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Abstract. In this paper, we propose a new methodology for handling optimization problems with uncertain
data. With the usual Robust Optimization paradigm, one looks for the decisions ensuring a required per-
formance for all realizations of the data from a given bounded uncertainty set, whereas with the proposed
approach, we require also a controlled deterioration in performance when the data is outside the uncertainty
set.

The extension of Robust Optimization methodology developed in this paper opens up new possibilities
to solve efficiently multi-stage finite-horizon uncertain optimization problems, in particular, to analyze and to
synthesize linear controllers for discrete time dynamical systems.

1. Introduction

In this paper, our aim is to extend the scope of Robust Optimization (RO). To explain
the new directions into which we take the basic RO, we start with brief overview of the
main concepts of this methodology.

Uncertain convex problems. RO is a methodology for modelling uncertain optimization
problems of the form

min
χ

{F0(χ, ζ ) : Fi(χ, ζ ) ∈ Ki, i = 1, . . . , I } , (1)

where

– χ ∈ Rnχ is the vector of decision variables,
– ζ ∈ Rnζ is the vector of problem’s data,
– F0(χ, ζ ) : Rnχ × Rnζ → R, Fi(χ, ζ ) : Rnχ × Rnζ → Rki , 1 ≤ i ≤ I , are given

functions, and Ki ⊂ Rki are given nonempty sets.
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Uncertainty means that the data vector ζ is not known exactly at the time when the solu-
tion has to be determined. In RO, the aim is to choose a solution which is capable “to
cope” best of all with various realizations of the data. Needless to say, the latter sentence
has no sense unless we specify what we mean by “to cope” and “best of all”. At present,
RO has focused on two specifications of this type: non-adjustable and adjustable ones.

A. Non-adjustable Robust Optimization. In hindsight, this approach is based on the
following tacitly accepted assumptions:

A.1. All decision variables in (1) represent “here and now” decisions; they should
get specific numerical values as a result of solving the problem and before the actual
data “reveal itself”;

A.2. The uncertain data are “unknown but bounded”, so that one can specify an
appropriate (typically, bounded) uncertainty set U ⊂ Rnζ of possible values of the data.
The decision maker is fully responsible for consequences of his/her decisions when, and
only when, the actual data is within this set;

A.3. The constraints in (1) are “hard”, that is, we cannot tolerate violations of con-
straints, even small ones, when the data is in U .
A natural conclusion from A.1 – A.3 is that the only admissible candidate solutions of
problem (1) are fixed vectors χ ∈ Rnχ which satisfy the semi-infinite constraints

Fi(χ, ζ ) ∈ Ki ∀ζ ∈ U, 1 ≤ i ≤ I, (2)

that is, remain feasible whatever is a realization of the data from U . Applying the same
worst-case-oriented approach to the objective function leads to a new “robust” objective
function

F̄0(χ) = sup
ζ∈U

F0(χ, ζ ). (3)

Summarizing, with the above approach “to solve” uncertain optimization problem (2)
means, by definition, to solve its Robust Counterpart (RC) – the semi-infinite optimiza-
tion problem

min
χ

{
sup
ζ∈U

F0(χ, ζ ) : Fi(χ, ζ ) ∈ Ki ∀ζ ∈ U
}

�
min
χ,σ

{
σ :

F0(χ, ζ ) ≤ σ

Fi(χ, ζ ) ∈ Ki, 1 ≤ i ≤ I

}
∀ζ ∈ U

}
.

(4)

The idea of robust feasibility in Linear Programming was discussed as early as in 1973
by Soyster [15]. The in-depth developments of RO occurred since the mid-90’s [1, 2,
12, 13, 3] and opened the way to extensive research on the subject in the recent years
(see, e.g., [8–10] and references therein).

In perspective, the above developments dealt with static RO; recently, the RO meth-
odology was enriched by introducing a novel concept of Adjustable Robust Counterpart
[6], allowing to handle dynamical decision-making.
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B. Affinely Adjustable Robust Optimization. The idea underlying the latter approach
comes from revising Assumption A.1 “all decision variables in (1) represent “here and
now” decisions and as such should be specified before the actual data become known”.
This assumption is, first, independent of two other assumptions and, second, it is unnat-
ural in numerous models of real-life origin. For example, in dynamical decision-making
only part of the decisions are “here and now” ones, while the remaining variables repre-
sent “wait and see” decisions. These latter decisions need to be fully specified (assigned
numerical values) when part of the data is already known and thus are adjustable – can
tune themselves to the actual data. Another typical source of adjustability are “analysis
variables” which do not represent actual decisions and are introduced in order to con-
vert constraints in (1) to a desired form (like slack variables which allow to represent a
constraint

∑
j

|ajχj | ≤ 1 by a system of linear inequalities). Analysis variables usually

merely certify certain property of actual decisions; even when the latter are “here and
now” ones, there is absolutely no necessity for the certificates to be so as well.

A natural way to account for adjustability is as follows. We assign every decision
variable χj in (1) with a “portion of data” Pjζ on which χj can depend. Here Pj are
given matrices1 which, in particular, could be zero (meaning that χj is a non-adjustable
“here and now” decision). We now allow decision variable χj to depend on Pjζ and
seek for the dependencies χj = χj (Pj ζ ) (“decision rules”) which make the constraints
feasible for all realizations of the data ζ ∈ U and minimize, under this restriction, the
guaranteed value of the objective. The resulting Adjustable Robust Counterpart of (1) is
the infinite-dimensional optimization problem

min
χj (·),σ

{
σ :

F0(χ(ζ ), ζ ) ≤ σ

Fi(χζ ), ζ ) ∈ Ki, 1 ≤ i ≤ I

}
∀ζ ∈ U

}
[χ(ζ ) = {χj (Pj ζ )}]

Unfortunately, in contrast to the usual Robust Counterpart (4), the latter problem is almost
always “completely computationally intractable” – in general, it is even unclear how to
represent in a computationally tractable fashion candidate solutions (that is, multivariate
functions of continuous variables), let alone how to optimize over these solutions. To
recover computational tractability, it was proposed in [6] to restrict decision rules to be
affine functions of their arguments. The resulting Affinely Adjustable Robust Counter-
part (AARC) of (1) is still significantly more flexible than the non-adjustable RC, and
at the same time it is computationally tractable for a wide class of uncertain problems
satisfying appropriate (and not too restrictive) structural assumptions (for details and
instructive application examples, see [6, 7]). Note that the RC (4) is a particular case of
AARC corresponding to the situation when all matrices Pj are zero; this allows us to
focus in the sequel solely on AARC.

The goal of this paper is to extend the scope of RO methodology by modifying the
“uncertain-but-bounded” model of data uncertainty postulated by A.2. The motivation
is that in many applications, including into the uncertainty set all “physically possi-
ble” realizations of the data may lead to an overly “pessimistic” solution or even to
an infeasible Robust Counterpart. At the same time it is unwise to neglect some of

1 In principle, one can replace the affine functions Pj ζ of the data with arbitrary ones.
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these realizations. To make the point clearer, consider for example a communication
network where the uncertain data represent traffic between terminal nodes. It would be
too expensive to build a network which could serve with the same small delays both a
typical everyday traffic and a much larger traffic caused by an outstanding event. At the
same time, it would be undesirable to loose completely part of the latter traffic. What is
reasonable in this situation, is to allow for “normal” delays when serving “typical” traffic
and for larger, but somehow controlled, delays when serving large traffic fluctuations.

Our goal in this paper is to propose and to investigate a novel “uncertainty-immu-
nized” counterpart of uncertain problem (1) which adequately and comprehensively
models the requirement for normal performance in presence of “typical” uncertainty
and controlled deterioration in performance for “large deviations” in the uncertain data.
A rough model, to be refined in the sequel, is as follows. Let us treat what was called
earlier “uncertainty set” U as the “normal range” of the uncertain data, rather than the
set of all data we want to take into account, and treat a candidate affinely adjustable
solution χ(·) as “admissible”, if it meets two requirements:

I. When ζ ∈ U , the solution must satisfy the constraints Fi(χ(ζ ), ζ ) ∈ Ki , i ≤ I ;
II. For all data ζ ∈ Rnζ , the violations of the constraints should not exceed a pre-

scribed multiple of the deviation of the data from its normal range:

∀ζ ∈ Rnζ : dist(Fi(χ(ζ ), ζ ),Ki) ≤ αidist(ζ,U), i ≤ I. (5)

Here the distances from a vector a to a set A is measured in a prescribed norm on the
corresponding space according to the standard rule dist(a,A) = inf

a′∈A
‖a−a′‖. The con-

stants αi ≥ 0 in (5) serve as (upper bounds on) “global sensitivities” of the constraints,
evaluated at the candidate solution in question, to deviations of the data from its nor-
mal range. Note that in the case when the sets Ki are closed, requirement II dominates
requirement I; indeed, (5) implies that when ζ ∈ U , we have dist(Fi(χ(ζ ), ζ ),Ki) = 0,
that is, Fi(χ(ζ ), ζ ) ∈ Ki . Thus, we loose nothing when focusing solely on II.

Similar logic can be applied to the objective function. Specifically, we call a real σ
an achievable value of the objective, evaluated at a candidate solution χ(·), with global
sensitivity α0 ≥ 0, if

∀ζ ∈ Rn : F0(χ(ζ ), ζ )− τ ≤ α0dist(ζ,U). (6)

Summarizing, we associate with uncertain problem (1) its Comprehensive Robust Coun-
terpart (CRC)

min
χ(·),σ

{
σ :

F0(χ(ζ ), ζ ) ≤ σ + α0dist(ζ,U)
dist(Fi(χ(ζ ), ζ ),Ki) ≤ αidist(ζ,U), 1 ≤ i ≤ I

}
∀ζ

}
. (7)

We could also treat the global sensitivities αi as additional variables rather than given
constants and replace the objective function with, say, σ + g(α) for an appropriate
user-specified function g.

Note that problem (7) is “stronger” than AARC: every feasible solution to (7) is
feasible for the AARC as well. At the same time, pushing in (7) the sensitivities to +∞,
we, essentially, recover the AARC. Thus, the modelling concept we intend to introduce
and to investigate here is an extension of AARC and in particular encompasses also the
usual RC (hence the term “comprehensive”).
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The rest of this paper is organized as follows. In Section 2, we refine the concept
of CRC. Section 3 addresses the crucial issue of computational tractability of CRC.
Specifically, we demonstrate that under appropriate structural assumptions on (1) (“bi-
affine in χ , ζ constraints and objective”), problem (7) (which by itself is semi-infinite
and as such could be intractable) is computationally tractable, provided that Ki are not
too complicated convex sets. In Section 4, we apply the outlined approach to a prob-
lem which is important by its own right: that of specifying optimal finite-horizon linear
control law in a linear discrete time dynamical system affected by uncertain inputs. In
order to bring the latter problem into our “bi-affine” framework, we use an appropriate
parameterization of the family of linear control laws, similar to what is called in Control
“Q-parameterization”.

2. Comprehensive Robust counterpart of an uncertain optimization problem

We are about to refine the concept of Comprehensive Robust Counterpart of uncertain
problem (1), which was roughly outlined in the Introduction, with the purpose of adding
more flexibility to this notion, so as to capture a wide spectrum of requirements which
could arise in various potential applications.

2.1. The setup

2.1.1. Structure of normal ranges and sets of “physically possible” values of the
uncertain data For the time being, the normal range U of the data in (1) was de-
fined as a predetermined nonempty subset of the “data universe” Rnζ . From now on,
we assume that this set is closed, bounded and convex. Further, in many applications
the uncertain data ζ is naturally partitioned into blocks ζ �, � = 1, . . . , L, representing
“physically different” components. For example, in the communication network exam-
ple mentioned in the Introduction, the uncertain data represent the traffic in the network,
i.e., this is the vector comprised of communication demands of various origin-destination
pairs of nodes. It could be natural to split this vector according to a given partition of the
nodes such as domestic communications in various countries, communications between
various pairs of countries, etc. To handle the case of “structured data” conveniently, we
assume from now on that

1. The “data universe” Rnζ is represented as the direct product R(1) × . . .× R(L), and
ζ � is the projection of ζ on the corresponding direct factor.

2. The normal range U of ζ is the direct product of closed and bounded convex sets
U� ⊂ R(�) – normal ranges of the corresponding data components.

Further, whereas in the Introduction we considered all data vectors ζ to be “physically
possible”, from now on, in order to capture some applications (e.g. our “communication
example”, where the data definitely is nonnegative), we relax this assumption, allowing
the set Z� of “physically possible” values of ζ � to be a proper subset of the corresponding
“universe” R(�). It, however, would be technically inconvenient to allow for arbitrary
closed and convex sets Z�. From now on, we assume that the sets Z� are of the form

Z� = U� + L�, (8)
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where L� are closed convex cones in the corresponding spaces R(�). For illustration, to
model the case where Z� is the nonnegative orthant R

(�)
+ , we can choose as U� an arbi-

trary closed, bounded, convex subset of R
(�)
+ containing the origin and set L� = R

(�)
+ .

With L� = R(�), the set Z�, independently of what is the corresponding normal range
U�, becomes the entire R(�). Finally, the set Z of all physically possible values of the
data is, by definition, the direct product Z1 × . . .× ZL.

2.1.2. Measuring global sensitivities As outlined in the Introduction, global sensitivities
are measured in terms of point-to-set distances, the latter being given by prescribed norms
on the corresponding spaces. However, a norm imposes symmetry which is not necessary
relevant in certain situations. Therefore we choose to work with a wider set of distances
– those coming from Minkowski functions.

Minkowski functions. Recall that a Minkowski function φ(·) on Rn is a real-valued
function on Rn with the following properties:

1. [positivity] φ(w) > 0 whenever w �= 0;
2. [positive homogeneity] φ(λw) = λφ(w) for all w and all λ ≥ 0;
3. [triangle inequality] φ(w′ + w′′) ≤ φ(w′)+ φ(w′′) for all w′, w′′.

Note that a Minkowski function is a slight generalization of a norm; norms on Rn are
exactly the symmetric Minkowski functions: φ(−w) ≡ φ(w).

Given a Minkowski function φ(·) on Rn and a nonempty closed set K ⊂ Rn, we
define the distance distφ(v,K) of a vector v ∈ Rn from K by the natural relation

distφ(v,K) = min
v′∈K

φ(v − v′). (9)

Similarly, given a nonempty closed and bounded set Y ⊂ Rn and a closed coneL ⊂ Rn,
we set

distφ(v, Y |L) = min
v′∈Y :v−v′∈L

φ(v − v′), v ∈ Y + L. (10)

Note that distφ(v,K) is always nonnegative and is zero if v ∈ K , and similarly for
distφ(v, Y |L). Note also that distφ(v, Y |Rn) = distφ(v, Y ).

Measuring sensitivities. A definition of global sensitivity as outlined in the Introduc-
tion could be as follows:

Let χ(·) be a candidate solution to an uncertain constraint F(χ, ζ ) ∈ K ⊂ Rn,
let ψ(·) be a Minkowski function on Rn, and let φ(·) be a Minkowski function
on Rnζ . We say that the global sensitivity of the constraint, evaluated at χ(·), to
the uncertain data ζ does not exceed a real α, if

∀ζ ∈ Z : distψ(F (χ(ζ ), ζ ),K) ≤ αdistφ(ζ,U).
Note the major modification as compared with the Introduction: now we do not
care what happens with the constraint when ζ is not “physically possible”, that
is, ζ �∈ Z ≡ Z1 × . . .× ZL.
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It makes sense to refine the just outlined definition in order to respect data structure as
defined in Section 2.1.1. A technically convenient way to do it is as follows:

Definition 1. Let χ(·) be a candidate solution to an uncertain constraint F(χ, ζ ) ∈
K ⊂ Rn, let ψ(·) be a Minkowski function on Rn, and let φ�(·), � = 1, . . . , L, be
Minkowski functions on R(�). We say that the global sensitivities of the constraint, eval-
uated at χ(·), to the uncertain data ζ do not exceed reals α�, � = 1, . . . , L, if

∀ζ ∈ Z ≡ Z1 × . . .× ZL : distψ(F (χ(ζ ), ζ ),K) ≤
L∑
�=1

α�distφ�(ζ
�,U�|L�). (11)

Note the major differences between this definition (which is the only one we use from
now on) and the above “draft”. First, in the right hand side we use a “separable” (w.r.t.
data components) distance from the data to its normal range. Second, when measuring
the distance from a data component ζ � ∈ Z� to its normal range U�, we use the distance
distφ�(ζ

�,U�|L�) which respects the structure Z� = U� + L� of Z�. Third, the sensi-
tivity now becomes a vector rather than a scalar, so that we can speak about “partial
sensitivities” α� w.r.t. different data components.

2.2. Comprehensive Robust Counterpart of uncertain problem

Following the approach outlined in the Introduction and incorporating the refinements
presented in Section 2.1, we define the Comprehensive Robust Counterpart (CRC) of
uncertain problem (1) as the optimization problem

min
χ(·)∈Aff,σ



σ :

F0(χ(ζ ), ζ )− σ ≤
L∑
�=1

α0�distφ0� (ζ
�,Z�|L�) ∀ζ ∈ Z

distφi (Fi(χ(ζ ), ζ ),Ki) ≤
L∑
�=1

αi�distφi�(ζ
�,Z�|L�), ∀ζ ∈ Z

1 ≤ i ≤ I






,

(12)

where

– ζ ∈ Rnζ is the vector of uncertain data, and ζ �, � = 1, . . . , L, are the blocks of ζ
corresponding to a given decomposition Rnζ = R(1) × . . .× R(L),

– the “decision variable” χ(·) runs through the set of affinely adjustable candidate
solutions to (1), that is, through the set Aff of nχ -dimensional vector-functions of ζ
with components of the form

χj (ζ ) ≡ (χ(ζ ))j = η0
j + 〈ηj , Pj ζ 〉, j = 1, . . . , nχ . (13)

Here Pj are given matrices, while the reals η0
j and the vectors ηj are the parameters

specifying affinely adjustable candidate solutions to (1) (these parameters, along
with σ , are the decision variables in (12)). From now on, 〈·, ·〉 denotes the inner
product in the Euclidean space in question;
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– F0(χ, ζ ) : Rnχ × Rnζ → R, Fi(χ, ζ ) : Rnχ × Rnζ → Rki , 1 ≤ i ≤ I , are the
objective and the constraints of problem (1), and Ki ⊂ Rki are given nonempty
closed sets;

– ψi(·) and φi�(·) are given Minkowski functions on Rki , R(�), respectively;
– U� ⊂ R(�) are given nonempty compact convex sets, L� ⊂ R(�) are given closed

convex cones, and Z = (U1 + L1)︸ ︷︷ ︸
Z1

× . . .× (UL + LL)︸ ︷︷ ︸
ZL

;

– αi� are given nonnegative constants.

Along with (12), we shall consider a more general problem, where the sensitivities αi�
are treated as variables rather than given constants, namely, the problem

min
χ(·)∈Aff,σ
α={αi�}



�(σ, α) :

F0(χ(ζ ), ζ )− σ ≤
L∑
�=1

α0�distφ0� (ζ
�,Z�|L�)

∀ζ ∈ Z
distψi (Fi(χ(ζ ), ζ ),Ki) ≤

L∑
�=1

αi�distφi�(ζ
�,Z�|L�),

∀(i ≤ I, ζ ∈ Z)




α ∈ A



, (14)

where � is a given objective and A is a given subset of the nonnegative orthant. Note
that (12) is a particular case of the latter problem corresponding to a singleton set A and
to �(σ, α) ≡ σ . In the sequel, unless explicitly stated otherwise, reference to the CRC
of (1) points to (14) rather than (12).

3. Processing (14)

Problem (14) is semi-infinite – it has infinitely many constraints parameterized by the
uncertain data ζ ∈ Z; as such, it can be computationally intractable even in the case
where all instances of the underlying uncertain problem (1) are simple (e.g., are explicit
convex programs). Our next goal is to present sufficient conditions for the CRC to be
computationally tractable.

3.1. Bi-affinity and fixed recourse

We start with imposing appropriate structural assumptions on the functions Fi(χ, ζ ) in
(1). These assumptions by themselves do not necessarily guarantee tractability of the
CRC, but they simplify dramatically the corresponding analysis. The assumptions are
as follows:

Bi-affinity: The functions Fi(χ, ζ ), 0 ≤ i ≤ I , are affine in χ ∈ Rnχ for ζ fixed and
are affine in ζ ∈ Rnζ for χ fixed. In other words, we have

Fi(χ, ζ ) = F 0
i [ζ ] +

nχ∑
j=1

χjF
j
i [ζ ], 0 ≤ i ≤ I (15)

where Fji [ζ ], 0 ≤ i ≤ I , 0 ≤ j ≤ nχ , are affine in ζ .
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Note that as far as uncertain convex programs are concerned, bi-affinity assump-
tion is less restrictive than it might look. Indeed, a wide spectrum of convex programs
(e.g., linear and semidefinite ones) can be represented in the form of (1) with functions
Fi affine in χ . In this case, bi-affinity merely means that the uncertain data enter the
coefficients of these affine functions in an affine fashion.

Fixed recourse. Let Fi(χ, ζ ) obey (15), and assume that we substitute into these
functions, as the χ -argument, an affinely adjustable candidate solution to (1), that is, an
affine function χ(ζ ) of ζ with components of the form (13). The resulting functions of
ζ are of the form

Fi(χ(ζ ), ζ ) =

F 0

i [ζ ] +
nχ∑
j=1

η0
jF

j
i [ζ ]


 +

nχ∑
j=1

〈ηj , Pj ζ 〉Fji [ζ ].

In general, these functions are quadratic in ζ , except for the case of fixed recourse, where
for all j with adjustable χj (that is, with nonzero Pj ), the corresponding “coefficient”

F
j
i [ζ ] is “certain” – independent of ζ . In the latter case, the functions F(χ(ζ ), ζ ) are

affine in ζ . From now on, we make the following crucial

Assumption A: [fixed recourse] For every j such that Pj �= 0, all functions Fji ,
i = 0, 1, . . . , I , are independent of ζ .

With this assumption, we clearly have

χj (ζ ) = η0
j + 〈ηj , Pj ζ, 〉, j = 1, . . . , nχ ⇒ Fi(χ(ζ ), ζ ) ≡ ωi[η] +�i[η]ζ

≡ ωi[η] +
L∑
�=1

��i [η]ζ �, (16)

where η = {η0
j , ηj }

nχ
j=1 is the vector of parameters specifying affine function χ(ζ ) =

(χ1(η), . . . , χnχ (η))
′ (′ stands for taking the transpose), and ωi[η], ��i [η] are affine in

η vector- and matrix-valued functions readily given by the data of (1).

3.2. Convexity assumption

From now on, we assume that the sets Ki in (1) are nonempty, closed and convex.

3.3. Processing (14): decomposition

Under the assumptions of bi-affinity, fixed recourse and convexity (which are our default
assumptions from now on), all semi-infinite constraints in (14) are of the generic form

distψ

(
ω[γ ] +

L∑
�=1

��[γ ]ζ �,K

)
≤

L∑
�=1

α�distφ�(ζ
�,U�|L�) ∀

(
ζ � ∈ U� + L�,

1 ≤ � ≤ L

)
,

(17)

where
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– ω[γ ],��[γ ] are given affine functions of the design variables γ = (η = {η0
j , ηj }

nχ
j=1,

σ ) specifying, via (13), an affinely adjustable candidate solution to (1) and its quality,
– K is a given nonempty closed convex set in Rk , and
– ψ(·), φ�(·) are given Minkowski functions on Rk and R(�), respectively.

Now we show how to “decompose” the semi-infinite constraint (17) into a system of
somewhat simpler semi-infinite constraints.

Preliminaries. LetX be a nonempty closed convex set in Rq . Recall that the recessive
cone Rec(X) of X is the set

Rec(X) = {e ∈ Rq : x + te ∈ X ∀(x ∈ X, t ≥ 0)};

elements of Rec(X) are called recessive directions of X. It is well-known that Rec(X)
is a closed convex cone which is trivial – the origin {0} – if and only if X is bounded.
Finally, it is easily seen that e ∈ Rq is a recessive direction of X if and only if e can
be represented as limi→∞ t−1

i (yi − c), where yi, c ∈ X and ti → ∞ (see, e.g., [11],
Chapter 1).

Given a Minkowski function π(·) on Rq , let us set

πX(y) = distπ (y,Rec(X)) ≡ min
x∈Rec(X)

π(y − x) : Rq → R. (18)

Note that πX(y) satisfies all requirements from the definition of a Minkowski function,
except for positivity. Instead of the latter property we have πX(y) ≥ 0, and πX(y) = 0
if and only if y ∈ Rec(X). Finally, πX(·) ≡ π(·) for bounded X.

The role of the outlined notions in our context stems from the following simple
observation:

Proposition 1. Let

1. X ⊂ Rq and Y ⊂ Rp be closed nonempty convex sets, with Y bounded,
2. L be a closed convex cone in Rp,
3. π(·), θ(·) be Minkowski functions on Rq and Rp, respectively,
4. α ≥ 0.

For an affine mapping y �→ c + Sy : Rp → Rq , the condition

distπ (c + Sy,X) ≤ αdistθ (y, Y |L) ∀y ∈ Y + L (19)

is equivalent to the pair of conditions

(a) c + Sy ∈ X ∀y ∈ Y
(b) �Xθ,π (S|L) ≡ max

y
{πX(Sy) : y ∈ L, θ(y) ≤ 1} ≤ α. (20)

Proof. Assume that (19) takes place. Then for y ∈ Y we have distπ (c + Sy,X) = 0,
or, which is the same, c + Sy ∈ X, so that (20.a) is valid. Further, let y0 ∈ Y , and let
e ∈ L be such that θ(e) ≤ 1. For λ ≥ 0 we should have distπ (c + S(y0 + λe), x) ≤
αdistθ (y0 +λe, Y |L) ≤ αθ(λe) = αλθ(e) ≤ αλ. Recalling the definition of distπ (·, X),
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we conclude that for every λ > 0 there exists fλ ∈ X such that π([c + Sy0]︸ ︷︷ ︸
c0

+λSe −

fλ) ≤ αλ, or, which is the same,

π(Se − λ−1[fλ − c0]) ≤ α. (21)

It follows that the sequence of vectors i−1[fi−c0] is bounded; passing to a subsequence,
we may assume that the vectors hj = i−1

j [fij − c0], where ij → ∞ as j → ∞, con-
verge to a vector h as j → ∞. Since c0 ∈ X by (20.a), fi ∈ X and ij → ∞ as j → ∞,
h is a recessive direction of X, and (21) implies that π(Se − h) ≤ α, whence, by (18),
πX(Se) ≤ α as well, as required in (20.b).

It remains to verify that (20) implies (19). Assuming that (20) is valid, let y ∈ Y +L;
by definition of distθ (y, Y |L), there exist ȳ ∈ Y and e ∈ L such that y = ȳ + e and
θ(e) = distθ (y, Y |L). By (20.b), there exists f ∈ Rec(X) such that

π(Se − f ) ≤ αθ(e) = αdistθ (y, Y |L).

Finally, the vector c + Sȳ belongs to X by (20.a), so that the vector c + Sȳ + f also
belongs to X due to f ∈ Rec(X). Therefore

distπ (c + Sy,X) ≤ π(c + Sy − [c + Sȳ + f ]) = π(Se − f ) ≤ αdistθ (y, Y |L).

The resulting inequality holds true for all y ∈ Y + L, that is, (19) is valid. ��

Decomposing (17). The desired decomposition is given by the following

Corollary 1. The semi-infinite constraint (17) in variables γ , α�, is equivalent to the
system of constraints

(a) ω[γ ] +
L∑
�=1

��[γ ]ζ � ∈ K ∀(ζ � ∈ U�, � = 1, . . . , L)

(b�) �
K
φ�,ψ

(��[γ ]|L�) ≡ max
ζ �∈L�,φ�(ζ �)≤1

min
v∈Rec(K)

ψ(��[γ ]ζ � − v) ≤ α�,

� = 1, . . . , L

(22)

Proof. To save notation, let us skip the pointer [γ ]. If (17) holds true, then clearly

ω +
L∑
�=1

��ζ � ∈ K whenever ζ� ∈ U�, � = 1, . . . , L, as required in (22.a). Now let

ζ̄ � ∈ U�. � = 1, . . . , L− 1. By (17), we have

distψ

(
ω +

L−1∑
�=1

��ζ̄ �

︸ ︷︷ ︸
c

+�LζL,K
)

≤ αLdistφL(ζ
L,UL|LL) ∀ζL ∈ UL + LL,

whence, by Proposition 1, (22.bL) holds true. By similar reasons, all remaining state-
ments (22.b�), � = 1, . . . , L− 1, hold true as well. Thus, (17) implies (22).
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Conversely, let (22) hold true. Given ζ with ζ � ∈ U�+L�, � = 1, . . . , L, let us find
ζ̄ � ∈ U� such that ζ � − ζ̄ � ∈ L� and φ�(ζ � − ζ̄ �) = distφ�(ζ

�,U�|L�), � = 1, . . . , L.
By (22), for properly chosen f� ∈ Rec(K) we have

c ≡ ω +
L∑
�=1

��ζ̄ � ∈ K,
ψ(��[ζ � − ζ̄ �] − f�) ≤ �Kφ�,ψ(�

�|L�)φ�(ζ � − ζ̄ �) ≤ α�φ�(ζ
� − ζ̄ �)

= α�distφ�
(
ζ �,U�|L�

)
, � = 1, . . . , L.

(23)

We now have

ω +
L∑
�=1

��ζ � −
[
ω +

L∑
�=1

[
��ζ̄ � + f�

]]
︸ ︷︷ ︸

≡e=c+∑
�

f�

=
L∑
�=1

[
��[ζ � − ζ̄ �] − f�

]

whence, by (23) and the triangle inequality,

ψ

(
ω +

L∑
�=1

��ζ � − e

)
≤

L∑
�=1

α�distφ�(ζ
�,U�|L�).

Now, e ∈ K due to c ∈ K , see (23), and f� ∈ Rec(K), � = 1, . . . , L. We see that

distψ(ω +
L∑
�=1

��ζ �,K) ≤ ψ(ω +
L∑
�=1

��ζ � − e) ≤
�∑
�=1

α�distφ�(ζ
�,U�|L�)

for all ζ ∈ Z , as required in (17). ��
Corollary 1 implies that computationally tractable reformulation of (17) reduces to

similar reformulations of the constraints in (22). These are the issues we are about to
consider.

3.3.1. Processing (22.a) Tractable reformulation of semi-infinite inclusions like (22.a)
is one of the major issues in Robust Optimization [1, 12, 13, 3, 2, 5, 4] and is reasonably
well studied. A rough summary of these studies is as follows: aside of few rather special
cases, there are just two generic situations where a tractable reformulation of (22.a) is
possible:

A. K is computationally tractable2 and the normal range U of ζ is a polytope given
as a convex hull of finite set: U = Conv{ζν, ν = 1, . . . , N}. In this (not too interesting)
case the validity of (22.a) is clearly equivalent to the system of convex constraints in
variables γ :

ω[γ ] +
L∑
�=1

��[γ ]ζ �ν ∈ K, ν = 1, . . . , N. (24)

2 A closed convex set K is computationally tractable, if we are given in advance the affine hull of K , a
point from the relative interior of K and can check efficiently whether a given point belongs to K , see [14].
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B. K is a polyhedral set given by an explicit list of linear inequalities:

K = {v : 〈pν, v〉 ≥ rν, ν = 1, . . . , N} ⊂ Rk. (25)

In this case, the semi-infinite inclusion (17.a) admits a tractable reformulation, provided
that U is computationally tractable. Here is a more explicit result in this direction, which
covers a wide range of applications:

Proposition 2. [[3], Remark 4.1] Let K be given by (25), and let the set U be of the
form

U = {
ζ : ∃u ∈ Rs : A(ζ, u)− a ∈ K}

, (26)

where K is either a nonnegative orthant RM+ in the space E = RM , or the cone of
positive semidefinite matrices SM+ in the space E = SM of M ×M symmetric matrices
equipped with the Frobenius inner product, and (ζ, u) �→ A(ζ, u) is a linear mapping
from Rnζ × Rs to E. In the case when K is the semidefinite cone, assume also that the
image of the affine mapping A(·, ·)−a intersects the interior of K. Then the semi-infinite
constraint in variables γ :

ω[γ ] +�[γ ]ζ ∈ K ∀ζ ∈ U (27)

where ω[γ ], �[γ ]
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Example 1: One-dimensional K and interval uncertainty. Consider the semi-infinite
constraint (27) and assume that K in (17) is a proper subset of the real axis, while the
normal range U is a box:

U = {ζ ∈ Rnζ : z ≤ ζ ≤ z}.
Note that in this situation �[γ ] is a row vector of dimension nζ , and ω[γ ] is a scalar.
As for K , up to evident equivalent transformations (shift and scaling) there exist three
possibilities:

E.1: K = {0};
E.2: K = [−1, 1];
E.3: K = (−∞, 0].

The corresponding semi-infinite inclusion (27) reduced to an explicit finite system of
simple convex constraints in variables γ (which can be further reduces to linear con-
straints):

In the case of E.1:

ω[γ ] +�[γ ]
z+ z

2
= 0, (�[γ ])j = 0 ∀(j : z

j
�= zj ); (29)

In the case of E.2:

ω[γ ] +�[γ ] z+z2 +
nζ∑
i=1

zi−zi
2 |(�[γ ])i | ≤ 1,

ω[γ ] +�[γ ] z+z2 −
nζ∑
i=1

zi−zi
2 |(�[γ ])i | ≥ −1;

(30)

In the case of E.3:

ω[γ ] +
nζ∑
i=1

max
[
(�[γ ])izi , (�[γ ])izi

] ≤ 0. (31)

3.3.2. Processing (22.b) All conditions (22.b) are of the same generic form

ψK(H [ζ ]e) ≡ min
f∈Rec(K)

ψ(H [γ ]e − f ) ≤ α ∀(e ∈ L : φ(e) ≤ 1), (32)

where H [γ ] is k × n matrix affinely depending on γ , L is a closed convex cone in
Rn and ψ(·), φ(·) are Minkowski functions on Rk , Rn, respectively. Let us list several
situations where (32) admits computationally tractable reformulation.

A: The set {e ∈ L : φ(e) ≤ 1} is a polytope given as a convex hull of finite set
{e1, . . . , eM} (e.g., φ(e) = ∑

i

|ei | is the ‖ · ‖1-norm and L is given by restrictions on

signs of some or all coordinates of a vector) and the function ψK(·) is efficiently com-
putable (in fact, the latter is the case when K is computationally tractable, and ψ(·) is
efficiently computable).
In this case (32) is equivalent to the following explicit system of convex constraints in
the variables γ, α:

ψK(H [γ ]e�) ≤ α, � = 1, . . . ,M (33)

with efficiently computable left hand sides.
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B: K is bounded, L = Rn and both ψ(·), φ(·) are Euclidean norms.
In this case, ψK(·) = ψ(·) due to the boundedness of K , and (32) is equivalent to the
efficiently computable convex constraint

‖H [γ ]‖ ≤ α

where ‖H [γ ]‖ is the standard matrix norm (maximal singular value).
C: K is bounded, ψ(·) is polyhedral:

ψ(x) = max
1≤�≤M

〈a�, x〉 (34)

L is computationally tractable and φ(·) is efficiently computable. In this case ψK(·) ≡
ψ(·), so that (32) reads

max
e∈L:φ(e)≤1

〈H ∗[γ ]a�, e〉︸ ︷︷ ︸
φ∗(H ∗[γ ]a�|L)

≤ α, � = 1, . . . ,M. (35)

The function φ∗(·|L) is efficiently computable, since L is computationally tractable and
φ(·) is efficiently computable, so that (35) is a finite system of efficiently computable
convex constraints.

D: (D.1) Rec(K) is comprised of all vectors e ∈ Rk with nonpositive coordinates
ei , i ∈ J− ⊂ {1, . . . , k} and zero coordinates ei , i ∈ J0 ⊂ {1, . . . , k};

(D.2) ψ(·) is of the form

ψ(v) = max
1≤i≤M

k∑
s=1

ais max
[
β+
is vs,−β−

is vs
]
, (36)

where ais , β
±
is are nonnegative and the quantities µi = Card(Ii), Ii = {s : ais > 0} do

not exceed µ = O(1) log2(kM) (e.g., ψ(v) = ‖v‖∞ ≡ max
i

|vi |, where µ = 2);

(D.3) L is computationally tractable, and φ(·) is efficiently computable.
Processing (32) in the case of D is as follows. First, from (D.1) and (36) it clearly follows
that

ψK(v) = max
1≤i≤M

k∑
s=1

ais max
[
β̂+
is vs,−β̂−

is vi
]
,

β̂+
is =

{
0, s �∈ J− ∪ J0

β+
is , s ∈ J− ∪ J0

, β̂−
is =

{
0, s �∈ J0

β−
is , s ∈ J0

,

or, which is the same,

ψK(v) = max
1≤i≤M

max
εi={εis=±1}s∈Is

〈ai,εi , v〉, (ai,εi )s =


ais β̂

+
is , s ∈ Ii, εis = 1

ais β̂
−
is , s ∈ Ii, εis = −1

0, i �∈ Ij
. (37)

Therefore (32) is equivalent to the system of at most 2µM ≤ Poly(k,M) convex effi-
ciently computable (by (D.3) constraints in variables γ, α:

φ∗(H ∗[γ ]ai,ε
i |L) ≡ max

e∈L:φ(e)≤1
〈H ∗[γ ]ai,ε

i

, e〉 ≤ α ∀
(
εi = {εis = ±1}s∈Ii ,

i ≤ M

)
. (38)
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Example 2: One-dimensional K ,

ψ(s) = max[r+s,−r−s], φ(e) = max
1≤j≤dime

max[p+
j ej ,−p−

j ej ],

p±
j , r

± > 0, L = {e : ej ≥ 0, j ∈ J+, ej = 0, j ∈ J0}.

Up to the same equivalent transformations of K as above, there are three possibilities:
E.1: K = {0}, E.2: K = [−1, 1], E.3: K = (−∞, 0]. Let us set

κ+
j =

{
1/p+

j , j �∈ J0

0, j ∈ J0
, κ−

j =
{

1/p−
j , j �∈ J+ ∪ J0

0, j ∈ J+ ∪ J0

Given a row vector H [γ ] affinely depending on variables γ , relation

max
e∈L:φ(e)≤1

min
f∈Rec(K)

ψ(H [γ ]e − f ) ≤ α

is equivalent to the following explicit finite system of convex constraints in variables γ ,
α:

In the cases of E.1, E.2 (see C):

r+
dime∑
i=1

max
[
κ+
j (H [γ ])j ,−κ−

j (H [γ ])j
]

≤ α,

r−
dime∑
j=1

max
[
−κ+

j (H [γ ])j , κ
−
j (H [γ ])j

]
≤ α;

(39)

In the case of E.3 (see D):

r+
dime∑
j=1

max
[
κ+
j (H [γ ])j ,−κ−

j (H [γ ])j
]

≤ α. (40)

3.4. Summary

An informal summary of our developments is as follows: while the semi-infinite problem
(14) can be difficult in general, there exists a reasonably wide spectrum of cases (see Sec-
tions 3.3.1, 3.3.2) where the problem admits “computationally tractable” reformulation.
The next statement illustrates this in the important particular case where all constraints
in (1) are scalar (i.e., all Ki’s are one-dimensional) and the Minkowski functions φi�(·)
in (14) are of the form mentioned in Example 2, Section 3.3.2 (the latter assumption is
made only for the sake of definiteness and in order to stay all the time within Linear
Programming). For simplicity, we assume also that U is a box (this assumption also is
non-critical, see Section 3.3.1). In the sequel, we denote j -th coordinate of �-th block
ζ � in ζ by ζ �j ; similarly, ��ij [γ ] denotes j -th column in the matrix ��i [γ ], see (16).

Theorem 1. Consider semi-infinite problem (14) and assume that
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1. The normal range U of the uncertain data is a box:

U = {ζ : z� ≤ ζ � ≤ z�, � = 1, . . . , L}. (41)

while the cones L� are given by

L� = {ζ � : ζ �j ≥ 0, j ∈ J�, ζ �j = 0, j ∈ I�}; (42)

2. All the sets Ki , i = 1, . . . , I , are one-dimensional, so that the set I = {1, . . . , I }
of constraint indices can be partitioned into three subsets I0, I[−1,1] and I(−∞,0] in
such a way that Ki is

– a singleton (w.l.o.g., {0}) for i ∈ I0,
– a non-singleton bounded segment (w.l.o.g., [−1, 1]) for i ∈ I[−1,1], and
– a ray (w.l.o.g., (−∞, 0]) for i ∈ I(−∞,0].

Note that with one-dimensional Ki , ψi(·) are univariate Minkowski functions, so
that

ψi(s) = max[r+i s,−r−i s], r±i > 0, i = 1, . . . , I ; (43)

3. The set A of allowed sensitivities is a closed convex subset of the nonnegative orthant,
and the objective function �(σ, α) in (14) is convex.

4. Functions φi�(·) are of the form

φi�(ζ
�) = max

1≤j≤dimζ �
max[p+

i�j ζ
�
j ,−p−

i�j ζ
�
j ] (44)

where all coefficients p±· are positive.

Under these assumptions, problem (14) is equivalent to the following explicit Convex
Programming program:

min
η={η0

j
,ηj }j ,

σ,α={αi�}

�(σ, α) subject to (46) (45)

where
ω0[η] + ∑

�,j

max
[
z�
j
��0j [η], z�j�

�
0j [η]

]
≤ σ

∑
j

max
[
κ+

0�j�
�
0j [η],−κ−

0�j�
�
0j [η]

]
≤ α0�, � = 1, ..., L

(46a)

∀i ∈ I0 :

ωi[η] + ∑
�

��i [η] z
�+z�

2 = 0

∀(�, j : z�
j
< z�j ) : ��ij [η] = 0

∀(�, j : z�
j

= z�j ) :



r+i

∑
j

max
[
κ+
i�j�

�
ij [η],−κ−

i�j�
�
ij [η]

]
≤ αi�

r−i
∑
j

max
[
−κ+

i�j�
�
ij [η], κ−

i�j�
�
ij [η]

]
≤ αi�

(46b)
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∀i ∈ I[−1,1] :

ωi[η] + ∑
�

��i [η] z
�+z�

2 + ∑
�,j

z�j−z�j
2

∣∣∣��ij [η]
∣∣∣ ≤ 1

ωi[η] + ∑
�

��i [η] z
�+z�

2 − ∑
�,j

z�j−z�j
2

∣∣∣��ij [η]
∣∣∣ ≥ −1

r+i
∑
j

max
[
κ+
i�j�

�
ij [η],−κ−

i�j�
�
ij [η]

]
≤ αi�, � = 1, ..., L

r−i
∑
j

max
[
−κ+

i�j�
�
ij [η], κ−

i�j�
�
ij [η]

]
≤ αi�, � = 1, ..., L

(46c)

∀i ∈ I[−∞,0] :

ωi[η] + ∑
�,j

max
[
��ij [η]zj ,��ij [η]z

j

]
≤ 0

r+i
∑
�,j

max
[
κ+
i�j�

�
ij [η],−κ−

i�j�
�
ij [η]

]
≤ αi�, � = 1, ..., L

α ∈ A.

(46d)

In the above relations,

κ+
i�j =

{
1/p+

i�j , j �∈ I�
0, j ∈ I� , κ−

i�j =
{

1/p−
i�j , j �∈ J� ∪ I�

0, j ∈ J� ∪ I� (47)

Proof. The result is readily given by the constructions of Example 1, Section 3.3.1
expressing conditions (22.a) associated with the semi-infinite constraints of (14) and the
constructions of Example 2, Section 3.3.2 expressing conditions (22.b�) associated with
these constraints. ��
Remark 1. In fact, results of Sections 3.3.1, 3.3.2 allow to relax significantly the assump-
tions of Theorem 1, while keeping the conclusions intact. For example, we could allow
for some ofKi to be bounded multi-dimensional polyhedral sets given by explicit lists of
linear inequalities, provided that the corresponding Minkowski functionsψi(·) are poly-
hedral (see Proposition 2 and item C in Section 3.3.2). Moreover, we could require no
more than computational tractability of normal ranges U�, the cones L� and Minkowski
functions φi�, etc.

4. Generic application: optimal finite-horizon linear control in linear dynamical
system

In this section, we apply the CRC methodology to the problem of optimizing a finite-
horizon linear control in a linear discrete time dynamical system affected by uncertain
input.

4.1. The control problem

Consider a linear discrete time dynamical system given by

xt+1 = Atxt + Btut + Rtdt , t = 0, 1, ...
x0 = z

yt = Ctxt +Dtdt , t = 0, 1, ...
(48)
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where

– xt ∈ Rnx is the state at time t ,
– ut ∈ Rnu is the endogeneous control at time t ,
– dt ∈ Rnd is the exogeneous input at time t ,
– yt ∈ Rny is the observable output at time t ,

and At , Bt , Ct , Dt , t = 0, 1, ..., are given matrices of appropriate sizes.
Our goal is to optimize system’s behaviour on a given finite time horizon t =

0, 1, . . . , T by designing appropriate non-anticipative linear control law. The latter
means that the controls at time t should be affine functions of the outputsyt =(y0, . . . , yt )

observed till time t :

ut = gt +
t∑

τ=0

Gtτ yτ , 0 ≤ t ≤ T ; (49)

here gt , Gtτ are (in principle, arbitrary) vectors and matrices of appropriate sizes. We
wish to choose the “parameter” γ = {gt ,Gtτ }0≤τ≤t≤T of the control law in a way which
ensures a desired behaviour of the system and minimizes under this restriction a given
loss function. We assume that both the desired behaviour of the system and the loss is
expressed in terms of the resulting state-control trajectory

wT = (xT+1 ≡ (x0, . . . , xT+1), u
T = (u0, . . . , uT )).

Specifically, the “desired behaviour” is modelled by a system of convex constraints

pi + Piw
T ∈ Ki, i = 1, . . . , I, (50)

on the trajectory; here pi are given ki-dimensional vectors, Pi are given ki × dimwT

matrices andKi ⊂ Rki are given nonempty closed convex sets. For the sake of simplicity,
we restrict ourselves with a linear loss function

〈c,wT 〉 (51)

Our goal is to minimize the loss function by choice of the parameters γ of control law
(49) restricted to ensure constraints (50).

Uncertainty. When specifying a control law, we do not fully specify the state-space
trajectory – it depends on the control law and on the inputs dT = (d0, . . . , dT ), as well
as on the initial state z:

wT = WT (γ ; z, dT ), (52)

where WT (·; ·) is a function readily given by the data in (48), that is, the matrices At ,
Bt , Ct , Rt . In typical applications, the inputs (and in many cases the initial state as well)
are not fully known when building the control law, so that it is natural to treat them as
the uncertain part ζ = (z, dT ) of the data. Consequently, when substituting the right
hand side of (52) into (50) and (51), we get an uncertain optimization problem

min
γ

{
〈c,WT (γ ; ζ )〉︸ ︷︷ ︸

F0(γ,ζ )

: pi + PiW
T (γ ; ζ )︸ ︷︷ ︸

Fi(γ,ζ )

∈ Ki, i = 1, . . . , I

}
(53)
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which is in the form of (1). We could now apply to (53) the methodology we have
developed. However, there is an obstacle: the problem “as it is” severely violates the
assumption of bi-affinity of Fi , the assumption playing a crucial role in converting
the CRC of (53) into a computationally tractable form. Indeed, due to the linearity of
system (48) and affinity of control laws we intend to use, the state-space trajectory
wT = WT (γ ; ζ ) does depend affinely on ζ = (z, dT ), but, in contrast, its dependence
on the design variables γ is highly non-linear. Consequently, the functions Fi(γ, ζ ) are
highly nonlinear functions of γ . Fortunately, we have a remedy: linear control laws
can be re-parameterized in such a way that the state-space trajectory (and consequently
functions Fi(·, ·)) will become bi-affine in the new parameters of a control law and in ζ .
As a result, under reasonable structural restrictions on the constraints (50) the CRC of
(53) turns out to be computationally tractable, specifically, an explicit Linear Program-
ming problem of sizes polynomial in T , sizes of the matrices in (48) and the number I
of constraints in (50). We start processing (53) with developing the aforementioned re-
parameterization of linear control laws (resembling what is called “Q-parameterization”
in Control).

4.2. Linear control revisited

Notational convention. From now on, given a sequence e0, e1, . . . of vectors and an
integer t ≥ 0, we denote by et the initial fragment (e0, . . . , et ) of this sequence; for
t < 0, et is, by definition, a zero vector.

Purified outputs. Assume that we “close” the open-loop system (48) with a (not nec-
essary linear) control ut = Ut(y

t ), and consider, along with the resulting closed loop
system

xt+1 = Atxt + Btut + Rtdt
x0 = z

yt = Ctxt +Dtdt
ut = Ut(y

t )

(54)

its model

x̂t+1 = At x̂t + Btut
x̂0 = 0
ŷt = Ct x̂t

(55)

where ut are the controls given by (54). Since we know the matrices At, Bt , Ct (and of
course know the controls we are generating), we can run the model in an “on-line” fash-
ion, so that at time t , when the decision on ut should be made, we have in our disposal
the model outputs ŷτ , 0 ≤ τ ≤ t . It follows that at this time we also know the purified
outputs vt = yt − ŷt .



Extending Scope of Robust Optimization 83

Re-parameterization of linear control laws. Now let us equip (48) with a control law
where controls ut are affine functions of the purified outputs observed till time t :

ut = ht +
t∑

τ=0

Htτ vτ ,

ht ,Htτ being vectors and matrices of appropriate sizes. The resulting closed loop system
is given by the relations

plant:

(a) :




x0 = z

xt+1 = Atxt + Btut + Rtdt
yt = Ctxt +Dtdt

model:

(b) :




x̂0 = 0
x̂t+1 = At x̂t + Btut
ŷt = Ct x̂t

purified outputs:
(c) : vt = yt − ŷt
control law:

(d) : ut = ht +
t∑

τ=0
Htτ vτ

(56)

We make the following simple observation:

Proposition 3. (i) For every linear control law in the form of (49), there exists a con-
trol law in the form of (56.d) which, whatever be the initial state and a sequence
of inputs, results in exactly the same state-control trajectories of the closed loop
system;

(ii) Vice versa, for every linear control law in the form of (56.d), there exists a control
law in the form of (49) which, whatever be the initial state and a sequence of inputs,
results in exactly the same state-control trajectories of the closed loop system;

(iii) [bi-affinity] The state-control trajectory wT of closed loop system (56) is affine in
z, dT when the parameters η = {ht ,Htτ }0≤τ≤t≤T of the underlying control law
are fixed, and is affine in η when z, dT are fixed:

wT = ω[η] +�z[η]z+�d [η]dT (57)

for some vectors ω[η] and matrices �z[η], �d [η] affinely depending on η.

Proof. (i): Let us fix a linear control law in the form of (49), and let xt = Xt(z, d
t−1),

ut = Ut(z, d
t ), yt = Yt (z, d

t ), vt = Vt (z, d
t ) be the corresponding states, controls,

outputs and purified outputs. To prove (i) it suffices to show that for every t ≥ 0
with properly chosen vectors qt and matrices Qtτ one has

∀(z, dt ) : Yt (z, d
t ) = qt +

t∑
τ=0

QtτVτ (z, d
τ ). (It )
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Indeed, given the validity of these relations and taking into account (49), we would
have

Ut(z, d
t ) ≡ ht +

t∑
τ=0

HtτYτ (z, d
τ ) ≡ h̃t +

t∑
τ=0

H̃tτ V (z, d
τ ) (IIt )

with properly chosen h̃t , H̃tτ , so that the control law in question can indeed be
represented as a linear control law via purified outputs.
We shall prove (It ) by induction in t . The base t = 0 is evident, since by (56.a-c)
we merely have Y0(z, d

0) ≡ V0(z, d
0). Now let s ≥ 1 and assume that relations

(It ) are valid for 0 ≤ t < s. Let us prove the validity of (Is). From the validity
of (It ), t < s, it follows that the relations (IIt ), t < s, take place, whence, by the
description of the model system, x̂s = X̂s(z, d

s−1) is affine in the purified outputs,
and consequently the same is true for the model outputs ŷs = Ŷs(z, d

s−1):

Ŷs(z, d
s−1) = ps +

s−1∑
τ=0

PsτVτ (z, d
τ ).

We conclude that with properly chosen ps , Psτ we have

Ys(z, d
s) ≡ Ŷs(z, d

s−1)+ Vs(z, d
s)

= ps +
s−1∑
τ=0

PsτVτ (z, d
τ )+ Vs(z, d

s),

as required in (Is). Induction is completed, and (i) is proved.
(ii): Let us fix a linear control law in the form of (56.d), and let

xt = Xt(z, d
t−1), x̂t = X̂t (z, d

t−1), ut = Ut(z, d
t ), yt = Yt (z, d

t ),

vt = Vt (z, d
t )

be the corresponding actual and model states, controls, and actual and purified out-
puts. We should verify that the state-control dynamics in question can be obtained
from an appropriate control law in the form of (49). To this end, similarly to the
proof of (i), it suffices to show that for every t ≥ 0 one has

Vt (z, d
t ) ≡ qt +

t∑
τ=0

QtτYτ (z, d
τ ) (IIIt )

with properly chosen qt , Qtτ . We again apply induction in t . The base t = 0 is
again trivially true due to V0(z, d

0) ≡ Y0(z, d
0). Now let s ≥ 1, and assume that

relations (IIIt ) are valid for 0 ≤ t < s, and let us prove that (IIIs) is valid as well.
From the validity of (IIIt ), t < s, and from (56.d) it follows that

t < s ⇒ Ut(z, d
t ) = ht +

t∑
τ=0

HtτYτ (z, d
τ )
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with properly chosen ht and Htτ . From these relations and the description of the
model system it follows that its state X̂s(z, ds−1) at time s, and therefore the model
output Ŷs(z, ds−1), are affine functions of Y0(z, d

0), . . . ,Ys−1(z, d
s−1):

Ŷs(z, d
s−1) = ps +

s−1∑
τ=0

PsτYτ (z, d
τ )

with properly chosen ps , Psτ . It follows that

Vs(z, d
s) ≡ Ys(z, d

s)− Ŷs(z, d
s−1)

= Ys(z, d
s)− ps −

s−1∑
τ=0

PsτYτ (z, d
τ ),

as required in (IIIs). Induction is completed, and (ii) is proved.
(iii): For 0 ≤ s ≤ t let

Ats =


t−1∏
r=s

Ar , s < t

I, s = t

Setting δt = xt − x̂t , we have by (56.a-b)

δt+1 = Atδt + Rtdt , δ0 = z ⇒ δt = At0z+
t−1∑
s=0

Ats+1Rsds

(from now on, sums over empty index sets are zero), whence

vτ = Cτ δτ +Dτdτ = CτA
τ
0z+

τ−1∑
s=0

CτA
τ
s+1Rsds +Dτdτ . (58)

Therefore control law (56.d) implies that

ut = ht +
t∑

τ=0
Htτ vτ = ht︸︷︷︸

νt [η]

+
[

t∑
τ=0

HtτCτA
τ
0

]
︸ ︷︷ ︸

Nt [η)

z+
t−1∑
s=0

[
HtsDs +

t∑
τ=s+1

HtτCτA
τ
s+1Rs

]
︸ ︷︷ ︸

Nts [η]

ds +HttDt︸ ︷︷ ︸
Ntt [η]

dt

= νt [η] +Nt [η]z+
t∑
s=0

Nts[η]ds

(59)



86 A. Ben-Tal et al.

whence, invoking (56.a),

xt = At0z+
t−1∑
τ=0

Atτ+1[Bτuτ + Rτdτ ] =
[
t−1∑
τ=0

Atτ+1Bτνt [η]

]
︸ ︷︷ ︸

µt [η]

+
[
At0 +

t−1∑
τ=0

Atτ+1BτNτ [η]

]
︸ ︷︷ ︸

Mt [η]

z

+
t−1∑
s=0

[
t−1∑
τ=s

Atτ+1BτNτs[η] + Ats+1BsRs

]
︸ ︷︷ ︸

Mts [η]

ds

= µt [η] +Mt [η]z+
t−1∑
s=0

Mts[η]ds.

(60)

We see that the states xt , 0 ≤ t ≤ T + 1, and the controls ut , 0 ≤ t ≤ T , of
the closed loop system (56) are affine functions of z, dT , and the corresponding
“coefficients” µt [η], . . . ,Nts[η] are affine vector- and matrix-valued functions of
the parameters η = {ht ,Htτ }0≤τ≤t≤T of the underlying control law (56.d). ��

As we shall see in a while, the bi-affinity property proved in Proposition 3 allows to
synthesize efficiently a linear control law, if any, which meets given finite-horizon control
specifications when the latter are expressed by a system of linear (or convex nonlinear)
constraints on the states and the controls. It should be stressed that this attractive option
exists only in the case when we seek for a “general-type” linear control. Adding, along
with linearity, other structural restrictions on the control law can make the synthesis
problem difficult. For example, this is the case with the simple linear feedback control

ut = Ktyt (61)

which is of primary interest in Control. Indeed, laws of the form (61) form a proper
subset C in the set of all linear control laws. With parameterization (49), C looks very
simple (it is just a linear subspace in the space of all linear control laws), but this does
not help much in computationally efficient synthesis, since the parameterization itself is
bad for this purpose. With the outlined re-parameterization which eliminates the latter
difficulty, C is cut off the entire space of parameters by a system of high-order polynomial
equations, and optimization over this highly nonlinear set seems to be computationally
intractable.

4.3. Tractability of the CRC

With Proposition 3 at hand, we can proceed to use the results of Section 3 in order to
build and process the CRC of problem (53). Specifically, the state-space trajectory wT
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of (56) is a bi-affine function of the parameters η = {ht ,Htτ }0≤τ≤t≤T of the underlying
control law and the uncertain data ζ = (z, dT ):

wT = ω[η] +�[η]ζ = ω[η] +�z[η]z+�d [η]dT (62)

(ω[η], �[η] are affine in η). Consequently, problem (53) can be equivalently rewritten
as

min
η

{
〈c, ω[η] +�[η]ζ 〉︸ ︷︷ ︸

F̂0(η,ζ )

: pi + Pi [ω[η] +�[η]ζ ]︸ ︷︷ ︸
F̂i (η,ζ )

∈ Ki, i = 1, . . . , I

}
, (63)

the functions F̂i(η, ζ ), 0 ≤ i ≤ I being bi-affine. All decision variables in (63) are
non-adjustable, so that the Fixed Recourse assumption holds trivially true. Thus, we
are in a situation which satisfies the assumptions of Section 3.1, and we can utilize all
constructions and results of Section 3. In particular, consider the case when

– allKi in (50) are one-dimensional (or, equivalently, (50) is a system of linear equal-
ities and inequalities on the states and the controls),

– the normal ranges of the components ζ � of ζ are boxes, the cones L� are of the form
(42), and the Minkowski functions φi�(·) are given by (44),

In this case, Theorem 1 ensures computational tractability of the CRC of (63) and, more-
over, provides its equivalent reformulation as an explicit convex program3. As a result,
we get a possibility to check efficiently whether given control specifications, expressed
by a system of linear inequalities on states and controls over finite time horizon, can
be satisfied by a linear control law, whatever be exogeneous inputs and initial states
varying in their (bounded) normal ranges. We can further optimize the performance of
the closed loop system, provided that the latter is quantified by a linear function of states
and controls. Moreover, we can take care of global sensitivities of system’s behaviour to
deviations of the inputs/initial states from their normal ranges. These possibilities seem
to be very attractive and, we believe, deserve extensive exploration. There is, however,
a limitation of the approach we have outlined: by its nature, it is restricted to handle
finite-horizon control problems only. Of course, “infinite time horizon” by itself is a
mathematical abstraction we do not meet in real-life applications. The actual bottleneck
in our approach is that the computational effort required to solve the control synthesis
problem, grows nonlinearly (although polynomially) with the time horizon T , which
makes the approach impractical when T is large; for existing optimization techniques,
already T = 100 is too much . . . While time horizon of few tens could be appropriate
for management applications, it may be too small for engineering ones. However, cer-
tain important “infinite horizon” control specifications are still amenable to the outlined
CRC approach. An example is offered next.

Example: stabilizing the closed-loop system. Stability is one of the most typical speci-
fications in infinite-horizon linear control; it requires from states and controls of the
closed loop system to go to 0 as t → ∞ whenever dt → 0, t → ∞. At a first glance, the

3 As explained in Remark 1, the latter conclusion remains valid under significantly milder assumptions on
(50) and on the ingredients in the CRC setup.
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requirement that a linear control law should make the closed loop system stable cannot
be addressed by our finite-horizon-oriented synthesis approach, but in fact it can, at least
in the time-invariant case (matrices At , Bt , Ct , Dt , Rt in (48) are independent of t). In
this case, when applying the CRC approach, we can specify the initial state z of (48) as
the first component ζ 1 of the uncertain data (z, dT ), dT as the second component of the
data, choosing the corresponding cones L�, � = 1, 2 to be the entire spaces, thus making
all initial states and all input sequences “physically possible”. Let us also ensure that
the normal range of inputs contains the origin and that system (50) includes bounds on
states xt and controls ut :

‖xt‖∞ ≤ at , 0 ≤ t ≤ T + 1, ‖ut‖∞ ≤ bt , 0 ≤ t ≤ T , (64)

where we set aT+1 = 0. In the CRC of (63), the bound ‖xT+1‖∞ ≤ aT+1 = 0 will be
represented by a system of semi-infinite constraints of the form

∀(z, dT ) : dist|·|(χj [η; z, dT ], {0}) ≤ αjdistφj1(z,U1)+ βjdistφj2(d
T ,U2|L2),

1 ≤ j ≤ dimx,
(65)

where χj [η; z, dT ] are the coordinates of xT+1 expressed as bi-affine functions of the
parameters η of a control law and the uncertain data ζ = (z, dT ), while all other entities
are ingredients of the CRC setup. Now let us specify the Minkowski functions φj1 as
the ‖ · ‖∞-norm on the state space and impose on the sensitivities αj bounds

αj ≤ θ,

where θ ∈ (0, 1) is a given parameter. Note that with this setup, a linear control law which
is feasible for the CRC of (63) possesses the property that the state xT+1 = xT+1(z, d

T )

of the closed loop system at time T + 1 satisfies the bound

‖xT+1(z, d
T )‖∞ ≤ θ‖z‖∞ + β‖dT ‖

We can now use such a finite-horizon control law in cyclic fashion, that is, use “as it is”
at the first T + 1 time instants 0, 1, . . . , T , then shift by T + 1 the origin on the time
axis (thus making xT+1 our new initial state) and use the same control law for T + 1
instants more, then again shift our “instant 0” by T + 1, use our control law for T + 1
instants more, and so on. It is immediately seen that due to θ ∈ (0, 1), the resulting
infinite-horizon control law stabilizes the closed loop system. Thus, in principle our
finite-horizon approach allows to take care both of the “nearest” and the remote future.
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