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Global power & ground network design

Problem: size wires (choose topology)

• minimize wire area subject to node voltage, current density constraints

• don’t consider fast dynamics (C,L)

• do consider (slow) variation in block currents
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(Quasi-)static model

Ij

gk
Vj

• segment conductance gk = wk/(ρlk); current density jk = ik/wk

• conductance matrix G(w) =
∑

k wkaka
T
k ; node voltages V = G(w)−1I

• statistical model for block currents: E IIT = Γ

– Γ is block current correlation matrix
– Γ1/2

jj = RMS(Ij); Γij gives correlation between Ii, Ij
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Sizing problem

minimize A =
∑

k lkwk (area)

subject to Vj ≤ Vmax (node voltage limit)

E j2
k ≤ j2

max (RMS current density limit)

wk ≥ 0 (nonneg. wire widths)

can’t solve, except special case I constant

• (Erhard & Johannes) can improve any mesh design by pruning to a tree

• (Chowdhury & Breuer) can size P&G trees via geometric programming
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Meshes, trees and current variation

I1 I2
w1

w2

w3

• I1, I2 constant (or highly correlated): set w2 = 0 (yields tree)

• I1, I2 anti-correlated: better to use w2 > 0 (yields mesh)
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Average power formulation

• power dissipated in wires: P = V TI = ITG(w)−1I

• average power: EP = E ITG(w)−1I = TrG(w)−1Γ

minimize TrG(w)−1Γ + µ
∑

k lkwk (average power +µ·area)
subject to wk ≥ 0

• parameter µ > 0 trades off average power, area

• nonlinear but convex problem, readily (globally) solved

• indirectly limits E j2
k, Vj
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Properties of solution

observation: many wk’s are zero, i.e., many wires aren’t used
average power formulation can be used for P&G topology selection:

• start with lots of (potential) wires

• let average power formulation choose among them

• topology (given by nonzero wk) independent of µ

resulting current density and node voltages:

• RMS current density is equal in all (nonzero) segments
in fact µ = ρj2

max yields E j2
k = j2

max in all (nonzero) segments

• observation: Vj are small
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Example
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• 10×10 grid, each node connected to neighbors (180 segments)

• 8 current sources, I ∈ R8 is random with three possible values

• 4 ground pins on the perimeter (at corner points)
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design for constant currents (with same RMS values)
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• a tree; each source connected
to nearest ground pin

• RMS current density 1,
area = 448,
max. voltage = 7.7

design via average power formulation
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• mesh, not a tree

• RMS current density 1,
area = 347,
max. voltage = 5.7
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Barrier method

use Newton’s method to minimize

TrG(w)−1Γ + µlTw − β(i)
∑

k

log wk

• barrier term −β
∑

k log wk ensures wk > 0

• solve for decreasing sequence of β(i)

• can show w(i) is at most nβ(i) suboptimal

• O(n3) cost per Newton step

works very well for n < 1000 or so; easy to add other convex constraints
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Pruning

• often clear in few iterations which wk are converging to 0

• removing these wk early greatly speeds up convergence

• sizes 1000s of wks in minutes
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Where Γ comes from

• from simulation: Γ =
1

Tsim

∫ Tsim

0

I(t)I(t)T dt

• or, from block RMS currents and estimates of correlation:

Γij = RMS(Ii) RMS(Ij) ρij

• can use eigenvalue decomposition to simplify Γ

Γ =
∑

i

λiqiq
T
i , Γ̂ =

r∑
i=1

λiqiq
T
i

(reduced rank approximation speeds up avg. pwr. solution)
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Conclusion

• P&G meshes outperform trees when current variation taken into account

• Average power formulation

– yields tractable convex optimization problem
– chooses topology
– guarantees RMS current density limit
– indirectly limits node voltages
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