generalized eigenvalues γ in the secular equation (1.44) is
negative. We rewrite (1.44) as

λ−1 =
c̄2
j (−2− λγj)

(1 + λ γj)2
−
∑

i6=j

c̄2
i (2 + λγi)

(1 + λγi)2
(1.45)

where j denotes the index associated with this negative eigenvalue.
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Fig. 1.7 Plot of the secular equation from the §1.2 example. Here γj is the (single) nega-
tive eigenvalue of R−1/2(AAT − ccT )(R−1/2)T , λ̂ is the computed lower bound on the
Lagrange multiplier, and λ∗ the solution to the secular equation.

A lower bound on λ can be found by ignoring the terms involving the non-negative
eigenvalues in (1.45) and solving

λ−1 =
c̄2
i (−2− λγj)

(1 + λγj)2
.

This yields a quadratic equation in λ

λ2(c̄2
jγj + γ2

j ) + 2λ(γj + c̄2
j ) + 1 = 0, (1.46)

the roots of which are given by

λ =
−1± |c̄j |(γj + c̄2

j )
−1/2

γj
. (1.47)

By Lemma 2, the constraint cT x∗ ≥ 1 implies R + λ∗Q has a negative eigenvalue,
since

cT x∗ = cT (−λ∗(R + λQ)−1)c ≥ 1
= −λ∗c̄T (I + λ∗Γ)−1c̄

Hence, λ∗ > −1/γj where γj is the single negative eigenvalue. We conclude λ∗ > λ̂,
where

λ̂ =
−1− |c̄j |(γj + c̄2

j )
−1/2

γj
. (1.48)
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In Figure 1.7 we see a plot of the secular equation and the improved lower bound λ̂
found in (1.48).

1.3.3 Some technical details

In this section, we show that the parenthetical quantity in (1.48) is always non-
negative for any feasible beamforming problem. We also prove that the lower bound
on the Lagrange multiplier in (1.48 is indeed that.
Recall that for any feasible beamforming problem, Q = AAT − ccT has a negative
eigenvalue. Note that c̄j = vT

j R− 1
2 c, where vj is the eigenvector associated with the

negative eigenvalue γj . Hence, vj ∈ Rn can be expressed as the optimal solution of

minimize vT R− 1
2 (AAT − ccT )

(

R− 1
2

)T

v

subject to ‖v‖ = 1
(1.49)

and γj = vT
j R− 1

2 (AAT − ccT )
(

R− 1
2

)T

vj , the corresponding objective value.
Since

c̄2
j = vT

j R− 1
2 c

(

vT
j R− 1

2 c
)T

= vT
j R− 1

2 ccT
(

R− 1
2

)T

vj , (1.50)

we conclude (γj + c̄2
j ) = vT

j R− 1
2 AAT (R− 1

2 )T vj > 0.

To show that there exists no root between λmin and λ̂, we rewrite the secular equa-
tion (1.34)

f(λ) = g(λ) + h(λ), (1.51)

where

g(λ) = λ2
c̄2
jγj

(1 + λγj)2
− 2λ

c̄2
j

(1 + λγj)
− 1

=
λ2(c̄2

jγj + γ2
j ) + 2λ(γj + c̄2

j ) + 1

−(1 + λγj)2

(1.52)

and

h(λ) = λ2
∑

i6=j

c̄2
jγj

(1 + λγj)2
− 2λ

∑

i6=j

c̄2
j

(1 + λγj)

= −λ
∑

i6=j

(λγi + 2)(γi + c̄2
i )

(1 + λγi)2

(1.53)

Comparing (1.46) and (1.52), we see the roots of g(λ) are given by (1.47). Since
g′(λ) < 0 for all λ < −1

γj
and limλ→0 g(λ) = −1, there exists no solution to the

secular equation for γ ∈ [0,− 1
γj

). Hence the unique root of g(λ) is given by (1.48).

Since all of the eigenvalues γi, i 6= j in (1.52) are non-negative, h(λ) is continuous,
bounded and differentiable for all λ > 0. The derivative of the h with respect to λ is
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given by

h′(λ) = −2
∑

i6=j

c̄2
i

(1 + λγi)3
(1.54)

By inspection, h′(λ) < 0 for all λ > 0.

We now show that λ̂ is a strict lower bound for the root of the secular equation (1.34).
Define t : R× R→ R, according to:

t(λ, θ) = g(λ) + θh(λ), (1.55)

where θ ∈ [0, 1]. For θ = 0, t(λ, θ) = g(λ); hence t(λ̂, 0), where λ̂ is as in (1.48).
As g(λ) and h(λ) are locally smooth and bounded, the total differential of t is given
by

dt =

(

∂g

∂λ
+ θ

∂h

∂λ

)

dλ + h(λ)dθ

The first order condition for the root t is given by:
(

∂g

∂λ
+ θ

∂h

∂λ

)

dλ = −h(λ)dθ.

Since f(λ) is an increasing function of λ for all λ ∈ [−1/γj , λ
∗] and h′(λ) < 0

for all λ > 0,

(

∂g

∂λ
+ θ

∂h

∂λ

)

> 0 for all θ ∈ [0, 1] and λ ∈ [−1/γj , λ
∗]. Recall

h(λ) < 0 for all λ > 0. Hence, as θ is increased, the value of λ satisfying t(θ, λ)
increases. The value of λ satisfying t(1, λ) is the solution to the secular equation,
establishing that the (1.48) is a lower bound.

1.3.4 Solution of the secular equation

The secular equation (1.34) can be efficiently solved using the Newton-Raphson
method. This method enjoys quadratic convergence if started sufficiently close to the
root λ∗; see Dahlquist and Björck [11, §6] for details. The derivative of this secular
equation with respect to λ is given by

f ′(λ) = −2
n
∑

i=1

c̄2
i

(1 + λγi)3
. (1.56)

The secular equation (1.34) is not necessarily a monotonically increasing function of
λ. A plot showing the convergence of the secular equation, from the §1.2 example, is
shown in Figure 1.8.
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Fig. 1.8 Iterations of the secular equation. For λ sufficiently close to λ∗, in this case, after 9
iterations, the iterates converge quadratically, doubling the number of bits of precision at every
iteration.

1.3.5 Summary and computational complexity of the RMVB computation

We summarize the algorithm below. In parentheses are approximate costs of each of
the numbered steps; the actual costs will depend on the implementation and problem
size [12]. As in [17] we will consider a flop to be any single floating-point operation.

RMVB computation

given R, strictly feasible A and c.

1. Calculate Q← AAT − ccT . (2n2)
2. Change coordinates. (2n3)

a. compute Cholesky factorization LLT = R.
b. compute L−1/2.

c. Q̃← L−1/2Q(L−1/2)T .
3. Eigenvalue/eigenvector computation. (10n3)

a. compute V ΓV T = Q̃.
4. Change coordinates. (4n2)

a. c̄← V T R−1/2c.
5. Secular equation solution. (80n)

a. compute initial feasible point λ̂

b. find λ∗ > λ̂ for which f(λ) = 0.
6. Compute x∗ ← (R + λ∗Q)−1c (n3)

The computational complexity of these steps is discussed below:
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1. Forming the matrix product AAT is expensive and should be avoided. If the
parameters of the uncertainty ellipsoid are stored, the shape parameter may
be stored as AAT . In the event that an aggregate ellipsoid is computed using
the methods of §1.6, the quantity AAT is produced. In either case, only the
subtraction of the quantity ccT need be performed, requiring 2n2 flops.

2. Computing the Cholesky factor L in step 2 requires n3/3 flops. The resulting
matrix is triangular, hence computing its inverse requires n3/2 flops. Forming
the matrix Q̃ in step 2.c requires n3 flops.

3. Computing the eigenvalue/eigenvector decomposition is the most expensive
part of the algorithm. In practice, it takes approximately 10n3 flops.

5. Solution of the secular equation requires minimal effort. The solution of the
secular equation converges quadratically. In practice, the starting point λ̂ is
close to λ∗; hence, the secular equation generally converges in 7 to 10 iterations,
independent of problem size.

6. Accounting for the symmetry in R and Q, computing x∗ requires n3 flops.

In comparison, the regularized beamformer requires n3 flops. Hence the RMVB re-
quires approximately 12 times the computational cost of the regularized beamformer.
Note that this factor is independent of problem size.
In §1.6, we extend the methods of this section to the case of multiplicative un-
certainties by computing an outer approximation to the element-wise or Hadamard
product of ellipsoids. Using this approximation, no subsequent verification of the
performance is required.

1.4 A NUMERICAL EXAMPLE

Consider a 10-element uniform linear array, centered at the origin, in which the
spacing between the elements is half of a wavelength. Assume the response of each
element is isotropic and has unit norm. If the coupling between elements is ignored,
the response of the array a : R→ C10 is given by:

a(θ) =
[

e−9φ/2 e−7φ/2 . . . e7φ/2 e9φ/2
]T

,

where φ = π cos(θ) and θ is the angle of arrival. As seen in §1.2, the responses of
closely spaced antenna elements may differ substantially from this model.
In this example, three signals impinge upon the array: a desired signal sd(t) and two
uncorrelated interfering signals sint1(t) and sint2. The signal-to-noise ratio (SNR)
of the desired signal at each element is 20 dB. The angles of arrival of the interfering
signals, θint1 and θint2, are 30◦ and 75◦; the SNRs of these interfering signals, 40dB
and 20dB, respectively. We model the received signals as:

y(t) = adsd(t) + a(θint1)sint1(t) + a(θint2)sint2(t) + v(t), (1.57)
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where ad denotes the array response of the desired signal, a(θint1) and a(θint2), the
array responses for the interfering signals, sd(t) denotes the complex amplitude of
the desired signal, sint1(t) and sint2(t), the interfering signals, and v(t) is a complex
vector of additive white noises.
Let the noise covariance E vv∗ = σ2

nI, where I is an n× n identity matrix and n is
the number of antennas, viz., 10. Similarly define the powers of the desired signal and
interfering signals to be E sds∗d = σ2

d, E sint1s
∗
int1 = σ2

int1, and E sint1s
∗
int2 = σ2

int2,
where

σ2
d

σ2
n

= 102,
σ2

int1

σ2
n

= 104,
σ2

int2

σ2
n

= 102.

If we assume the signals sd(t), sint1(t), sint2(t), and v(t) are all uncorrelated, the
estimated covariance, which uses the actual array response, is given by

ER = E yy∗ = σ2
dada∗

d + σ2
int1a(θint1)a(θint1)

∗ + σ2
int2a(θint2)a(θint2)

∗ + σ2
nI.

(1.58)
In practice, the covariance of the received signals plus interference is often neither
known nor stationary and hence must be estimated from recently received signals. As
a result, the performance of beamformers is often degraded by errors in the covariance
due to either small sample size or movement in the signal sources.
We will compare the performance of the robust beamformer with beamformers using
two regularization techniques: diagonal loading and eigenvalue thresholding. In this
example, we assume a-priori, that the nominal AOA, θnom, is 45◦. The actual array
response is contained in an ellipsoid E(c, P ), whose center and configuration matrix
are computed from N equally-spaced samples of the array response at angles between
40◦ and 50◦ according to

c =
1

N

N
∑

i=1

a(θi) P =
1

αN

N
∑

i=1

(a(θi)− c) (a(θi)− c)
∗
, (1.59)

where

θi = θnom +

(

−1

2
+

i− 1

N − 1

)

∆θ, for i ∈ [1, N ], (1.60)

and
α = sup(a(θi)− c)∗P−1(a(θi)− c)

i ∈ [1, N ]
.

Here, ∆θ = 10◦, and N = 64.

In Figure 1.9, we see the reception pattern of the array employing the MVB, the
regularized beamformer (1.10), and the RMVB, all computed using the nominal
AOA and the corresponding covariance matrix R. The regularization term used in the
regularized beamformer was chosen to be 1

100
of the largest eigenvalue of the received

covariance matrix. By design, both the MVB and the regularized beamformer have
unity gain at the nominal AOA. The response of the regularized beamformer is seen
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Fig. 1.9 The response of the MVB (Capon’s method, dashed trace), the regularized beam-
former employing diagonal loading (dotted trace), and the RMVB (solid trace) as a function
of angle of arrival θ. Note that the RMVB preserves greater than unity gain for all angles of
arrival in the design specification of θ ∈ [40, 50]

to be a detuned version of the MVB. The RMVB maintains greater-than-unity gain
for all AOAs covered by the uncertainty ellipsoid E(c, P ).

In Figure 1.10 we see the effect of changes in the regularization parameter µ on
the worst-case SINRs for the regularized beamformers using diagonal loading and
eigenvalue thresholding, and the effect of scaling the uncertainty ellipsoid on the
RMVB. Using the definition of SINR (1.6), we define the worst case SINR is as the
minimum objective value of the following optimization problem:

minimize
σ2

d‖w∗a‖2
Ew∗Rvw

subject to a ∈ E(c, P ),

where the expected covariance of the interfering signals and noises is given by

ERv = σ2
int1a(θint1)a(θint1)

∗ + σ2
int1a(θint2)a(θint2)

∗ + σ2
nI.

The weight vector w and covariance matrix of the noise and interfering signals Rv

used in its computation reflect the chosen value of the array manifold.
For diagonal loading, the parameter µ is the scale factor multiplying the identity
matrix added to the covariance matrix, divided by the largest eigenvalue of the
covariance matrix R. For small values of µ, i.e., 10−6, the performance of the
regularized beamformer approaches that of Capon’s method; the worst-case SINR
for Capon’s method is -29.11 dB. As µ→∞, wreg → a(θnom).
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Fig. 1.10 The worst-case performance of the regularized beamformers based on diagonal
loading (dotted) and eigenvalue thresholding (dashed) as a function of the regularization
parameter µ. The effect of scaling of the uncertainty ellipsoid used in the design of the RMVB
(solid) is seen; for µ = 1 the uncertainty used in designing the robust beamformer equals the
actual uncertainty in the array manifold.

The beamformer based on eigenvalue thresholding performs similarly to the beam-
former based on diagonal loading. In this case, µ is defined to be the ratio of the
threshold to the largest eigenvalue of R; as such, the response of this beamformer is
only computed for µ ≤ 1.

For the robust beamformer, we use µ to define the ratio of the size of the ellipsoid used
in the beamformer computation Edesign divided by size of the actual array uncertainty
Eactual. Specifically, ifEactual = {Au+c | ‖u‖ ≤ 1}, Edesign = {µAv+c | ‖v‖ ≤ 1}.
When the design uncertainty equals the actual, the worst-case SINR of the robust
beamformer is seen to be 15.63 dB. If the uncertainty ellipsoid used in the RMVB
design significantly overestimates or underestimates the actual uncertainty, the worst-
case SINR is decreased.
For comparison, the worst-case SINR of the MVB with (three) unity mainbeam
constraints at 40◦, 45◦, and 50◦ is 1.85 dB. The MV-EPC beamformer was computed
using the same 64 samples of the array manifold as the computation of the uncertainty
ellipsoid (1.59); the design value for the response in each of these directions was
unity. The worst-case SINRs of the rank-1 through rank-4 MV-EPC beamformers
were found to be -28.96 dB, -3.92 dB, 1.89 dB, and 1.56 dB, respectively. The
worst-case response for the rank-5 and rank-6 MV-EPC beamformers is zero; i.e., it
can fail completely.

1.4.1 Power estimation
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Fig. 1.11 The ambiguity function for RMVB beamformer using an uncertainty ellipsoid
computed from a beamwidth of 10◦ (solid), 2◦ (dashed) and the Capon beamformer (dotted).
The true powers of the signal of interest and interfering signals are denoted with circles. In
this example, the additive noise power at each element has unit variance; hence, the ambiguity
function corresponds to SNR.

If the signals and noises are all uncorrelated, the sample covariance, as computed in
(1.3), equals its expected value, and the uncertainty ellipsoid contains the actual array
response, the RMVB is guaranteed to have greater than unity magnitude response for
all values of the array manifold in the uncertainty ellipsoid E . In this case, an upper
bound on the power of the desired signal, σ2

d, is simply the weighted power out of
the array, namely

σ̂2
d = w∗Ryw. (1.61)

In Figure 1.11, we see the square of the norm of the weighted array output as a function
of the hypothesized angle of arrival θnom. for the RMVB using uncertainty ellipsoids
computed according to (1.59) and (1.60) with ∆θ = 10◦, 4◦, and 0◦. If the units of
the array output correspond to volts or amperes, the square of the magnitude of the
weighted array output has units of power. This plot is referred to in the literature as a
spatial ambiguity function [29],[28]; its resolution is seen to decrease with increasing
uncertainty ellipsoid size. The RMVB computed for ∆θ = 0◦ corresponds to the
Capon beamformer. The spatial ambiguity function using the Capon beamformer
provides an accurate power estimate only when the assumed array manifold equals
the actual.
We summarize the effect of differences between assumed and actual uncertainty
regions on the performance of the RMVB:
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• If the assumed uncertainty ellipsoid equals the actual uncertainty, the gain
constraint is met and no other choice of gain vector yields better worst-case
performance over all values of the array manifold in the uncertainty ellipsoid.

• If the assumed uncertainty ellipsoid is smaller than the actual uncertainty, the
minimum gain constraint will generally not be met for all possible values if
the array manifold. If the uncertainty ellipsoid used in computing the RMVB
is much smaller than the actual uncertainty, the performance may degrade
substantially. The power estimate, computed using the RMVB as in (1.61) is
not guaranteed to be an upper bound, even when an accurate covariance is used
in the computation.

• If assumed uncertainty is greater than the actual uncertainty, the performance
is generally degraded, but the minimum gain in desired look direction is main-
tained. Given accurate covariance, the appropriately scaled weighted power
out of the array yields an upper bound on the power of the received signal.

The performance of the RMVB is not optimal with respect to SINR; it is optimal
in the following sense. For a fixed covariance matrix R and an array response
contained in an ellipsoid E , no other vector achieves a lower weighted power out of
the array while maintaining the real part of the response greater than unity for all
values of the array contained in E .
In the next section, we describe two methods for computing ellipsoids covering a
collection of points.

1.5 ELLIPSOIDAL MODELING

The uncertainty in the response of an antenna array to a plane wave arises principally
from three sources:

• uncertainty in the angle of arrival (AOA),

• uncertainty in the array manifold given perfect knowledge of the AOA (also
called calibration errors), and

• variations in the gains of the signal-processing paths.

In this section, we describe methods to compute an ellipsoid that approximates or
covers the range of possible values of the array manifold, given these uncertainties.

1.5.1 Ellipsoid computation using mean and covariance of data

If the array manifold is measured in a controlled manner, the ellipsoid describing it
may be generated from the mean and covariance of the measurements from repeated
trials. In the case where the array manifold is not measured but rather predicted from
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Fig. 1.12 A minimum-volume ellipsoid Emv covering points drawn from a bivariate normal
distribution. The one-, two-, and 3-σ ellipsoids calculated from the first and second moments
of the data are also shown.

numerical simulations, the uncertainty may take into account variation in the array
response due to manufacturing tolerance, termination impedance, and similar effects.
If the underlying distribution is multivariate normal, the k standard deviation (kσ)
ellipsoid would be expected to contain a fraction of points equal to 1 − χ2(k2, n),
where n is the dimension of the random variable.
In Figure 1.12, we see a two-dimensional ellipsoid generated according to E =
{Au | ‖u‖ ≤ 1}, where

A =

[

1 2
−1 3

]

.

The one-, two-, and three-sigma ellipsoids are shown along with the minimum-volume
ellipsoid containing these points.
We may generate an ellipsoid that covers a collection of points by using the mean as
the center and an inflated covariance. While this method is very efficient numerically,
it is possible to generate “smaller” ellipsoids using the methods of the next section.

1.5.2 Minimum-volume ellipsoid (MVE)

Let S = {s1, . . . , sm} ∈ R2n be a set of possible values of the array manifold a(·).
Assume S is bounded. In the case of a full rank ellipsoid, the problem of finding the
minimum-volume ellipsoid containing the convex hull of S can be expressed as the
following semidefinite program:

minimize log det F−1

subject to F = F T Â 0
‖Fsi − g‖ ≤ 1, i = 1, . . . ,m.

(1.62)
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See Vandenberghe and Boyd [38] and Wu and Boyd [42]. The minimum-volume
ellipsoid E containing S is called the Löwner-John ellipsoid. Equation (1.62) is a
convex problem in variables F and g. For A full rank,

{x | ‖Fx− g‖ ≤ 1} ≡ {Au + c | ‖u‖ ≤ 1} (1.63)

with A = F−1 and c = F−1g. The choice of A is not unique; in fact, any matrix of
the form F−1U will satisfy (1.63), where U is any orthogonal matrix.
Commonly, S is well approximated by an affine set of dimension l < 2n and
(1.62) will be poorly conditioned numerically. We proceed by first applying a rank-
preserving affine transformation f : R2n → Rl to the elements of S, with f(s) =
UT

1 (s − s1). The matrix U1 consists of the l left singular vectors, corresponding to
the nonzero singular values, of the 2n× (m− 1) matrix

[(s2 − s1) (s3 − s1) · · · (sm − s1)].

We may then solve (1.62) for the minimum-volume, non-degenerate ellipsoid in Rl

that covers the image of S under f . The resulting ellipsoid can be described in R2n

as E = {Au + c | ‖u‖ ≤ 1}, with

A = U1F
−1

and
c = U1F

−1g + s1.

For an l-dimensional ellipsoid description, a minimum of l + 2 points are required;
i.e., m ≥ l + 2.

Compared to an ellipsoid based on the first- and second-order statistics, a minimum-
volume ellipsoid is robust in the sense that it is guaranteed to cover all the data points
used in the description; the MVE is not robust to data outliers. The computation of the
covering ellipsoid is relatively complex; see Vandenberghe et al. [39]. In applications
where a real-time response is required, the covering ellipsoid calculations may be
profitably performed in advance and stored in a table.
In the next section, our philosophy is different. Instead of computing ellipsoid
descriptions to describe collections of points, we consider operations on ellipsoids.
While it is possible to develop tighter ellipsoidal approximations using the methods
just described, the computational burden of these methods often precludes their use.

1.6 UNCERTAINTY ELLIPSOID CALCULUS

1.6.1 Union of ellipsoids

Suppose the actual AOA could assume one of p values and associated with each
of these AOAs was an uncertainty ellipsoid. The possible values of the array
manifold would be covered by the union of these ellipsoids. The resulting prob-
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lem is then to find the “smallest” ellipsoid E0 that covers the union of ellipsoids,
E1(c1, Q1), . . . , Ep(cp, Qp). As in (1.16), we will describe these ellipsoids in terms
of the associated quadratic functions

Ti(x) = xT Fix + 2xT gi + hi,

where
Fi(x) = Q−1, gi = −Q−1c, and hi = cT Q−1c− 1.

By the S−procedure [7, pp23-24], Ei ⊆ E0 for i = 1, . . . , p if and only if there exists
non-negative scalars τ1, . . . , τp such that

T0(x)− τiTi(x) ≤ 0, i = 1, . . . , p,

or equivalently, such that




F0 g0 0
gT
0 −1 gT

0

0 g0 −F0



− τi





Fi gi 0
gT

i hi 0
0 0 0



 ≤ 0,

for i = 1, . . . , p. We can find the MVE containing the union of ellipsoids E1, . . . , Ep
by solving the matrix completion problem:

minimize log det F−1
0

subject to F0 > 0,
τ1 ≥ 0, . . . , τp ≥ 0,





F0 g0 0
gT
0 −1 gT

0

0 g0 −F0



− τi





Fi gi 0
gT

i hi 0
0 0 0



 ≤ 0,

for i = 1, . . . , p, with variables F0, g0, and τ1, . . . , τp [7, pp43-44]. The MVE
covering the union of ellipsoids is then given by E(−F−1

0 g0, F
−2
0 ). An example of

the minimum-volume ellipsoid covering the union of two ellipsoids in R2 is shown
in Figure 1.13.

1.6.2 The sum of two ellipsoids

Recall that we can parameterize an ellipsoid in Rn in terms of its center c ∈ Rn and
a symmetric non-negative definite configuration matrix Q ∈ Rn×n as

E(c,Q) = {Q1/2u + c | ‖u‖ ≤ 1},

where Q1/2 is any matrix square root satisfying Q1/2(Q1/2)T = Q. Let x ∈ E1 =
E(c1, Q1) and y ∈ E2 = E(c2, Q2). The range of values of the geometrical (or
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Fig. 1.13 A minimum-volume ellipsoid covering the union of two ellipsoids.

Minkowski) sum z = x + y is contained in the ellipsoid

E = E(c1 + c2, Q(p)) (1.64)

for all p > 0, where

Q(p) = (1 + p−1)Q1 + (1 + p)Q2; (1.65)

see Kurzhanski and Vályi [26]. The value of p is commonly chosen to minimize
either the determinant of Q(p) or the trace of Q(p). An example of the geometrical
sum of two ellipses for various values of p is shown in Figure 1.14.

1.6.2.1 Minimum volume If Q1 Â 0 and Q2 Â 0, there exists a unique ellipsoid
of minimal volume that contains the sum E1+E2. It is described by E(c1+c2, Q(p∗)),
where p∗ ∈ (0,∞) is the unique solution of the equation

f(p) =

n
∑

i=1

1

λi + p
− n

p(p + 1)
= 0. (1.66)

Here, 0 < λi < ∞ are the roots of the equation det(Q1 − λQ2) = 0, i.e., the
generalized eigenvalues of Q1 and Q2 [26, pp.133-135]. The generalized eigenvalues
can be determined by computing the eigenvalues of the matrix Q

−1/2
2 Q1(Q

−1/2
2 )T .

Using the methods of §1.3, the solution of (1.66) may be found efficiently using
Newton’s method. In the event that neither Q1 nor Q2 is positive definite, but their
sum is, a line search in p may be used to find the minimum-volume ellipsoid.
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PSfrag replacements
Q1
Q2

Fig. 1.14 Outer approximations of the sum of two ellipses (center) for different configuration
matrices Q(p) = (1 + 1/p)Q1 + (1 + p)Q2.

1.6.2.2 Minimum trace There exists an ellipsoid of minimum trace, i.e., sum of
squares of the semiaxes, that contains the sum E1(c1, Qq)+E2(c2, Q2); it is described
by E(c1 + c2, Q(p?)), where Q(p) is as in (1.65),

p? =

√

TrQ1

TrQ2

, (1.67)

and Tr denotes trace. This fact, noted by Kurzhanski and Vályia [26, §2.5], may be
verified by direct calculation.
Minimizing the trace of Q in equation (1.65) affords two computational advantages
over minimizing the determinant. First, computing the optimal value of p can be
done withO(n) operations; minimizing the determinant requiresO(n3). Second, the
minimum-trace calculation is well-posed with degenerate ellipsoids.

1.6.3 An outer approximation to the Hadamard product of two ellipsoids

In practice, the output of the antenna array is often subject to uncertainties that are
multiplicative in nature. These may be due to gains and phases of the electronics
paths that are not precisely known. The gains may be known to have some formal
uncertainty; in other applications, these quantities are estimated in terms of a mean
vector and covariance matrix. In both cases, this uncertainty is well-described by an
ellipsoid; this is depicted schematically in Figure 1.15.
Assume that the range of possible values of the array manifold is described by an
ellipsoid E1 = {Au+b | ‖u‖ ≤ 1}. Similarly assume the multiplicative uncertainties
lie within a second ellipsoid E2 = {Cv + d | ‖v‖ ≤ 1}. The set of possible values
of the array manifold in the presence of multiplicative uncertainties is described by
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Fig. 1.15 The possible values of array manifold are contained in ellipsoid E1; the values of
gains are described by ellipsoid E2. The design variable w needs to consider the multiplicative
effect of these uncertainties.

the numerical range of the Hadamard, i.e., element-wise product of E1 and E2. We
will develop outer approximations to the Hadamard product of two ellipsoids. In
§1.6.5, we consider the case where both ellipsoids describe real numbers; the case of
complex values is considered in §1.6.6. Prior to this, we will review some basic facts
about Hadamard products.

1.6.4 Preliminaries

Lemma 3 For any x, y ∈ Rn,

(x ◦ y)(x ◦ y)T = (xxT ) ◦ (yyT ).

Proof: Direct calculation shows that the i, j entry of the product is xiyixjyj ,

which can be regrouped as xixjyiyj . ¤

Lemma 4 Let x ∈ Ex = {Au | ‖u‖ ≤ 1} and y ∈ Ey = {Cv | ‖v‖ ≤ 1}. The field
of values of the Hadamard product x ◦ y is contained in the ellipsoid

Exy = {(AAT ◦ CCT )1/2w | ‖w‖ ≤ 1}.

Proof: By Lemma 3 we have

(x ◦ y)(x ◦ y)T = (xx
T ) ◦ (yy

T ).

In particular,

(Au ◦ Cv)(Au ◦ Cv)T = (Auu
T
A

T ) ◦ (Cvv
T
C

T ).
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Expanding AAT ◦ CCT as:

AAT ◦ CCT = A(uuT )AT ◦ C(vvT )CT

+ A(uuT )AT ◦ C(In − vvT ))CT

+ A(In − uuT )AT ◦ C(vvT )CT

+ A(In − uuT )AT ◦ C(In − vvT )CT ,

(1.68)

we see the Hadamard product of two positive semidefinite matrices is also
positive semidefinite [21, pp.298-301]. Therefore,

(AA
T ◦ CC

T ) º (Au ◦ Cv)(Au ◦ Cv)T ∀ ‖u‖ ≤ 1, ‖v‖ ≤ 1.

¤

Lemma 5 Let E1 = {Au | ‖u‖ ≤ 1} and let d be any vector in Rn. The Hadamard
product of E1 ◦ d is contained in the ellipsoid

E = {(AAT ◦ ddT )1/2w | ‖w‖ ≤ 1}.

Proof: This is simply a special case of Lemma 3. ¤

1.6.5 Outer approximation

Let E1 = {Au + b | ‖u‖ ≤ 1} and E2 = {Cv + d | ‖v‖ ≤ 1} be ellipsoids in Rn.
Let x and y be n dimensional vectors taken from ellipsoids E1 and E2, respectively.
Expanding the Hadamard product x ◦ y, we have:

x ◦ y = b ◦ d + Au ◦ Cv + Au ◦ d + b ◦ Cv. (1.69)

By Lemmas 4 and 5, the field of values of the Hadamard product

x ◦ y ∈ {(Au + b) ◦ (Cv + d) | ‖u‖ ≤ 1, ‖v‖ ≤ 1}

is contained in the geometrical sum of three ellipsoids

S = E(b ◦ d,AAT ◦ CCT ) +
E(0, AAT ◦ ddT ) + E(0, bbT ◦ CCT ).

(1.70)

Ignoring the correlations between terms in the above expansion, we find that S ⊆
E(b ◦ d,Q), where

Q = (1 + 1/p1) (1 + 1/p2) AAT ◦ CCT +

(1 + p1) (1 + 1/p2) AAT ◦ ddT +

(1 + p1) (1 + p2) CCT ◦ bbT

(1.71)

for all p1 > 0 and p2 > 0. The values of p1 and p2 may be chosen to minimize
the trace or the determinant of Q. The trace metric requires far less computational
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Fig. 1.16 Samples of the Hadamard product of two ellipsoids. The outer approximations
based on the minimum-volume and minimum-trace metrics are labeled Emv and Emt.

effort and is numerically more reliable; if either b or d has a very small entry, the
corresponding term in expansion (1.71) will be poorly conditioned.
As a numerical example, we consider the Hadamard product of two ellipsoids in R2.
The ellipsoid E1 is described by

A =

[

−0.6452 −1.5221
0.2628 2.2284

]

, b =

[

−5.0115
1.8832

]

;

the parameters of E2 are

C =

[

−1.0710 0.7919
0.8744 0.7776

]

, d =

[

−9.5254
9.7264

]

.

Samples of the Hadamard product of E1 ◦E2 are shown in Figure 1.16 along with the
outer approximations based on the minimum-volume and minimum-trace metrics;
more Hadamard products of ellipsoids and outer approximations are shown in Figures
1.17 and 1.18.
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Fig. 1.17 The Hadamard product of ellipsoids.
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Fig. 1.18 More Hadamard products of ellipsoids.
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1.6.6 The complex case

We now extend the results of §1.6.5 to the case of complex values. For numerical
efficiency, we compute the approximating ellipsoid using the minimum-trace metric.
As before, we represent complex numbers by the direct sum of their real and imaginary
components. Let x ∈ R2n and y ∈ R2n be the direct-sum representations of α ∈ Cn

and β ∈ Cn, respectively; i.e.,

x =

[

Reα
Imα

]

, y =

[

Reβ
Imβ

]

.

We can represent the real and imaginary components of γ = α ◦ β as

z =

[

Re γ
Im γ

]

=

[

Reα ◦Reβ − Imα ◦ Imβ
Imα ◦Reβ + Reα ◦ Imβ

]

= F1x ◦ F2y + F3x ◦ F4y,

(1.72)

where

F1 =

[

In 0
0 In

]

, F2 =

[

In 0
In 0

]

,

and

F3 =

[

0 −In

In 0

]

, F4 =

[

0 In

0 In

]

.

The multiplications associated with matrices F1, . . . , F4 are achieved with a reorder-
ing of the calculations. Applying (1.72) to x ∈ E1 = {Au + b | ‖u‖ ≤ 1} and
y ∈ E2 = {Cv + d | ‖v‖ ≤ 1} yields:

z = F1b ◦ F2d +
F3b ◦ F4d +
F1Au ◦ F2Cv +
F1Au ◦ F2d +
F1b ◦ F2Cv +
F3Au ◦ F4Cv +
F3Au ◦ F4d +
F3b ◦ F4Cv.

(1.73)



40 ROBUST MINIMUM VARIANCE BEAMFORMING

The direct-sum representation of the field of values of the complex Hadamard product
α ◦ β is contained in the geometrical sum of ellipsoids

S = E(F1b ◦ F2d, F1AAT FT
1 ◦ F2CCT FT

2 ) +
E(F3b ◦ F4d, F1AAT FT

1 ◦ F2ddT FT
2 ) +

E(0, F1bb
T FT

1 ◦ F2CCT FT
2 ) +

E(0, F3AAT FT
3 ◦ F4CCT FT

4 ) +
E(0, F3AAT FT

3 ◦ F4ddT FT
4 ) +

E(0, F3bb
T FT

3 ◦ F4CCT FT
4 ).

(1.74)

We compute E(c,Q) ⊇ S, where the center of the covering ellipsoid is given by the
sum of the first two terms of (1.73). The configuration matrix Q is calculated by
repeatedly applying (1.64) and (1.65) to the remaining terms of (1.73), where p is
chosen according to (1.67).

1.6.7 An improved approximation

We now make use of two facts that generally lead to tighter approximations. First,
the ellipsoidal outer approximation ignores any correlation between the terms in
expansion (1.73); hence, it is productive to reduce the number of these terms.
Consider a Givens rotation matrix of the form:

T =





















cos θ1 sin θ1

. . . . . .
cos θn sin θn

− sin θ1 cos θ1

. . . . . .
− sin θn cos θn





















. (1.75)

The effect of pre-multiplying a direct sum-representation of a complex vector by T
is to shift the phase of each component by the corresponding angle θi. It follows that
for all Tx and Ty of the form (1.75) we have

T−1
x T−1

y (F1Txx ◦ F2Tyy + F3Txx ◦ F4Tyy) =
F1x ◦ F2y + F3x ◦ F4y,

(1.76)

which does not hold for unitary matrices in general.
We now compute rotation matrices Tb and Td such that the entries associated with
the imaginary components of products Tbb and Tdd are zero. In computing Tb, we
choose the values of θ in (1.75) according to θi = ∠(b(i) +

√
−1× b(n + i)). Ty is

similarly computed using the values of d; i.e., θi = ∠(d(i) +
√
−1× d(n + i)). We
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change coordinates according to

A ← TbA
b ← Tbb
C ← TdC
d ← Tdd.

The rotated components associated with the ellipsoid centers have the form

Tbb =





















b̃1

...
b̃n

0
...
0





















, Tdd =





















d̃1

...
d̃n

0
...
0





















, (1.77)

zeroing the term F3TbAAT TT
b FT

3 ◦ (F4TdddT TT
d FT

4 ) in (1.73). The desired outer
approximation is computed as the geometrical sum of outer approximations to the
remaining five terms. That is,

E(c,Q) ⊇ E(F1b ◦ F2d, F1AAT FT
1 ◦ F2CCT FT

2 ) +
E(F3b ◦ F4d, F1AAT FT

1 ◦ F2ddT FT
2 ) +

E(0, F1bb
T FT

1 ◦ F2CCT FT
2 ) +

E(0, F3AAT FT
3 ◦ F4CCT FT

4 ) +
E(0, F3bb

T FT
3 ◦ F4CCT FT

4 ).

(1.78)

Second, while the Hadamard product is commutative, the outer approximation based
on covering the individual terms in the expansion (1.73) is sensitive to ordering;
simply interchanging the dyads {A, b} and {C, d} results in different qualities of
approximations. The ellipsoidal approximation associated with this interchanged
ordering is given by:

E(c,Q) ⊇ E(F1d ◦ F2b, F1CCT FT
1 ◦ F2AAT FT

2 ) +
E(F3d ◦ F4b, F1CCT FT

1 ◦ F2bb
T FT

2 ) +
E(0, F1ddT FT

1 ◦ F2AAT FT
2 ) +

E(0, F3CCT FT
3 ◦ F4AAT FT

4 ) +
E(0, F3ddT FT

3 ◦ F4AAT FT
4 ).

(1.79)

Since our goal is to find the smallest ellipsoid covering the numerical range of z, we
compute the trace associated with both orderings and choose the smaller of the two.
This determination can be made without computing the minimum-trace ellipsoids
explicitly. Let E0 be the minimum-trace ellipsoid covering E1 + · · ·+ Ep. The trace
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of E0 is given by:

Tr E0 =
(

√

Tr E1 +
√

Tr E2 + · · ·+
√

Tr Ep
)2

,

which may be verified by direct calculation. Hence, determining which of (1.78) and
(1.79) yields the smaller trace can be performed in O(n) calculations. After making
this determination, we perform the remainder of the calculations to compute the
desired configuration matrix Q. We then transform Q back to the original coordinates
according to:

Q← (T−1
b T−1

d )Q(T−1
b T−1

d )T .

1.7 EXAMPLE OF BEAMFORMING IN PRESENCE OF
MULTIPLICATIVE UNCERTAINTIES

Consider a six-element uniform linear array, centered at the origin, in which the
spacing between the elements is half of a wavelength whose response is given by:

a(θ) =
[

e−5φ/2 e−3φ/2 . . . e3φ/2 e5φ/2
]T

,

where φ = π cos(θ) and θ is the angle of arrival.
As in the previous example, three signals impinge upon the array: a desired signal
sd(t) and two uncorrelated interfering signals sint1(t) and sint2. The signal-to-noise
ratio (SNR) of the desired signal at each element is 20 dB. The angles of arrival of
the interfering signals, θint1 and θint2, are 30◦ and 75◦; the SNRs of these interfering
signals, 40dB and 20dB, respectively. The received signals are modeled as in (1.57).
The signals pass through an amplification stage as depicted in Fig.1.6.3. The gain
vector g ∈ C6 is chosen from the ellipsoid which we represent, in terms of the direct
sum of the real and imaginary components in R12 according to Eg = E(Qg, cg),
where

Qg =

[

Qd

Qd

]

, cg = [ 1 . . . 1 0 . . . 0 ]T ,

and Qd is a diagonal matrix, the ith diagonal element of which equals 10−i. Given
the symmetry in the uncertainty region of the present example, the set of possible
values of g ∈ C6 also satisfy (g∗ − 1)Q−1

d (g∗ − 1), where 1 is a vector of ones.
As in §1.4, the actual array response is contained in an ellipsoid Ea(c, P ), whose
center and configuration matrix are computed from 64 equally-spaced samples of the
array response at angles between 40◦ and 50◦ according to (1.59), (1.60).
The aggregate uncertainty in the Hadamard product of the array manifold and the gain
vector is then given by the (complex) Hadamard product of the above uncertainty el-
lipsoids. We compute an ellipsoidal outer approximation to this aggregate uncertainty
ellipsoid, using the methods of §1.6.6 and §s-ellipsoid-multiplicative-improved, viz.:
Ea(c, P ) ⊂ Eg ◦ Ea.
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We will use an analytically computed, expected covariance which again uses the
actual array response and which assumes that the signals sd(t), sint1(t), sint2(t), and
v(t) are all uncorrelated and that the additive noise is applied at the output of the
amplification stage. The covariance is modeled as:

ER = E yy∗ = σ2
d(g ◦ ad)(g ◦ ad)∗+

σ2
int1 (g ◦ a(θint1)) (g ◦ a(θint1))

∗
+

σ2
int2 (g ◦ a(θint2)) (g ◦ a(θint2))

∗
+

σ2
nI.

(1.80)

The worst-case SINR is the minimum objective value of the following optimization
problem:

minimize
σ2

d‖w∗(g ◦ a)‖2
Ew∗Rvw

subject to a ∈ E(c, P );

where the expected covariance of the interfering signals and noises is given by

ERv = σ2
int1(g ◦ a(θint1))(g ◦ a(θint1)

∗ + σ2
int1(g ◦ a(θint2))(g ◦ a(θint2))

∗ + σ2
nI.

The weight vector w and covariance matrix of the noise and interfering signals Rv

used in its computation reflect the chosen values of the gain vector and array manifold.
We will consider four cases:

1 The assumed and actual gains are nominal (unity).

2 The gain, assumed and actual, can assume any value in Eg.

3 The gain is assumed to vary within Ea; the actual gain is nominal.

4 The gain is assumed nominal, but can assume any value in Eg.
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The beamformers and worst-case SINRs for these cases were computed to be:

case 1 : w1 =

















−0.1760 + 0.1735i
−1.1196 + 0.5592i
−0.4218 + 0.4803i
−0.4245− 0.4884i
−1.1173− 0.5598i
−0.1720− 0.1767i

















, SINR = 14.26dB

case 2 : w2 =

















0.0350 + 0.0671i
−0.6409− 0.0109i

0.2388− 0.3422i
1.1464− 1.1488i
0.2749− 2.1731i
0.0201− 1.2138i

















, SINR = 11.22dB,

case 3 : w3 =

















0.0418 + 0.0740i
−0.6248 + 0.0241i

0.2579− 0.3097i
1.1192− 1.1111i
0.2445− 2.0927i
0.0317− 1.1681i

















, SINR = 11.30dB,

case 4 : w4 =

















0.9141 + 2.6076i
2.4116 + 1.6939i
−0.1105− 0.1361i
−0.6070 + 1.2601i
−0.4283− 0.8408i
−1.1158− 1.0300i

















, SINR = −2.81dB.

In the first case, the gains nominal and actual are unity; the worst-case SINR is seen
to be 14.26 dB. In the second case, the gain is allowed to vary; not surprisingly, the
worst- case SINR decreases to 11.22dB. In the third case, the beamformer is computed
assuming possible variation in the gains when in fact, there is none. The worst-case
SINR in this case is 11.30 dB, quite close to that of the second case. The interpretation
is that robustness comes at the expense of nominal performance. In the last case,
the uncertainty ellipsoid used in the beamformer computation underestimated the
aggregate uncertainty; this optimism is seen to be punished.
The uncertainty in the gain for the first antenna element is large, for the last, small, and
for the middle elements, somewhere in between. When this possible gain variation is
factored into the aggregate uncertainty ellipsoid, the RMVB based on this aggregate
ellipsoid discounts the information in the less reliable measurements by assigning
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to them small (in absolute value) weights. This is seen in the first and (to a lesser
extent) the second entries of beamformer vectors w2 and w3.

1.8 SUMMARY

The main ideas of our approach are as follows:

• The possible values of the manifold are approximated or covered by an ellipsoid
that describes the uncertainty.

• The robust minimum variance beamformer is chosen to minimize the weighted
power out of the array subject to the constraint that the gain is greater than
unity for all array manifold values in the ellipsoid.

• The RMVB can be computed very efficiently using Lagrange multiplier tech-
niques.

• Ellipsoidal calculus techniques may be used to efficiently propagate the uncer-
tainty ellipsoid in the presence of multiplicative uncertainties.

GLOSSARY

Appendix: Notation and Glossary

R The set of real numbers.
Rm The set of real m-vectors.
Rm×n The set of real m× n matrices.
C The set of complex numbers.
Cm The set of complex m-vectors.
Cm×n The set of complex m× n matrices.
TrX The trace of X .
EX The expected value of X.
det X The determinant of X .
‖x‖ The Euclidean (l2) norm of x.
I The identity matrix (of appropriate dimensions).
x ◦ y The Hadamard or element-wise product of x and y.
X Â 0 (X º 0) X is positive (semi-)definite, i.e., X = XT and zT Xz > 0

(zT Xz ≥ 0) for all nonzero z.
X Â Y (X º Y ) X − Y is positive (semi-)definite.
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A/D Analog to Digital Converter
AOA Angle of Arrival
dB decibel
MVE Minimum-Volume Ellipsoid
LNA Low-Noise Amplifier
MVB Minimum-Variance Beamformer
NEC Numerical Electromagnetics Code
RF Radio Frequency
RMVB Robust Minimum Variance Beamformer
SINR Signal-to-Interference-plus-Noise Ratio
SNR Signal-to-Noise Ratio
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configuration matrix, 8
minimum-volume, 32
second order statistics, 31
sum of, 35
union of, 33

Environmental perturbation constraints, 6
Feasibility condition for RMVB, 18
Hadamard product of ellipsoids, 36

outer approximation to complex valued, 43–44
outer approximation, 38, 40, 42

Inertia of a matrix, 19
Lagrange equations, 17
Lagrange multiplier methods, 17
Mainbeam constraints, 29
Minimum-volume ellipsoid, 32

computing, 32
reduced rank, 32
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Point mainbeam constraints, 5

Power estimation, 29
Previous work, 5
Regularization methods, 6
Regularized beamformer, 29
RMVB, 8

algorithm summary, 23
computational complexity, 23
effect of incorrect uncertainty ellipsoid, 30
optimality, 31

Robust weight selection, 15
Second-order cone constraint, 8, 16
Second-order cone program, 16
Secular equation, 18

derivative, 23
lower bound on Lagrange multiplier, 21
lower bound, 18
solution of, 23

Singular value decomposition, 5
SINR, 5
Sources of uncertainty in array response, 31
Sum of ellipsoids, 35

minimum trace, 36
minimum volume, 35

Uncertainty ellipsoid calculus, 33
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