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Abstract—In downlink beamforming in a multiple-input
multiple-output (MIMO) wireless communication system, we de-
sign beamformers that minimize the power subject to guarantee-
ing given signal-to-interference noise ratio (SINR) threshold levels
for the users, assuming that the channel responses between the
base station and the users are known exactly. In robust downlink
beamforming, we take into account uncertainties in the channel
vectors, by designing beamformers that minimize the power
subject to guaranteeing given SINR threshold levels over the
given set of possible channel vectors. When the uncertainties in
channel vectors are described by complex uncertainty ellipsoids,
we show that the associated worst-case robust beamforming
problem can be solved efficiently using an iterative method. The
method uses an alternating sequence of optimization and worst-
case analysis steps, where at each step we solve a convex optimiza-
tion problem using efficient interior-point methods. Typically,
the method provides a fairly robust beamformer design within
5–10 iterations. The robust downlink beamforming method is
demonstrated with a numerical example.

I. INTRODUCTION
We consider the downlink channel of a MIMO wireless

communication system, where a base station equipped with
many antennas serves remote users, each equipped with a
single antenna. The data is transmitted from the base station
to the users using modern MIMO coding techniques, such as
spatial beamforming; the reader is referred to recent textbooks,
e.g., [1], [2], for more on the techniques.
Several researchers have studied “nominal” downlink beam-

forming in which we design beamformers that minimize the
power subject to guaranteeing given SINR threshold levels
for the users, assuming that the channel responses between
the base station and the users are known exactly; see, e.g.,
[3], [4]. In practice, the channel vectors are estimated with
error from training sequences, and moreover, vary over time.
The imperfect estimation and variations in the channels can
greatly affect performance of the overall system, resulting in
degradation in users’ QoS, and possibly service outage.
There are several general approaches for accounting for

uncertain parameters in an optimization problem. In worst-case
robust optimization (or minimax optimization), we model the
parameters as lying in some given set of possible values, but
without any known distribution, and we choose a design that
minimizes an objective value while guaranteeing the feasibility
of constraints over the given set of possible parameters [5]–
[7]. In this model, we do not rely on any knowledge of the
distribution of uncertain parameters (which, indeed, need not

be stochastic). The worst-case robust optimization approach
has been applied to a variety of signal processing problems
including robust beamforming [8]–[17], robust power con-
trol [18], [19], and downlink beamforming with uncertain
channel covariance matrices [3].
In this paper, we are interested in designing robust downlink

beamformers that minimize the power subject to guaranteeing
given SINR threshold levels for the users over the given set
of possible uncertainties. When the uncertainties in channel
vectors are described by complex uncertainty ellipsoids, we
can solve the problem using an iterative procedure which con-
sists of alternating ‘optimization’ and ‘pessimization’ steps,
which is described in more detail in [20]. Each of these
steps requires solving a convex optimization problem, which
can be readily done using interior-point algorithms [21]. The
iterative procedure can find good conservative solutions for the
robust downlink beamforming problem within 5–10 iterations.
The computational effort of the iterative robust beamforming
method is practically the same order as solving the nominal
downlink beamforming problem (but with a substantially
larger constant).
We briefly outline the rest of the paper. In Section II

we describe the downlink beamforming problem with perfect
channel information and give a short review of the SOCP
formulation of the (nominal) downlink beamforming problem
derived in [22]. In Section III we describe the worst-case
robust beamforming problem and give a tractable iterative so-
lution method. In Section IV we present a numerical example.
In Section V we give our conclusions.

II. DOWNLINK BEAMFORMING
We consider a base station equipped with n antennas, which

serves m remote users, each equipped with a single antenna.
The base station (transmitter) uses spatial beamforming to
convey information to the remote users (receivers). In the
beamforming setting, the transmit signal is x =

∑
i uiwi,

where ui is a complex scalar denoting the information signal
and wi ∈ Cn is the vector of beamforming weights for user
i = 1, . . . , m. The signal received by user i is

yi = h∗
i

m∑
j=1

ujwj + zi, i = 1, . . . , m,

where hi ∈ Cn is the channel vector for the channel be-
tween user i and the transmitter, and zi are independent and
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Fig. 1. Downlink wireless channel, with a single base station and m remote
users.

identically distributed (i.i.d.) additive complex Gaussian noises
with zero mean and variance σ2 > 0. Figure 1 illustrates the
downlink channel model described above.
The desired signal power at the ith user is given by

Si(w) = |h∗
i wi|2,

and the interference and noise power at the ith user is

Ii(w) =
∑
j �=i

|h∗
i wj |2 + σ2.

Here, without loss of generality, we take |ui|2 = 1.
An important measure of the system performance is the

signal-to-interference-plus-noise ratio. The SINR of user i is
given by

SINRi(w) =
Si(w)

Ii(w)
=

|h∗
i wi|2∑

j �=i |h∗
i wj |2 + σ2

. (1)

We can also express it as

SINRi(w) =
h∗

i (wiw
∗
i )hi

h∗
i (

∑
j �=i wjw∗

j )hi + σ2
. (2)

Given beamformers w1, . . . , wm ∈ Cn, the SINR value
provides a quality-of-service guarantees for the users. If the
SINR goes below a threshold γ > 0, i.e., SINR(w) < γ, then
the user experiences a service outage.

A. Problem statement
The goal of the downlink beamforming or the downlink

power control problem is to find optimal beamforming weights
w1, . . . , wm ∈ Cn, which achieve the required QoS guarantees
for all users, while minimizing the power consumed by the
overall system. The power is given by

P (w) =
n∑

i=1

‖wi‖2
2. (3)

In the case of perfect channel side information (CSI), we
exactly know the channel vectors h̄i in both the transmitter
and the receivers. (We often call the channel vectors h̄i the
nominal or reference channels.) The downlink beamforming
problem with perfect CSI or the nominal problem is given by

minimize P (w)
subject to SINRi(w) ≥ γi, i = 1 . . . , m.

(4)

We refer to any solution as the nominal optimal weights.

B. SOCP formulation
As shown by several researchers, the nominal downlink

beamforming problem can be solved using convex optimiza-
tion, and in particular, using second-order cone programming
(SOCP), e.g., see a recent survey [23]. The SOCP formulation
is given by

minimize P (w)

subject to βi Re(h̄∗
i wi) ≥

(∑m
j=1 |h̄∗

i wj | + σ2
)1/2

,

i = 1, . . . , m,
(5)

where

βi =

(
1 +

1

γi

)1/2

. (6)

A drawback of nominal downlink beamforming is that it
can be very sensitive to a variation in the channel, meaning
that the QoS constraints are often violated even with a small
variation in the system.

III. ROBUST DOWNLINK BEAMFORMING
In most cases the channels hi are unknown, and we are

given partial CSI described in stochastic or deterministic
(set-based) terms. In a stochastic setting, hi are independent
random vectors with mean vector h̄i ∈ Cn and covariance
matrix Σi ∈ Cn×n. (It is often assumed that hi are complex
Gaussian.) In a set-based setting, the channel vectors hi belong
to known and bounded sets Hi (which include the nominal
or reference channel vector h̄i). In practice, we usually es-
timate h̄i, Σi, and Hi, from training sequences to learn the
channel, and through feedback between the transmitter and
the receivers.
In this paper we consider a set-based uncertainty descrip-

tion, in which we assume that the channels are uncertain,
but belong to a known compact sets of possible channels. In
particular, we assume that channel vectors hi belong to known
ellipsoidal uncertainty sets

Hi = {hi | ‖Fi(hi − h̄i)‖2 ≤ 1}, (7)

where h̄i ∈ Cn are the nominal channel vectors and Fi ∈
Cn×n describe the shapes of the ellipsoids. This ellipsoidal
model serves as a conservative approximation of the stochastic
model, where we take the ellipsoids to be the confidence
ellipsoids for some high confidence, e.g., 95%.
The goal of (worst-case) robust downlink beamforming

is to find robust beamforming weights that minimize the
power consumption in the system, while guaranteeing the
QoS specifications in spite of channel variations. The robust
downlink beamforming problem, or simply the robust problem,
can be formulated as
minimize P (w)
subject to infhi∈Hi

SINRi(w) ≥ γi, i = 1, . . . , m.
(8)

In the robust problem we require the SINR constraints to
exceed the threshold value for all possible channel response
vectors hi in the uncertainty ellipsoids Hi.
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We will present a tractable method for solving the robust
downlink beamforming problem. The key idea is based on the
fact that using the S-procedure, we can evaluate the worst-case
channel from the ellipsoidal set of possible channels, for given
beamformer weights. (The reader is referred to [21, App. B] or
the recent survey [24] for more on the S-procedure.) Therefore,
we can approximately solve robust beamforming problem
using cutting set methods [20].

A. Worst-case channel analysis
In the worst-case channel analysis problem, we want to find

a channel hi ∈ Hi that violates the SINR constraint (the most)
or we want to claim that all channels from the uncertainty set
meet the constraint, i.e., we want to evaluate

SINRwc
i (w) = inf

hi∈Hi

|h∗
i wi|2∑

j �=i |h∗
i wj |2 + σ2

≥ γi,

for some fixed beamformer w. An equivalent problem is to
find the optimal value of the following constrained problem

minimize h∗
i

(
1

γi
wiw

∗
i − ∑

j �=i wjw
∗
j

)
hi

subject to hi ∈ Hi,
(9)

and verify that the optimal value is greater than σ2, since then
SINRwc

i (w) ≥ γi will hold.
WhenHi are ellipsoids, the worst-case analysis problem (9),

under the minor technical condition of strict feasibility (so-
called Slater’s condition), can be globally solved using the
well-known “S-procedure”; see, e.g., [21, App. B], [24]. For
each channel (and the corresponding user), the worst-case
analysis problem (9) with ellipsoidal uncertainty set (7) is

minimize h∗
i

⎛⎝ 1

γi
wiw

∗
i −

∑
j �=i

wjw
∗
j

⎞⎠ hi

subject to h∗
i F

∗
i Fihi − 2Re(h̄∗

i F
∗
i Fihi) + h̄∗

i F
∗
i Fih̄i ≤ 1.

(10)
Its dual problem is given by the SDP

maximize μi

subject to λi ≥ 0
Ai � 0,

(11)

with two variables μi, λi ∈ R and

Ai =

[
1

γi

wiw
∗
i −

X

j �=i

wjw∗
j + λiF

∗
i Fi −λiFih̄i

−h̄∗
i F ∗

i λi λih̄
∗
i F ∗

i Fih̄i − λi − μi

]
,

where i = 1, . . . , m. Since strong duality holds in this case,
the primal and dual problems have the same optimal value μ�

i

(see [21, App. B]), and a worst-case channel is given by

h�
wc,i =

⎛⎝ 1

γi
wiw

∗
i −

∑
j �=i

wjw
∗
j + λ�

i F
∗
i Fi

⎞⎠−1

λ�
i Fih̄i,

where λ�
i is an optimal solution of the SDP (11). Note that if

μ�
i < σ2, then the ith SINR constraint is violated given the
worst-case channel above.

B. Tractable method for robust design
In this section, we present an algorithm for solving the

robust problem (8), using the worst-case analysis given in the
previous section. The algorithm is motivated by the cutting set
methods given in [20]. It is based on solving an alternating
sequence of optimization and worst-case analysis problems
(pessimizations), with an expanding set of worst-case channels
added to the optimization problem at each step.
Let (h

(k)
1 , . . . , h

(k)
m ) denote the worst-case channels found

by performing worst-case analysis (10) for each user at the kth
iteration of the algorithm, where h

(1)
i = h̄i. Let Ĥk denote the

subset of these channels for which the SINR constraint was
violated, and let Ĥ denote the discrete set

Ĥ = {h
(1)
1 , . . . , h(1)

m , Ĥ2, . . . , ĤK }
found after K optimization-pessimization iterations. At each
optimization step we solve the following multi-scenario robust
problem given the set of worst-case channels collected so far

minimize P (w)

subject to βi Re(h
(k)∗
i wi) ≥

(∑m
j=1 |h(k)∗

i wj | + σ2
)1/2

,

(12)
where i = 1 . . . , m, k = 1, . . . , K (from the set Ĥ), and βi

is a positive constant defined in (6). The optimal solution of
this problem will satisfy the SINR constraints for all the given
channels in the (discrete) uncertainty set Ĥ. This method can
be viewed as an iterative sampling of the uncertainty sets Hi.
The algorithm is given as follows.

given initial nominal channels Ĥ = {h̄1, . . . , h̄m}.
repeat

1. Optimization.
Solve the robust problem (12) with Ĥ and return w.

2. Pessimization.
2a. Find worst-case violating channels at the current w.
2b. Append them to the set Ĥ.

3. Sign-off criterion.
quit if robust analysis is satisfactory.

The algorithm alternates between optimization and pes-
simization steps, until a sign-off criterion is satisfied. In the
pessimization step, we perform worst-case analysis for violat-
ing constraints. If the analysis returns a violating constraint,
then we append the obtained worst-case channels to the set
Ĥ. We repeat this process until worst-case analysis does not
produce violating channels. In our numerical simulations, we
have found that this process usually converges within 5–10
iterations to fairly robust beamformer weights.
We close by addressing the convergence of the method

described above. It is straightforward to prove the convergence
of the basic cutting-set algorithm; the reader is referred to [20]
for more on convergence issues.
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Fig. 2. Gain pattern comparison. Dashed curves: Gain patterns for the
four users with the nominal beamformer. Solid curves: Gain patterns for the
four users with the robust beamformer. Vertical lines represent the nominal
directional locations of the users.

IV. NUMERICAL EXAMPLE

We illustrate the proposed methods by a numerical example
with m = 4 users served by a base station with n = 10 anten-
nas arranged in a linear array and spaced half a wavelength
apart. The users are located at directions θ1 = 45◦, θ2 = 60◦,
θ3 = 90◦, and θ4 = 120◦. We use a simple model for the
channels given by

h(θ)i = exp(2πj/λ(xi cos θ + yi sin θ)),

where (xi, yi) is the location of the ith antenna element, and
j =

√−1.
We take the nominal channel to be given with the perfect

angle information h̄i, while the sets are described by unit disks
around the nominal channels, i.e., Fi = 1/ρiI , where ρi > 0
gives the radius of the uncertainty disk for the ith channel.
We take the noise power σ = 0.01, SINR thresholds γi = 10
(20dB), and ρi = 0.05 for all i = 1, . . . , m.
We solve the nominal beamformer problem (5) and imple-

ment our proposed methods for robust beamforming using the
CVX software package [25], a Matlab-based modeling system
for convex optimization. (The CVX package internally uses
SDPT3 [26] as the solver.)
Figure 2 shows the gain patterns for the nominal beam-

former designed with the nominal channels and the robust
beamformer designed with the uncertainty model described
above. Using the worst-case analysis we have found that the
nominal beamformer violated all of the SINR constraints,
while the robust beamformer does not violate any of them.
As another robustness analysis, we carry out Monte-Carlo

(MC) analysis of the nominal and robust optimal beamforming
method. Here we estimate the probability density function
(PDF) of SINRs using MC simulations with 1000 realizations
of Gaussian perturbations around the nominal channels h̄i,
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Fig. 3. MC simulation results. Dark shaded histograms: SINRs achieved by
the nominal downlink beamformer. Light shaded histograms: SINRs achieved
by the robust downlink beamformer. Dark vertical lines correspond to the
SINR threshold level γi = 10.

such that the 95% confidence ellipsoids coincides with our
disk uncertainty.
Figure 3 shows the histogram of the SINR values for each

of the four users. We observe that the nominal beamformer
is very sensitive to the variations in the channel, while the
robust beamformer performs very well and satisfies the SINR
constraints with about 95% probability, as expected. However,
the robustness has its price, i.e., the total power of the robust
beamformer will increase. For the given simulation setup, the
total power of the nominal beamformer is P (wnom) = 0.020,
while the total power of the robust beamformer is P (wrob) =
0.026. Here the total power of a beamformer is defined in (3).

V. CONCLUSIONS
In this paper, we have presented a worst-case robust opti-

mization method for beamforming in the downlink channel of
a wireless system. We have shown that robust downlink power
control with ellipsoidal uncertainty in the channel response can
be solved efficiently. Our computational experience with the
method so far suggests that the method is far superior to the
nominal optimal design (i.e., the design obtained by ignoring
statistical variation).
With a proper choice of the uncertainty model, the robust

beamforming method can handle probabilistic QoS specifica-
tions that for every user the outage probability, i.e., the prob-
ability of the signal-to-interference-plus-noise ratio (SINR)
being below some threshold, is kept below a specified level.
An important question is how suboptimal the robust allocation
is compared with the stochastically optimal one which mini-
mizes the power subject to guaranteeing the probabilistic QoS
specification.
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