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Abstract—Minimum variance beamforming, which uses a
weight vector that maximizes the signal-to-interference-plus-noise
ratio (SINR), is often sensitive to estimation error and uncer-
tainty in the parameters, steering vector and covariance matrix.
Robust beamforming attempts to systematically alleviate this
sensitivity by explicitly incorporating a data uncertainty model
in the optimization problem. In this paper, we consider robust
beamforming via worst-case SINR maximization, that is, the
problem of finding a weight vector that maximizes the worst-case
SINR over the uncertainty model. We show that with a general
convex uncertainty model, the worst-case SINR maximization
problem can be solved by using convex optimization. In particular,
when the uncertainty model can be represented by linear matrix
inequalities, the worst-case SINR maximization problem can be
solved via semidefinite programming. The convex formulation
result allows us to handle more general uncertainty models than
prior work using a special form of uncertainty model. We illustrate
the method with a numerical example.

Index Terms—Beamforming, convex optimization, robust beam-
forming, signal-to-interference-plus-noise ratio (SINR).

I. INTRODUCTION

WE consider an array of sensors. We suppose that a nar-
rowband signal is incident on the array. Let

be the array response to a wave of unit ampli-
tude, parametrized by , where is the set of all possible
wave parameters. We call the array manifold or steering
vector of the sensor array. A simple example is an array in a
plane, where corresponds to the arrival angle
of a plane wave. In a more complicated example, is a vector
that models wave parameters such as wavelength, polarization,
range, azimuth, elevation, and so on. In the sequel, we refer to
the wave parameter as the direction, even though it can be
more general and multidimensional.
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The output of the array is given by

(1)

where is a vector of additive noises and interferences repre-
senting the effect of undesired signals such as thermal noise and
multipath. The combined beamformer output can be written as

(2)

where is a vector of weights and denotes the conju-
gate transpose. The magnitude is called the array gain
in the direction .

A. SINR Maximization

The power of the desired signal at the com-
bined beamformer output is given by

, where denotes the power of the narrow-
band source , that is, . The power of the
undesired signal at the combined output is , where

is the covariance of , that is, . We assume that
the interference-plus-noise covariance is nonsingular. The
effectiveness or performance of a weight vector is measured
by the signal-to-interference-plus-noise ratio (SINR)

(3)

that is, the ratio of the power of the desired signal and that of
the undesired signal.

The problem of finding a weight vector that maximizes the
SINR can be written as

(4)

with variable . The problem data are the steering vector
and the covariance matrix .

Any solution of the SINR maximization problem (4) has the
form

(5)

where is a (complex) scaling factor. (The scaling factor can be
chosen to guarantee a unit array gain in a given desired direction

, i.e., .) The maximum SINR achieved by
is

(6)
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The maximum achievable SINR assesses the extent to which we
can discriminate the signal from the interference and noise.

The interference-plus-noise covariance is not known but is
estimated from recently received samples of the array output.
The sample covariance of the array output at the current
time, say , is given by

(7)

where denotes the sampled array output at time . The
minimum variance beamformer or Capon beamformer [1] is a
variation on (5)

When the sample covariance is identical to the covariance
of the output, i.e., , the minimum variance
beamformer maximizes the ratio . If

(which holds, for instance, when is uncorrelated with
and ), then this ratio can be written as

which is an increasing function of the SINR in (3). When the
sample covariance is exactly the true covariance of the array
output , the minimum variance beamformer is therefore the
same as one that maximizes the SINR.

B. Worst-Case SINR Maximization

In practice, the sample covariance and the steering vector are
estimated with errors and so they are uncertain. Minimum vari-
ance beamforming is often sensitive to these estimation errors,
meaning that the weight vector computed from an estimate of
the steering vector and covariance can give a very low SINR for
another reasonable estimate [2], [3].

We assume that the steering vector and covariance matrix are
uncertain, but known to belong to a convex compact subset of

. Here, denotes the set of all Hermitian positive
definite matrices of size . The convexity means that, for
any two pairs and in

We make an assumption:

(8)

In other words, we rule out the possibility that the steering vector
is zero.

The worst-case SINR analysis problem of finding a steering
vector and a covariance that minimize the SINR for a given
weight vector can be written as

(9)

with variables and . The optimal value of this problem is the
worst-case SINR (over the uncertainty set ) and is denoted as

, as follows:

The problem (9) is a convex optimization problem, since
is a convex function of and for a given weight

vector ; see Appendix A for the proof of this convexity prop-
erty. The convexity means that it is computationally tractable
to find the worst-case SINR of a weight vector .

In robust beamforming via worst-case SINR maximization,
we want to find a weight vector that maximizes the worst-case
SINR, which can be cast as the optimization problem

(10)

with variable . We call this problem the robust beamforming
problem (with the uncertainty set ) and call a solution to
this problem a robust optimal weight vector. The worst-case
SINR maximization problem (10) is not a convex optimization
problem, unlike the worst-case SINR analysis problem (9).

C. Related Work

Many practical remedies to alleviate the sensitivity problem
of minimum variance beamforming such as diagonal loading
have been suggested in the literature [4]–[7]. More recently,
ideas from the (worst-case) robust optimization [8]–[11] have
been applied to robust beamforming. The basic idea is to explic-
itly incorporate a model of data uncertainty in the formulation of
a beamforming problem, and to optimize for the worst-case sce-
nario under this model [2], [12], [3], [13]–[18]. (Robust convex
optimization has been applied to a related problem that arises
in robust antenna array design; see [19, Sec. 4] and [20].) Most
prior work on robust beamforming has focused on formulating
robust optimization problems that can be solved via convex op-
timization.

Several researchers have considered a special type of uncer-
tainty model

(11)

where is the “nominal” covariance matrix (e.g., the sample
covariance matrix ), is the “nominal” steering vector,
and describes the shape of the ellipsoid. With the un-
certainty model on the steering vector above, several researchers
have considered the problem of choosing a weight vector that
minimizes the total weighted power output of the array, subject
to the constraint that the gain should exceed unity for all array
responses in the ellipsoid [17], [21]:

(12)
They show how to reformulate this problem as an SOCP. (See,
e.g., [22] for more on SOCPs and [21] for more on related
uncertainty modeling issues.) Recently, Li, Stoica, and Wang
[2] have suggested a robust beamforming method by extending
the Capon beamforming problem with a model of the form
(11), which leads to the same formulation. In fact, the robust
beamforming problem (12) with the separable uncertainty



KIM et al.: ROBUST BEAMFORMING VIA WORST-CASE SINR MAXIMIZATION 1541

model (11) is equivalent to the worst-case SINR maximization
problem with the uncertainty model (11) [14]. This result tells
us that the robust beamforming methods proposed in [2], [21],
[17] maximize the worst-case SINR with the uncertainty model
(11).

In [23] and [24], the authors consider a (worst-case) robust
beamforming problem that arises when the rank of the covari-
ance of the desired signal at the array output can be more than
one. (In our setting, the rank of the covariance of the desired
signal is always rank one, since the steering vector is
deterministic not random.) The ratio between the power of the
output due to the desired signal and that due to the interference
plus noise is

(13)

where is the covariance of the desired signal. They consider
the problem of finding that maximizes the worst-case value
of the ratio over an uncertainty model of the form

(14)

Here denotes the Frobenius norm of , is the nom-
inal covariance of the desired signal, is the nominal covari-
ance of the interference plus noise, and and are (nonnega-
tive) constants. With this special uncertainty model, the robust
beamforming problem can be solved analytically [23], [24]. In
[25], the authors address the problem of finding that maxi-
mizes the worst-case value of (13) with a general convex un-
certainty model, called minimax robust output energy filtering.
As discussed in [25], it is not clear how to solve the robust op-
timization problem of finding that maximizes the worst-case
value of the ratio (13) over a general convex uncertainty set
[25]. The problem with the uncertainty model (14) is an impor-
tant special tractable case.

Robust beamforming is a special type of robust matched fil-
tering extensively studied in the 1970s and 1980s; see, e.g.,
[26]–[30], [25] and the survey paper [31] for robust signal pro-
cessing techniques. In [25], Verdú and Poor consider a game-
theoretic approach to the design of filters that are robust with
respect to modeling uncertainties in the signal and covariance
and describe a set of convexity and regularity conditions for the
existence of a saddle point in the game when the uncertainties
in the signal and covariance are separable. Most work on ro-
bust matched filtering focused on finding signal and covariance
models which allow one to solve the robust matched filtering
problem analytically (not numerically).

D. Outline

In this paper, we consider robust beamforming via worst-case
SINR maximization with a general convex model of uncertainty
(that includes (11) as a special case). The main result of this
paper is that with a general convex uncertainty model , ro-
bust beamforming via worst-case SINR maximization can be
carried out by using convex optimization. Since convex opti-
mization problems are computationally tractable [32], [33], this
result means that there is a tractable general method for robust

beamforming via worst-case SINR maximization. In particular,
when the uncertainty model can be represented by linear matrix
inequalities, the worst-case SINR maximization problem can be
solved via semidefinite programming.

II. ROBUST OPTIMAL WEIGHT SELECTION

In this section, we describe the solution method for the worst-
case SINR maximization problem (10).

A. A Minimax Result for the SINR

The worst-case SINR maximization problem (10) is not a
convex optimization problem, so it is not clear how to solve (10)
directly. We show that there is a way to get around this difficulty
using the following minimax result.

Proposition 1: Suppose that the assumption in (8) holds. Let
solve the problem

(15)

with variables and . Then, the triple
with satisfies the saddle-point

property

(16)

The proof of Proposition 1 is deferred to Appendix B. When
the uncertainty set is separable, i.e., with
and , the proof follows from the minimax result for the
SINR proved in [25]. Here we do not make such an assumption.

From the saddle-point property of the SINR in (16), we can
show that

which follows from a standard result in minimax theory [34,
Sec. 2.6]. We conclude that solves the worst-case
SINR maximization problem (10):

B. Robust Weight Selection via Convex Optimization

The goal of (15) is to find the steering vector and covariance
with which the maximum achievable SINR is the least. We note
from (6) that (15) is equivalent to

(17)

The optimization variables of this problem are complex.
We can reformulate this problem as a problem with real vari-

ables, by expanding the real and imaginary parts of and .
The interference-plus-noise covariance is Hermitian:

where . Here, we use to denote the real part of a
complex matrix and to denote the imaginary



1542 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 4, APRIL 2008

part. The real part of the interference-plus-noise covariance
is symmetric, and the imaginary part is skew-symmetric:

(18)

Expanding the real and imaginary parts of and , we can ob-
tain

(19)

where

(20)

The matrix is symmetric, which can be readily seen from (18).
It is also positive definite, since is Hermitian. The derivation
is deferred to Appendix C.

We have seen that (17) is equivalent to

(21)

where the variables are and and
is a subset of defined as

(22)
Here, we use to denote the set of all symmetric pos-
itive definite matrices.) The objective of (21) is a matrix frac-
tional function and so is convex on ; see [32, Sec.
3.1.7]. Moreover, is convex, since is. In summary, (15) can
be reformulated as the convex problem (21).

Using the Schur complement technique, we can cast the
convex problem (21) as the semidefinite program (SDP)

(23)
with variables , , and , e.g., see [15]. Here ( )
means that is positive semidefinite (definite). We assume that
the uncertainty set is compatible with semidefinite program-
ming, which is the case for a large family of convex sets. One im-
mediate consequence of the SDP formulation (23) is that we can
numerically solve the worst-case SINR maximization problem
using standard SDP solvers such as SeDuMi [35] and SDPT3
[36]. (With the uncertainty model in (11) on the steering vector,
the SDP formulation given in (23) has been obtained by Stoica
et al. [15].)

III. NUMERICAL EXAMPLE

In this section, we give a simple example to illustrate the ro-
bust beamforming method described so far.

A. Setup

We demonstrate the robust beamforming method with a
simple example. Here, we consider a uniform linear array
consisting of 14 sensors, centered at the origin, in which the

Fig. 1. Signal reflection model.

spacing between the elements is half of the wavelength of the
incident wave. We assume the response of each element is
isotropic and has unit norm. We ignore the coupling between
elements. The response of the array to a plane wave of unit
amplitude arriving from angle is modeled as

where .
The angle of arrival of the desired signal is denoted as .

The desired signal is reflected along its path by a rough surface.
The angle of arrival of the reflected signal is given by

(24)

where denotes the angle between the surface and the array.
Fig. 1 shows the desired signal and the interfering signal along
with the reflecting plane.

The output of the array is modeled as

(25)

where denotes the array response of the desired signal,
denotes the array response for the reflected signal,
denotes the complex amplitude of the desired signal,

denotes the reflected signal, and is a complex vector
of additive white noises which is uncorrelated with and

. We assume that the characteristic of the surface induces
a phase difference between the incident signal and the reflected
signal which cannot be accurately predicted. For simplicity, we
consider the reflected wave as an interfering signal.

The interference-plus-noise covariance is modeled as
. We use and to denote the power

of the desired signal and that of the interfering signal:

Since the signals and are uncorrelated with
each another, the covariance of the interference plus noise

is given by

This depends on the angle . The values of , , and
are taken such that and .

The nominal incident angle of the desired signal is 45 . The
angle of the reflecting surface is 27.5 , and so the nom-
inal incident angle of the interference signal is given by

. The nominal steering vector and the covariance matrix
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of the interference plus noise are given by 45
and 10 . The nominal SINR of means the SINR
computed with the nominal steering vector and covariance. An
optimal beamformer for the nominal parameters that maximizes
the nominal SINR is called nominal optimal.

We assume that the angle of arrival is uncertain but
known to vary between 40 and 50 . The angle of the reflecting
surface is fixed to be 27.5 . The angle of arrival of the
interfering signal becomes uncertain and varies between
5 and 15 .

To account for the variation in the angle of arrival of the de-
sired signal and interfering signal, we use an ellipsoidal uncer-
tainty model which has the form

where , , is a positive definite quadratic form
on , and is a (large column) vector in
that stacks and the columns of . Here, is a
small positive constant. As long as it is small, the constraint

is not active. The set of pairs of the steering vector
and the covariance for angles of arrival uniformly sampled
over the interval [40 , 50 ] is given by

45

The ellipsoidal set is chosen to contain the set . There
are many ellipsoids that contains the set . The ellipsoid

used in our numerical study has the center

and its shape is described by the quadratic form

where

In our numerical study, the number of sampled points is taken
as . The uncertainty model described above is not sep-
arable in .

B. Comparison Results

We demonstrate the robust optimal beamforming method
with the uncertainty set described above. We compare the
robust optimal beamformer with three other ones: the nominal

optimal beamformer that maximizes the nominal SINR com-
puted with the nominal steering vector and covariance matrix,
the beamformer obtained by diagonal loading of the covariance
matrix, and the beamformer obtained by approximating the
uncertainty set in by two separable uncertainty sets
in and . In diagonal loading, we regularize the nominal
covariance to obtain the beamformer

where is the diagonal loading factor chosen to maximize
the worst-case SINR (over the uncertainty set). For the sepa-
rable model case, we use a model of the form ,
which ignores coupling between the uncertainty in the steering
vector and that in the covariance. Here, is a covering ellip-
soid found by using the same ellipsoidal modeling technique
described above except that the covariance is fixed to the nom-
inal one, and is a Frobenius norm ball

where the center is given by

with positive constant chosen to maximize the worst-case
SINR. We can use

to simplify the robust beamforming problem with this separable
model. (See, e.g., [23] for the derivation.) Then, the resulting
problem is equivalent to robust beamforming with an uncer-
tainty model of the form (11) with

We compare the performances of the four beamformers:
the nominal optimal beamformer, the diagonally loaded
beamformer, the robust optimal beamformer obtained with a
separable uncertainty model, and the robust optimal beam-
former obtained with a nonseparable uncertainty model. Table I
compares the performances of the four beamformers, when the
incoming signal arrives at 45 and the interfering signal arrives
at 15 . It also compares their worst-case performance over
the uncertainty set given above (as computed by the convex
formulation method described in Appendix A). The nominal
optimal beamformer performs well with the nominal model,
but its performance can degrade significantly in the presence of
a possible variation in the data. The robust optimal beamformer
performs well with the nominal model and is not sensitive
to a possible variation in the data unlike the nominal optimal
beamformer. (Its worst-case SINR is almost twice larger than
that of the nominal optimal beamformer.) The diagonal loaded
beamformer does not perform much better than the nominal
one. Using a more complex but accurate uncertainty model
(i.e., the nonseparable model) leads to an improvement of the
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TABLE I
NOMINAL AND WORST-CASE SINRS OF 4 BEAMFORMERS

Fig. 2. Gain as a function of the angle of arrival �. Nominal: nominal optimal
beamformer; diag. loaded: diagonally loaded beamformer; separable: robust op-
timal beamformer obtained with the separable uncertainty model; nonseparable:
robust optimal beamformer obtained with the nonseparable uncertainty model.

worst-case SINR of the robust beamformer by 1.2 dB with
almost the same nominal SINR.

Fig. 2 compares the normalized gains achieved by the four
beamformers described above. (The weight vectors are normal-
ized so that the gain at the nominal angle of arrival is one.) The
robust optimal weight vector has a larger gain around the nom-
inal angle of arrival than the nominal optimal weight vector and
has a smaller gain over a wide subregion of the region [5 , 15 ]
where the interfering signal is likely to arrive. We can make a
similar observation in comparison with the diagonally loaded
beamformer. The gain function of the robust optimal beam-
former obtained with the separable model is similar to that of
the robust optimal beamformer with the nonseparable model,
explaining its relatively good performance over the nominal op-
timal beamformer.

IV. CONCLUSION

We have considered robust beamforming via worst-case
SINR maximization, and described a computationally efficient
method based on a minimax result for the SINR. The method
is more general and flexible in modeling uncertainty than prior
work using a special type of ellipsoidal uncertainty model,
since it can handle any convex models.

The minimax result does not hold for the ratio (13) with a
general convex uncertainty set when the rank of is more
than one [25]. Proposition 1 states a minimax result for the case
when is rank one (over the complex numbers).

APPENDIX A
A CONVEXITY PROPERTY OF THE SINR

To simplify notation, we define

(26)

Then

(Here, we use the fact that is symmetric and is skew-
symmetric.)

For fixed , we can express the SINR as

where and

Since the matrix is positive definite, we have

The function is linear in the arguments , and
the function is convex (provided , which holds here); see
[32, Ch. 3]. Thus, the composition is a convex function
of over the region

Therefore, is convex, i.e., for any and
in ,

We close by pointing out that the worst-case SINR of
can be computed by solving the convex problem of computing
the infimum of the composition over the region defined
in (22).
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APPENDIX B
PROOF OF PROPOSITION 1

For a triple , let

where and are defined in (20), and

We can see that

which follows from

The function is the Rayleigh quotient for the matrix pair
and , evaluated at . Here, we note that is symmetric and
positive definite, since is positive definite and Hermitian.

We apply Theorem 1 in [37] to the fractional function
. (Note from (8) that for any , we have

.) Let solve

with variables and . (Here
is defined in (22).) Let . Then, it follows from
Theorem 1 in [37] that

(27)

Define , where and in are defined
through the following decomposition of :

It can be expressed as , where and is de-
fined through the following decomposition of and :

Then, it follows from (27) that the triple satisfies

(28)

Here, by the definition of and ,

(29)

which together with (28) and

establishes the saddle-point property of the SINR in (16).

APPENDIX C
DERIVATION OF (19)

Let be the inverse of : . The inverse is Hermitian
and positive definite. To simplify the notation, we use

and as well as (26). Then

(30)

We have

(Here, we use the fact that is symmetric and is skew-
symmetric.) We also have

(Here, we use since is skew-symmetric.) Thus,
far, we have seen that

(31)

What remains is to see that the matrix defined in (20) is the
inverse of the symmetric matrix in (31) obtained by
expanding the real and imaginary parts of :

Here we use (30).
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