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Abstract—We consider the array signal processing prob-
lem of choosing the weight vector to minimize noise
power, subject to a unit array gain for the desired wave,
and subject to rejection constraints on interferences. We
model the variations in the array response with ellipsoidal
uncertainty, and take the worst-case robust optimization
approach, i.e., we require the constraints to hold for all
possible data in the uncertainty ellipsoid. We show that this
robust array signal processing problem can be formulated
as a second-order cone program, which interior-point
algorithms can solve efficiently. The robust solution is
demonstrated with an example.

I. ARRAY SIGNAL PROCESSING
We consider an array of n sensor elements. Let a :

Ω → C
n be the array response to a plane wave of

unit amplitude parametrized by θ ∈ Ω, where Ω is
the set of all possible wave parameters, such as its
arrival angle, wavelength, polarization, and so on. The
composite output of the array is a weighted sum w∗a(θ),
where w = (w1, . . . , wn) ∈ C

n is the vector of weights
and (·)∗ denotes the conjugate transpose. The magnitude
|w∗a(θ)| of the array output is called the array gain or
array sensitivity given the parameter θ.
We consider the following array signal processing

(i.e., beamforming) problem. We require a unit array
gain for a wave with the desired parameter θ1, i.e.,
|w∗a(θ1)| = 1. We also want to impose interference
rejection or nulling constraints, which are array gain
constraints of the form

|w∗a(θ)| ≤ ε ∀θ ∈ Ωrej,

where ε ≥ 0 is the rejection level and Ωrej is a set of
parameters that describe waves to be rejected. We focus
on the finite set, say

Ωrej = {θ2, . . . , θm}.

(The infinite case can be handled approximately by
discretizing the set Ωrej.) Additionally, we want to keep

the noise power P (w) = w∗Σw small, where Σ is the
covariance of the additive noise. This objective has the
statistical interpretation of minimizing the additive white
Gaussian noise in the system.
The problem of choosing the weight vector that mini-

mizes the noise power, subject to unit array gain for the
desired wave and the interference rejection constraints,
is given by

minimize P (w)
subject to |w∗a1| = 1

|w∗ai| ≤ ε, i = 2, . . . , m,
(1)

where the variable is w ∈ C
n and the problem data are

ai = a(θi) for i = 1, . . . , m. A solution of (1) is referred
to as the nominal optimal solution and we denote it as
w�

nom. It is guaranteed to reject waves with parameters
in Ωrej with a rejection level of at least ε.
The array processing problem (1) is not a convex

optimization problem, since the equality constraint is not
linear. However, we can transform it to an equivalent
convex problem,

minimize P (w)
subject to Re(w∗a1) ≥ 1

|w∗ai| ≤ ε, i = 2, . . . , m.
(2)

where Re(·) denotes the real part. This is a second-order
cone problem (SOCP) when expressed in terms of the
real and imaginary parts of the variables and data; it can
be readily solved using the interior-point methods [11],
[13]. The equivalence between problems (1) and (2) is
shown in Appendix A.

II. ROBUST ARRAY PROCESSING WITH UNCERTAIN
DATA

A. Robust array processing problem
In problem (2), we assume that the data a are perfectly

known. A widely known problem is that the nominal

22671­4244­0785­0/06/$20.00



optimal solution can be extremely sensitive to variations
in the array response a. The goal of robust array
signal processing or robust beamforming is to choose
weights w such that the obtained solution performs
well despite variations in a. Robust beamforming has
been considered since the beginning of array signal
processing [6]. One widely used robust beamforming
technique is the diagonal loading method [1], [5], where
an l2-regularization term is added to the objective. More
recently, ideas from (worst-case) robust optimization [2],
[7], [3] have been applied to robust beamforming; for
example, in robust minimum variance beamforming [14],
[17], [12], in beamforming with uncertain weights [15],
and in robust array pattern synthesis [18, Sec. IV]. Some
other applicable robust techniques are summarized in the
survey articles [10], [16].
In this paper, we consider the robust array processing

with ellipsoidal uncertainty in the data ai. We assume
that for each ai we have an ellipsoid Ai ⊆ C

n that
covers the possible values of ai:

ai ∈ Ai = {āi + Piu | ‖u‖2 ≤ 1},

where āi is the nominal array response, u ∈ C
p, and

Pi ∈ C
n×p describes the shape of the ellipsoid. The

norm ‖ · ‖2 denotes the complex l2-norm.
We take a worst-case robust optimization approach

to problem (2) given the ellipsoidal uncertainty model
described above: we require the constraints to hold for
all data ai ∈ Ai. This robust optimization approach leads
us to the robust array processing problem

minimize P (w)
subject to Re(w∗a1) ≥ 1, ∀a1 ∈ A1

|w∗ai| ≤ ε, ∀ai ∈ Ai, i = 2, . . . , m.
(3)

A solution of (3) is referred to as the robust optimal
solution and we denote it as w�

rob. This is a convex semi-
infinite problem (SIP) [9] and is not tractable in this
formulation.

B. SOCP formulation

The main contribution of this paper is to show that
the SIP (3) can be reformulated as

minimize P (w)
subject to Re(w∗ā1) ≥ 1 + ‖P ∗

1 w‖2

|w∗āi|+ ‖P
∗
i w‖2 ≤ ε, i = 2, . . . , m.

(4)
This problem becomes an SOCP when expressed in
terms of the real and imaginary parts of the variables
and data, and so can be efficiently solved using interior-
point methods [13].

The equivalence between (3) and (4) follows directly
from the following two observations. Consider an el-
lipsoid A = {ā + Pu | ‖u‖2 ≤ 1}, where ā ∈ C

n,
P ∈ C

n×p, and u ∈ C
p. Then,

• Re(w∗a) ≥ 1 for all a ∈ A if and only if

Re(w∗ā) ≥ 1 + ‖P ∗w‖2. (5)

• |w∗a| ≤ ε for all a ∈ A if

|w∗ā|+ ‖P ∗w‖2 ≤ ε. (6)

The first result is widely used in robust beamforming,
and follows from the Cauchy-Schwarz inequality; see,
e.g., [14]. The second result is also a consequence of
the Cauchy-Schwarz inequality, as shown below.
Observe that, for any a ∈ A, we have a chain of

inequalities

|w∗a| = |w∗(ā + Pu)|

≤ |w∗ā|+ |(P ∗w)∗u|

≤ |w∗ā|+ ‖P ∗w‖2.

The first inequality comes from the triangle inequality,
while the second one comes from the Cauchy-Schwarz.
Moreover, equality holds here with the choice

u =
P ∗w

‖P ∗w‖2
eiφ, φ = ∠ (w∗ā) .

Therefore, we have

sup
a∈A

|w∗a| = |w∗ā|+ ‖P ∗w‖2.

This completes the proof since |w∗a| ≤ ε for all a ∈ A
if and only if supa∈A |w

∗a| ≤ ε.

III. EXAMPLE
We consider an array with n = 20 sensor elements in

a plane. The spacing between the sensors is about 0.5λ,
where λ is the wavelength of plane waves arriving from
angles θ ∈ Ω = [0◦, 360◦]. We use a simple model for
the array response,

a(θ)j = exp(2πi/λ(xj cos θ + yj sin θ)),

where (xj , yj) is the location of the jth sensor element.
We take the desired direction θ1 = 45◦ and we consider
a finite rejection set Ωrej = {10◦, 65◦, 120◦, 200◦} with
the rejection level ε = 0.05 (−26 dB). Figure 1 shows
our sensor array and the wave angles.
We conduct the following numerical experiment. We

consider the objective function P (w) = w∗w, i.e., we
minimize the effect of the additive white Gaussian noise
in the system. We keep the constraint for unit array
gain in the desired direction certain, i.e., A1 = {ā1},
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θ1 = 45
◦

θ2 = 10
◦

θ3 = 65
◦

θ4 = 120
◦

θ5 = 200
◦

Fig. 1. A sensor array and directions of impinging plane waves.

and introduce uncertainty in the interference rejection
constraints. We consider isometric uncertainties centered
around the nominal array responses, i.e., the uncertainty
matrices P2, . . . , P5 are scaled identities ρ I ∈ C

20×20,
where ρ > 0 is the measure of the uncertainty.
We solve the nominal array processing problem (2)

and a family of robust array processing problems (4) for
various values of ρ using CVX [8]. For a particular value
of ρ, we compute the worst-case interference rejection
level Rwc, defined as

Rwc(w) = max
i

sup
ai∈Ai

|w∗ai| = max
i
|w∗āi|+ ρ‖w‖2,

i = 2, . . . , 5
(7)

for both the nominal optimal w�
nom and the robust opti-

mal solutions w�
rob. The worst-case rejection level versus

ρ is shown in figure 2. We note that the robust solution
always rejects the interference waves with rejection level
of at least ε = 0.05 (−26 dB), while the nominal
optimal solution violates these constraints in the worst-
case scenario by an amount of ρ ‖w�

nom‖2 as predicted
by (7). Figure 3 shows increase in the optimal value
for the robust problem (4) with respect to the nominal
problem (2). This increase in the objective value is
the price we have to pay in order to guarantee robust
rejection of the interference waves. For example, when
ρ = 0.15, we have a 2% increase in the objective value,
while the nominal optimal solution violates a rejection
constraint by 0.036.

IV. CONCLUSIONS
In this paper, we have shown how one can take

into account the variations in the array responses to
the desired wave and interferences, using the worst-
case robust optimization approach with an ellipsoidal
uncertainty model of data. We have restricted ourselves
to an ellipsoidal uncertainty model. The convex formu-
lation can be easily extended to general complex lp-
norm ball uncertainty description (with p ≥ 1), and one
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Fig. 2. Worst-case interference rejection levels for the nominal optimal
solution w

�

nom (red dashed curve) and the robust optimal solution w
�

rob

(blue solid curve).
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Fig. 3. Optimal value of the objective function P (w) = w
∗
w for

the nominal optimal solution w
�

nom (red dashed curve) and the robust
optimal solution w

�

rob
(blue solid curve).

can still compute the worst-case gain analytically. The
resulting robust optimization problem is still a convex
problem which interior-point algorithms can solve with
great efficiency.
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APPENDIX A
PROBLEM EQUIVALENCE

We establish the equivalence of the problems (1)
and (2). For any α ∈ C and i = 1, . . . , m, we have

P (αw) = |α|P (w), |(αw)∗ai| = |α| |w∗ai| .

Suppose w is feasible for (2). Since Re(w∗a1) ≥ 1,
we have |w∗a1| ≥ 1, so w̃ = (1/ |w∗a1|)w satisfies
|w̃∗a1| = 1 and |w̃∗ai| ≤ ε for i = 2, . . . , m. Thus, w̃
is feasible for (1), and furthermore, it satisfies

P (w̃) =
P (w)

|w∗a1|
≤ P (w).

Conversely, suppose that w̃ is feasible for (1), i.e.,
|w̃∗a1| = 1 and |w̃∗ai| ≤ ε for i = 2, . . . , m. Then
the point

w =
w̃∗a1

|w̃∗a1|
w̃

is feasible for (2), and satisfies P (w) = P (w̃). Thus
from any feasible point for either problem, we can
construct a feasible point for the other problem, with
equal or lower objective value, so we conclude they are
equivalent [4, Chap. 4].
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