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Abstract

Fisher linear discriminant analysis (LDA) can be sensitive to the prob-
lem data. Robust Fisher LDA can systematically alleviate the sensitivity
problem by explicitly incorporating a model of data uncertainty in a clas-
sification problem and optimizing for the worst-case scenario under this
model. The main contribution of this paper is show that with general
convex uncertainty models on the problem data, robust Fisher LDA can
be carried out using convex optimization. For a certain type of product
form uncertainty model, robust Fisher LDA can be carried out at a cost
comparable to standard Fisher LDA. The method is demonstrated with
some numerical examples. Finally, we show how to extend these results
to robust kernel Fisher discriminant analysis, i.e., robust Fisher LDA in a
high dimensional feature space.

1 Introduction

Fisher linear discriminant analysis (LDA), a widely-used technique for pattern classifica-
tion, finds a linear discriminant that yields optimal discrimination between two classes
which can be identified with two random variables, say X and Y in R

n. For a (linear)
discriminant characterized by w ∈ R

n, the degree of discrimination is measured by the
Fisher discriminant ratio

f(w, µx, µy,Σx,Σy) =
wT (µx − µy)(µx − µy)

Tw

wT (Σx +Σy)w
=

(wT (µx − µy))
2

wT (Σx +Σy)w
,

where µx and Σx (µy and Σy) denote the mean and covariance of X (Y). A discriminant
that maximizes the Fisher discriminant ratio is given by

wnom = (Σx +Σy)
−1(µx − µy),

which gives the maximum Fisher discriminant ratio

(µx − µy)
T (Σx +Σy)

−1(µx − µy)
T = max

w 6=0
f(w, µx, µy,Σx,Σy).

In applications, the problem data µx, µy , Σx, and Σy are not known but are estimated
from sample data. Fisher LDA can be sensitive to the problem data: the discriminant
wnom computed from an estimate of the parameters µx, µy , Σx, and Σy can give very



poor discrimination for another set of problem data that is also a reasonable estimate of the
parameters. In this paper, we attempt to systematically alleviate this sensitivity problem
by explicitly incorporating a model of data uncertainty in the classification problem and
optimizing for the worst-case scenario under this model.
We assume that the problem data µx, µy , Σx, and Σy are uncertain, but known to belong to
a convex compact subset U of R

n × R
n × S

n
++ × S

n
++. Here we use S

n
++ (Sn+) to denote

the set of all n × n symmetric positive definite (semidefinite) matrices. We make one
technical assumption: for each (µx, µy,Σx,Σy) ∈ U , we have µx 6= µy . This assumption
simply means that for each possible value of the means and covariances, the classes are
distinguishable via Fisher LDA.
The worst-case analysis problem of finding the worst-case means and covariances for a
given discriminant w can be written as

minimize f(w, µx, µy,Σx,Σy)
subject to (µx, µy,Σx,Σy) ∈ U ,

(1)

with variables µx, µy , Σx, and Σy . The optimal value of this problem is the worst-case
Fisher discriminant ratio (over the class U of possible means and covariances), and any op-
timal points for this problem are called worst-case means and covariances. These depend
on w.
We will show in §2 that (1) is a convex optimization problem, since the Fisher discriminant
ratio is a convex function of µx, µy , Σx, Σy for a given discriminant w. As a result, it is
computationally tractable to find the worst-case performance of a discriminant w over the
set of possible means and covariances.
The robust Fisher LDA problem is to find a discriminant that maximizes the worst-case
Fisher discriminant ratio. This can be cast as the optimization problem

maximize min(µx,µy,Σx,Σy)∈U f(w, µx, µy,Σx,Σy)
subject to w 6= 0,

(2)

with variable w. We denote any optimal w for this problem as w?. Here we choose a linear
discriminant that maximizes the Fisher discrimination ratio, with the worst possible means
and covariances that are consistent with our data uncertainty model.
The main result of this paper is to give an effective method for solving the robust Fisher
LDA problem (2). We will show in §2 that the robust optimal Fisher discriminant w? can
be found as follows. First, we solve the (convex) optimization problem

minimize maxw 6=0 f(w, µx, µy,Σx,Σy) = (µx − µy)
T (Σx +Σy)

−1(µx − µy)
T

subject to (µx, µy,Σx,Σy) ∈ U ,
(3)

with variables (µx, µy,Σx,Σy). Let (µ?x, µ?y,Σ?x,Σ?y) denote any optimal point. Then the
discriminant

w? =
(

Σ?x +Σ?y
)−1

(µ?x − µ?y) (4)
is a robust optimal Fisher discriminant, i.e., it is optimal for (2). Moreover, we will see
that µ?x, µ?y and Σ?x,Σ

?
y are worst-case means and covariances for the robust optimal Fisher

discriminant w?. Since convex optimization problems are tractable, this means that we
have a tractable general method for computing a robust optimal Fisher discriminant.
A robust Fisher discriminant problem of modest size can be solved by standard convex
optimization methods, e.g., interior-point methods [2]. For some special forms of the un-
certainty model, the robust optimal Fisher discriminant can be solved more efficiently than
by a general convex optimization formulation. In §3, we consider an important special form
for U for which a more efficient formulation can be given.



In comparison with the ‘nominal’ Fisher LDA, which is based on the means and covari-
ances estimated from the sample data set without considering the estimation error, the
robust Fisher LDA performs well even when the sample size used to estimate the means
and covariances is small, resulting in estimates which are not accurate. This will be demon-
strated with some numerical examples in §4.
Recently, there has been a growing interest in kernel Fisher discriminant analysis i.e., Fisher
LDA in a higher dimensional feature space, e.g., [6]. Our results can be extended to robust
kernel Fisher discriminant analysis under certain uncertainty models. This will be briefly
discussed in §5.
Various types of robust classification problems have been considered in the prior litera-
ture, e.g., [1, 4, 5]. Most of the research has focused on formulating robust classification
problems that can be efficiently solved via convex optimization. In particular, the robust
classification method developed in [5] is based on the criterion

g(w, µx, µy,Σx,Σy) =
|wT (µx − µy)|

(wTΣxw)1/2 + (wTΣyw)1/2
,

which is similar to the Fisher discriminant ratio f . With a specific uncertainty model on the
means and covariances, the robust classification problem with discrimination criterion g can
be cast as a second-order cone program, a special type of convex optimization problem [4].
With general uncertainty models, however, it is not clear whether robust discriminant anal-
ysis with g can be performed via convex optimization.

2 Robust Fisher LDA

We first consider the worst-case analysis problem (1). Here we consider the discriminant w
as fixed, and the parameters µx, µy , Σx, and Σy are variables, constrained to lie in the
convex uncertainty set U . To show that (1) is a convex optimization problem, we must
show that the Fisher discriminant ratio is a convex function of µx, µy , Σx, and Σy . To
show this, we express the Fisher discriminant ratio f as the composition

f(w, µx, µy,Σx,Σy) = g(H(µx, µy,Σx,Σy)),

where g(u, t) = u2/t and H is the function

H(µx, µy,Σx,Σy) = (wT (µx − µy), w
T (Σx +Σy)w).

The function H is linear (as a mapping from µx, µy , Σx, and Σy into R
2), and the function

g is convex (provided t > 0, which holds here). Thus, the composition f is a convex
function of µx, µy , Σx, and Σy . (See [2].)
Now we turn to the main result of this paper. Consider a problem of the form

minimize aTB−1a
subject to (a,B) ∈ V,

(5)

with variables a ∈ R
n, B ∈ S

n
++, and V is a convex compact subset of R

n × S
n
++ such

that for each (a,B) ∈ V , a is not zero. The objective of this problem is a matrix fractional
function and so is convex on R

n×S
n
++; see [2, §3.1.7]. Our problem (3) is the same as (5),

with
a = µx − µy, B = Σx +Σy, V = {(µx − µy,Σx +Σy) | (µx, µy,Σx,Σy) ∈ U}.

It follows that (3) is a convex optimization problem.
We will establish a ‘nonconventional’ minimax theorem for the function

R(w, a,B) =
(wT a)2

wTBw
,



which is the Rayleigh quotient for the matrix pair aaT and B, evaluated at w. While the
function R is convex in (a,B) for fixed w, it is not concave in w for fixed (a,B), so
conventional convex-concave minimax theorems do not apply here.
Theorem 1. Let (a?, B?) be an optimal solution to the problem (5), and let w? = B?−1a?.
Then (w?, a?, B?) satisfies the minimax property

R(w?, a?, B?) = a?TB?−1a? = max
w 6=0

min
(a,B)∈V

R(w, a,B) = min
(a,B)∈V

max
w 6=0

R(w, a,B),

and the saddle point property
R(w, a?, B?) ≤ R(w?, a?, B?) ≤ R(w?, a, B), ∀w ∈ R

n\{0}, ∀(a,B) ∈ V.

Proof. We start by observing that (wT a)2/wTBw is maximized over nonzero w by
w = B−1a (by the Cauchy-Schwartz inequality), so maxw 6=0R(w, a,B) = aTB−1a.
Therefore

min
(a,B)∈V

max
w 6=0

R(w, a,B) = min
(a,B)∈V

aTB−1a = a?TB?−1a?. (6)

The weak minimax inequality,
max
w 6=0

min
(a,B)∈V

R(w, a,B) ≤ min
(a,B)∈V

max
w 6=0

R(w, a,B), (7)

always holds; we must establish that equality holds. To do this, we will show that

min
(a,B)∈V

R(w?, a, B) = a?TB?−1a?. (8)

This shows that the lefthand side of (7) is at least a?TB?−1a?. But by (6), the righthand
side of (7) is also a?TB?−1a?, so equality holds in (7). The saddle-point property of
(B?−1a?, a?, B?) is an easy consequence of this minimax property.
We finish the proof by establishing (8). Since a? and B? are optimal for the convex prob-
lem (5) (by definition), they must satisfy the optimality condition

〈

∇a(a
TB−1a)

∣

∣

(a?,B?)
, (a− a?)

〉

+
〈

∇B(a
TB−1a)

∣

∣

(a?,B?)
, (B −B?)

〉

≥ 0, ∀(a,B) ∈ V

(see [2, §4.2.3]). Using ∇a(a
TB−1a) = 2B−1a, ∇B(a

TB−1a) = −B−1aaTB−1, and
〈X,Y 〉 = Tr(XY ) for X,Y ∈ S

n, where Tr denotes trace, we can express the optimality
condition as

2a?TB?−1(a− a?)−TrB?−1a?a?TB?−1(B −B?) ≥ 0, ∀ (a,B) ∈ V,

or equivalently,

2w?T (a− a?)− w?T (B −B?)w? ≥ 0, ∀ (a,B) ∈ V. (9)

Now we turn to the convex optimization problem
minimize (w?T a)2/(w?TBw?)

subject to (a,B) ∈ V,
(10)

with variables (a,B). We will show that (a?, B?) is optimal for this problem, which will
establish (8), since the objective value with (a?, B?) is a?TB?−1a?.
The optimality condition for (10) is as follows. A pair (ā, B̄) is optimal for (10) if and only
if
〈

∇a
(w?T a)2

w?TBw?

∣

∣

∣

∣

(ā,B̄)

, (a− ā)

〉

+

〈

∇B
(w?T a)2

w?TBw?

∣

∣

∣

∣

(ā,B̄)

, (B − B̄)

〉

≥ 0, ∀(a,B) ∈ V.



Using

∇a
(w?T a)2

w?TBw?
= 2

aTw?

w?Bw?
w?, ∇B

(w?T a)2

w?TBw?
= −

(aTw?)2

(w?TBw?)2
w?w?T ,

the optimality condition can be written as

2
āTw?

w?T B̄w?
w?T (a− ā)−Tr

(āTw?)2

(w?T B̄w?)2
w?w?T (B − B̄)

= 2
āTw?

w?T B̄w?
w?T (a− ā)−

(āTw?)2

(w?T B̄w?)2
w?T (B − B̄)w?

≥ 0, ∀ (a,B) ∈ V.

Substituting ā = a?, B̄ = B?, and noting that a?Tw?/w?TB?w? = 1, the optimality
condition reduces to

w?T (a− a?)− w?T (B −B?)w? ≥ 0, ∀ (a,B) ∈ V,

which is precisely (9). Thus, we have shown that (a?, B?) is optimal for (10), which in
turn establishes (8).

3 Robust Fisher LDA with product form uncertainty models

In this section, we focus on robust Fisher LDA with the product form uncertainty model

U =M×S, (11)

where M is the set of possible means and S is the set of possible covariances. For this
model, the worst-case Fisher discriminant ratio can be written as

min
(µx,µy,Σx,Σy)∈U

f(µx, µy,Σx,Σy) = min
(µx,µy)∈M

(wT (µx − µy))
2

max(Σx,Σy)∈S w
T (Σx +Σy)w

. (12)

If we can find an analytic expression for max(Σx,Σy)∈S w
T (Σx + Σy)w (as a function of

w), we can simplify the robust Fisher LDA problem.
As a more specific example, we consider the case in which S is given by

S = Sx × Sy,
Sx = {Σx | Σx º 0, ‖Σx − Σx‖F ≤ δx},
Sy = {Σy | Σy º 0, ‖Σy − Σy‖F ≤ δy},

(13)

where δx, δy are positive constants, Σ̄x, Σ̄y ∈ S
n
++, and ‖A‖F denotes the Frobenius norm

of A, i.e., ‖A‖F = (
∑n

i,j=1A
2
ij)

1/2. For this case, we have

max
(Σx,Σy)∈S

wT (Σx +Σy)w = wT (Σ̄x + Σ̄y + (δx + δy)I)w. (14)

Here we have used the fact that for given Σ̄ ∈ S
n
++, max‖Σ−Σ̄‖F≤ρ x

TΣx = xT (Σ+ρI)x
(see, e.g., [5]). The worst-case Fisher discriminant ratio can be expressed as

min
(µx,µy)∈M

(wT (µx − µy))
2

wT (Σx +Σy + (ρx + ρy)I)w
.

This is the same worst-case Fisher discriminant ratio obtained for a problem in which the
covariances are certain, i.e., fixed to be Σx+ δxI and Σy+ δyI , and the means lie in the set
M. We conclude that a robust optimal Fisher discriminant with the uncertainty model (11)
in which S has the form (13) can be found by solving a robust Fisher LDA problem with



these fixed values for the covariances. From the general solution method described in §1, it
is given by

w? =
(

Σ̄x + Σ̄y + (δx + δy)I
)−1

(µ?x − µ?y),

where µ?x and µ?y solve the convex optimization problem

minimize (µx − µy)
T

(

Σ̄x + Σ̄y + (δx + δy)I
)−1

(µx − µy)
subject to (µx, µy) ∈M,

(15)

with variables µx and µy .
The problem (15) is relatively simple: it involves minimizing a convex quadratic function
over the set of possible µx and µy . For example, ifM is a product of two ellipsoids, (e.g.,
µx and µy each lie in some confidence ellipsoid) the problem (15) is to minimize a convex
quadratic subject to two convex quadratic constraints. Such a problem is readily solved in
O(n3) flops, since the dual problem has two variables, and evaluating the dual function
and its derivatives can be done in O(n3) flops [2]. Thus, the effort to solve the robust is
the same order (i.e., n3) as solving the nominal Fisher LDA (but with a substantially larger
constant).

4 Numerical results

To demonstrate robust Fisher LDA, we use the sonar and ionosphere benchmark problems
from the UCI repository (www.ics.uci.edu/˜mlearn/MLRepository.html).
The two benchmark problems have 208 and 351 points, respectively, and the dimension
of each data point is 60 and 34, respectively. Each data set is randomly partitioned into
a training set and a test set. We use the training set to compute the optimal discriminant
and then test its performance using the test set. A larger training set typically gives better
test performance. We let α denote the size of the training set, as a fraction of the total
number of data points. For example, α = 0.3 means that 30% of the data points are used
for training, and 70% are used to test the resulting discriminant. For various values of α,
we generate 100 random partitions of the data (for each of the two benchmark problems),
and collect the results.
We use the following uncertainty models for the means µx, µy and the covariances Σx,Σy:

(µx − µx)
TPx(µx − µx) ≤ 1, ‖Σx − Σx‖F ≤ ρx,

(µy − µy)
TPy(µy − µy) ≤ 1, ‖Σy − Σy‖F ≤ ρy,

Here the vectors µx, µy represent the nominal means and the matrices Σx,Σy represent
the nominal covariances, and the matrices Px, Py and the constants ρx and ρy represent
the confidence regions. The parameters are estimated through a resampling technique [3]
as follows. For a given training set we create 100 new sets by resampling the original
training set with a uniform distribution over all the data points. For each of these sets we
estimate its mean and covariance and then take their average values as the nominal mean
and covariance. We also evaluate the covariance Σµ of all the means obtained with the
resampling. We then take Px = Σ−1µ /n and Py = Σ−1µ /n. This choice corresponds
to a 50% confidence ellipsoid in the case of a Gaussian distribution. The parameters ρx
and ρy are taken to be the maximum deviations between the covariances and the average
covariances in the Frobenius norm sense, over the resampling of the training set.
Figure 1 summarizes the classification results. For each of our two problems, and for each
value of α, we show the average test set accuracy (TSA), as well as the standard deviation
(over the 100 instances of each problem with the given value of α). The plots show the
robust Fisher LDA performs substantially better than the nominal Fisher LDA for small
training sets, but this performance gap disappears as the training set becomes larger.
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Figure 1: Test-set accuracy (TSA) for sonar and ionosphere benchmark versus size of the
training set. The solid line represents the robust Fisher LDA results and the dotted line the
nominal Fisher LDA results. The vertical bars represent the standard deviation.

5 Robust kernel Fisher LDA

In this section we show how to ‘kernelize’ the robust Fisher LDA. We will consider only
a specific class of uncertainty models; the arguments we develop here can be extended to
more general cases. In the kernel approach we map the problem to an higher dimensional
space R

f via a mapping φ : R
n → R

f so that the new decision boundary is more general
and possibly nonlinear. Let the data be mapped as

x→ φ(x) ∼ (µφ(x),Σφ(x)), y → φ(y) ∼ (µφ(y),Σφ(y)).

The uncertainty model we consider has the form

µφ(x) − µφ(y) = µφ(x) − µφ(y) + Puf , ‖uf‖ ≤ 1,

‖Σφ(x) − Σφ(x)‖F ≤ ρx, ‖Σφ(y) − Σφ(y)‖F ≤ ρy.

Here the vectors µφ(x), µφ(y) represent the nominal means, the matrices Σφ(x),Σφ(y) rep-
resent the nominal covariances, and the matrix P and the constants ρx and ρy represent
the confidence regions in the feature space. The worst-case Fisher discriminant ratio in the
feature space is then given by

min
‖uf‖≤1,‖Σφ(x)−Σφ(x)‖F≤ρx,‖Σφ(y)−Σφ(y)‖F≤ρy

(wTf (µφ(x) − µφ(y) + Puf ))
2

wTf (Σφ(x) +Σφ(y))wf
.

Using the technique described in §3, we can see that the robust kernel Fisher discriminant
analysis problem can be cast as

maximize min‖uf‖≤1
(wTf (µφ(x) − µφ(y) + Puf ))

2

wTf (Σφ(x) +Σφ(y) + (ρx + ρy)I)wf
subject to wf 6= 0,

(16)

where the discriminant wf ∈ R
f is defined in the new feature space.

To apply the kernel trick to the problem (16), we need to express the problem data µφ(x),
µφ(y), Σφ(x), Σφ(y), and P in terms of inner products of the data points mapped through
the function φ. The following proposition states a set of conditions to do this.



Proposition 1. Given the sample points {xi}Nxi=1 and {yi}Nyi=1, suppose that µφ(x),µφ(y),
Σφ(x),Σφ(y), and P can be written as

µφ(x) =
∑Nx

i=1 λiφ(xi), µφ(y) =
∑Ny

i=1 λi+Nxφ(yi), P = UΥUT ,

Σφ(x) =
∑Nx

i=1 Λi,i(φ(xi)− µφ(x))(φ(xi)− µφ(x))
T ,

Σφ(y) =
∑Ny

i=1 Λi+Nx,i+Nx(φ(yi)− µφ(y))(φ(yi)− µφ(y))
T ,

where λ ∈ R
Nx+Ny , Υ ∈ S

Nx+Ny
+ , Λ ∈ S

Nx+Ny
+ is a diagonal matrix, and U is a matrix

whose columns are the vectors {φ(xi)− µφ(x)}
Nx
i=1 and {φ(yi)− µφ(y)}

Ny
i=1. Denote as Φ

the matrix whose columns are the vectors {φ(xi)}Nxi=1, {φ(yi)}Nyi=1 and define
D1 = Kβ, D2 = K(I − λ1TN )Υ(I − λ1TN )KT ,

D3 = K(I − λ1TN )Λ(I − λ1TN )KT + (ρx + ρy)K, D4 = K,

where K is the kernel matrix Kij = (ΦTΦ)ij , 1N is a vector of ones of length Nx +Ny ,
and β ∈ R

Nx+Ny is such that βi = λi for i = 1, . . . , Nx and βi = −λi for i = Nx +
1, . . . , Nx +Ny . Let ν? be an optimal solution of the problem

maximize minξTD4ξ≤1
νT (D1 +D2ξ)(D1 +D2ξ)

T ν

νTD3ν
subject to ν 6= 0.

(17)

Then, w?f = Φν? is an optimal solution of the problem (16). Moreover, for every point
z ∈ R

n,

w?Tf φ(z) =

Nx
∑

i=1

ν?iK(z, xi) +

Ny
∑

i=1

ν?i+NxK(z, yi).

Proof. Along the lines of the proofs of Corollary 5 in [5], we can prove this proposition.

Notice that the problem (17) has a similar form as the robust Fisher LDA problem consid-
ered in §3, so we can solve it using the method described in §3.
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[6] S. Mika, G. Rätsch, and K. Müller. A mathematical programming approach to the kernel Fisher

algorithm, 2001. In T. Leen, T. Dietterich and V. Tresp, editors, Advances in Neural Information
Processing Systems, 13, 591-597, MIT Press.


