
Journal of Optimization Theory and Applications
https://doi.org/10.1007/s10957-024-02436-z

Robust Bond Portfolio Construction via Convex–Concave
Saddle Point Optimization

Eric Luxenberg1 · Philipp Schiele2 · Stephen Boyd1

Received: 2 March 2023 / Accepted: 4 April 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract
Theminimum (worst case) value of a long-only portfolio of bonds, over a convex set of
yield curves and spreads, can be estimated by its sensitivities to the points on the yield
curve. We show that sensitivity based estimates are conservative, i.e., underestimate
the worst case value, and that the exact worst case value can be found by solving a
tractable convex optimization problem. We then show how to construct a long-only
bond portfolio that includes the worst case value in its objective or as a constraint,
using convex–concave saddle point optimization.
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1 Introduction

We consider a long-only portfolio of bonds, and address the problem of robust analysis
and portfolio construction, under a worst case framework. In this framework we have
a set of possible yield curves and bond spreads, and consider the worst change in value
of the portfolio over this uncertainty set.

Communicated by Wei Bian.

Eric Luxenberg and Philipp Schiele have equally contributed to this work.

B Eric Luxenberg
ericlux@stanford.edu

Philipp Schiele
philipp.schiele@campus.lmu.de

Stephen Boyd
boyd@stanford.edu

1 Stanford University, Stanford, CA 94305, USA

2 Ludwig Maximilian University of Munich, 80539 Munich, BY, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-024-02436-z&domain=pdf
http://orcid.org/0000-0003-4943-8727


Journal of Optimization Theory and Applications

In the analysis problem, considered in Sect. 3, we fix the portfolio, and ask what is
the worst case change in portfolio value. We observe that this is a convex optimiza-
tion problem, readily solved using standard frameworks or domain specific languages
(DSLs) for convex optimization. We also consider the linearized version of the same
problem, where the true portfolio value is replaced with its first order Taylor approx-
imation. This approximation can be interpreted as using standard methods to analyze
bond portfolio value using durations. We show that this is also a convex optimization
problem, and is always conservative, i.e., predicts more of a decrease in portfolio value
than the exact method.

In the robust portfolio construction problem, considered in Sect. 4, we seek a portfo-
lio of bonds that minimizes an objective that includes a robustness term, i.e., the worst
case change in value of the portfolio over the set of possible yield curves and spreads.
We show that this problem, and its linearized version, can be formulated as convex–
concave saddle point problems, where we identify the worst case yield and spread and
at the same time, the optimal portfolio. One interesting ramification of the convex–
concave saddle point formulation is that, unlike in general worst-case (minimax)
optimization problems, where there are generally multiple worst-case parameters,
we need to consider only one worst-case yield curve and set of bond spreads.

In Sect. 5 we show how the convex–concave saddle point problem can be solved by
solving one convex optimization problem. This is done using thewell known technique
of expressing the worst-case portfolio value as the optimal value of the dual problem,
which converts a min-max problem into a min-min problem which we directly solve.
We illustrate the method for a specific case, and in a companion paper [23] explain
how the reformulation technique can be automated, using methods due to Juditsky and
Nemirovski [14]. Using our disciplined saddle point programming framework, we can
pose the robust bond portfolio construction problem in just a few lines of simple and
natural code, and solve it efficiently.

We present several variations and extensions in Sect. 6, including cases where the
bond portfolio contains bonds with different base yield curves, per-period compound-
ing is used to value bonds, and a formulation with a robustness constraint as opposed
to an objective term.

Identifying the convex–concave structure of the robust bond portfolio construction
problem is a novel theoretical contribution, and allows us to use the powerful theory
of convex duality to extract insights such as the existence of a single worst case
yield curve, or construct a robust bond portfolio. In addition, while this paper was
under review the importance of properly managing risk in a bond portfolio became
quite apparent with the collapse of Silicon Valley Bank, where a major factor was the
bank’s exposure to interest rate risk.

1.1 Previous and RelatedWork

Bond Portfolio Construction and Analysis Portfolio construction and analysis are well
studied problems in finance, however, most of the literature focuses on equity portfo-
lios. These approaches often can not be directly applied to bond portfolios, as there
are important differences between the asset classes, such as the finite maturity of
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bonds. Yet, by making assumptions about the re-investment rate, bond portfolios can
be constructed and analyzed via modern portfolio theory (MPT) [18]. For example,
assuming that the re-investment rate is given by the current spot rate, standard MPT
can be applied to bond portfolios, where the mean and covariance of the bonds can be
derived from sample moments or factor models [22]. Similarly, Korn and Koziol [16]
use a factor model for the term structure in an MPT setting.

Other approaches for bond portfolio construction that are not based onMPT include
exact matching and immunization [7]. Exact matching is a method for constructing
a bond portfolio that minimizes the required investment amount while ensuring that
cash flows arising from liabilities are being met. Immunization refers to matching the
duration of assets and liabilities, so that the portfolio value is insensitive to (small)
changes in interest rates. Both of these problems can be formulated as linear programs
and so tractably solved.

Likewise, the factors influencing bond (portfolio) values are well understood, given
the practical implications of the problem [7, 8]. However, most of the existing liter-
ature focuses on parallel shifts in yield curves and spreads, leading to a trivial worst
case scenario. Thus the literature is sparse when it comes to robust bond portfolio con-
struction as it relates to possible changes in yield curves and spreads. Instead, most
existing work focuses on the problem of robust portfolio construction under parameter
uncertainty in an MPT framework [15, 25].

Convex–Concave Saddle Point Optimization Convex–concave saddle point prob-
lems are a class of optimization problems with objective functions which are convex
in a subset of the optimization variables, and concave in the remaining variables. The
goal in such problems is to find a saddle point, i.e., values of the convex variables
that minimize the objective, and values of the concave variables that maximize it.
Convex–concave saddle point problems have been studied for decades. Indeed, much
of the theory of game theory is based on solving convex–concave saddle point prob-
lems, with early descriptions dating back to the 1920s [28], and solutions based on
solving them as a single convex problem via duality dating back to the 1950s [29].
In their 1983 book, Nemirovski and Yudin [21] describe the oracle complexity of first
order optimization methods for convex–concave saddle point problems, based on their
previous work on the convergence of the gradient method for convex–concave saddle
point problems [20]. Since then, existing work either requires a specific structure of
the problem such as convex and concave variables only being coupled via a bilinear
term [4], or only under strong assumptions on the functions’ properties [19].

More recently, Juditsky and Nemirovski [14] proposed a general framework for
solving convex–concave saddle point problems with a particular conic structure as a
single convex minimization via dualization. Building on Juditsky and Nemirovski’s
work, the authors of this paper developed disciplined saddle programming (DSP) [23].
The associated DSL makes it easy to express a wide class of convex–concave saddle
point problems in a natural way; the problem is then transformed to a single convex
optimization problem using Juditsky and Nemirovski’s methods. This is analogous to
disciplined convex programming (DCP), which makes it easy to specify and solve a
wide variety of convex optimization problems [6]. The authors’ DSP software package
allows our formulation of the robust portfolio construction problem to be specified in
just a few lines of clear code.
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2 Bond Portfolio Value

2.1 Yield Curve and Spreads

A bond is a financial contract that obligates the issuer to make a series of specified
payments over time to the bond holder. We let t = 1, . . . , T denote time periods, with
t = 0 representing now. (The periods are usually 6 months, a typical time between
bond coupon payments.) We represent the bond payments as a vector c ∈ RT+, where
T is the number of periods, and R+ denotes the set of nonnegative reals. For each
t = 1, . . . , T , ct is the payment in period t to the bond holder. A bond has a maturity,
which is the period of its last payment; for t larger than the maturity, we have ct = 0.
The cash flows ct include coupon payments as well as the payment of the face value
at maturity.

We consider a portfolio of n bonds, with quantities (also called holdings) h =
(h1, . . . , hn) ∈ Rn+ of each bond, assumed nonnegative (i.e., only long positions).
We assume that all bonds in the portfolio mature at or before time period T . We first
review some basic facts about bonds, for completeness and also to fix our notation.

Each bond has a known cash flow or sequence of payments, given by ci ∈ RT+,
i = 1, . . . , n. We write ci,t to denote the cash flow from bond i in period t . We have
ci,t = 0 for t larger than the maturity of bond i . We let p ∈ Rn+ denote the price of
the bonds. The portfolio value is V = pT h. The bond prices are modeled using a base
yield curve and spreads for each bond, explained below.

Yield Curve The yield curve is denoted by y ∈ RT . The yield curve gives the
discount of a future payment, i.e., the current value of a payment of $1 received in
period t , denoted Pt . These are given by

Pt = exp(−t yt ), t = 1, . . . , T .

We will work with per-period yields, to simplify the formulas, but following conven-
tion, we present all final numerical results as annualized. (For example, if the periods
represent six months, the associated annualized yields are given by 2yt .) We use con-
tinuous compounding for simplicity of notation, but all our results readily extend to
period-wise compounding, where Pt = (1 + yt )−t (see Sect. 6).

The yield curve gives the discount of future payments, and captures market expec-
tations with respect tomacroeconomic factors, fiscal andmonetary policy interactions,
and the vulnerability of private consumption to future (unexpected) shocks.

Bond Spreads Bond i has spread si ≥ 0, which means that the bond is priced at its
net present value using the yield curve y + si1, where 1 is the vector with all entries
one. This is referred to as a ‘parallel shift’ applied to the base yield curve. We will
work with per-period spreads, to simplify the formulas, but will give final results as
annualized.

The spread captures the uncertainty in the cash flow associated with the bond, such
as default or other optionality, which means that we value a payment of $1 from the
bond at period t as exp(−t(yt+si )), which is less than or equal to Pt = exp(−t yt ). The
riskier the bond, the larger the spread, which means future payments are discounted
more heavily.
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Bond Price The price of a bond is modeled as the net present value of its cash flow
using these discounts,

pi =
T∑

t=1

ci,t exp(−t(yt + si )), i = 1, . . . , n. (1)

Portfolio Value The portfolio value can be expressed as

V = pT h =
n∑

i=1

T∑

t=1

hi ci,t exp(−t(yt + si )). (2)

For reasonsmentioned below, it will be convenient to workwith the log of the portfolio
value,

log V = log

(
n∑

i=1

T∑

t=1

hi ci,t exp(−t(yt + si ))

)
. (3)

The portfolio value and log portfolio value are functions of the holdings h, the yield
curve y, and the spreads s, but we suppress this dependence to keep the notation light.
(The cash flows ci,t are fixed and given.)

Convexity Properties The portfolio value V is a linear function of h, the vector
of holdings, for fixed yield curve and spreads. If we fix the holdings, V is a convex
function of (y, s), the yield curve and spreads [3, Chap. 3]. The log value log V is
a concave function of h, for fixed y and s, since it is a concave function of a linear
function. The log value is a convex function of (y, s), for fixed h, since it can be
expressed as

log V = log

(
n∑

i=1

T∑

t=1

exp(−t(yt + si ) + log hi + log ci,t )

)
,

which is the log-sum-exp function of an affine function of (y, s) [3, §3.1.5]. Thus
log V is a convex–concave function, concave in h and convex in (y, s).

2.2 Change in Bond Portfolio Value

We are interested in the change in portfolio value when the yield curve and spreads
change from their current or nominal values (ynom, snom) to the values (y, s), with the
holdings fixed at hnom.We let V denote the portfolio valuewith yield curve and spreads
(y, s), and V nom the portfolio value with yield curve and spreads (ynom, snom), both
with holdings hnom. The relative or fractional change in value is given by V /V nom−1.
It is convenient to work with the change in the log value,

Δ = log(V /V nom) = log V − log V nom. (4)
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The relative change in value can be expressed in terms of the change in log value as
expΔ−1. BothΔ and the relative change in value are readily interpreted. For example,
Δ = −0.15 means the portfolio value decreases by the factor exp(−0.15) = 0.861,
i.e., a relative decrease of 13.9%.

Since log V is a convex function of (y, s), Δ is also a convex function of (y, s).
First Order Taylor Approximation The first order Taylor approximation of change

in log value, denoted Δ̂, is

Δ̂ = DT
yld(y − ynom) + DT

spr(s − snom) ≈ Δ, (5)

where

Dyld = (∇y log V
)|y=ynom, s=snom ∈ RT ,

and

Dspr = (∇s log V )|y=ynom, s=snom ∈ Rn

are the gradients of the log value with respect to the yield curve and spreads,
respectively, evaluated at the current value (ynom, snom). These are given by

(Dyld)t = −(1/V nom)

n∑

i=1

thnomi ci,t exp(−t(ynomt + snomi )),

(Dspr)i = −(1/V nom)

T∑

t=1

thnomi ci,t exp(−t(ynomt + snomi )).

(In the first expression we sum over the bonds, while in the second we sum over
the periods.) The affine approximation (5) is very accurate when (y, s) is near
(ynom, snom).

The gradients Dyld and Dspr can be given traditional interpretations. When n = 1,
i.e., the portfolio consists of a single bond, Dspr is theduration of the bond.Whenn = 1
and t is one of the 12Treasury spotmaturities, (Dspr)t is a key rate duration of the bond.
(We use the symbol D since the entries of the gradients can be interpreted as durations.)
We refer to the Taylor approximation (5) as the duration based approximation.

A Global Lower Bound Since Δ is a convex function of (y, s), its Taylor approx-
imation Δ̂ is a global lower bound on Δ (see, e.g., [3, §3.1.3]): For any (y, s) we
have

Δ̂ = DT
yld(y − ynom) + DT

spr(s − snom) ≤ Δ. (6)

Note that this inequality holds for any (y, s), whereas the approximation (5) is accurate
only for (y, s) near (ynom, snom). Thus the duration based approximation of the change
in log portfolio value is conservative; the true change in log value will be larger than
the approximated change in log value.
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We can easily obtain a bound on the relative change in portfolio value. Exponenti-
ating the inequality (6) and using the inequality exp u ≥ 1 + u, we have

V /V nom − 1 = expΔ − 1 ≥ exp Δ̂ − 1 ≥ Δ̂.

Therefore Δ̂ is also a lower bound on the relative change in portfolio value using the
duration based approximation; the actual fractional change in value will always be
more (positive) than the prediction.

3 Worst Case Analysis

In this section we assume the portfolio holdings are known and fixed as hnom, and
consider a nonempty compact convex set U ⊂ RT × Rn of possible yield curves and
spreads. (We will say more about choices of U in Sect. 3.3.) We define the worst case
portfolio value as

Vwc = min
(y,s)∈U

V ,

i.e., the smallest possible portfolio value over the set of possible yield curves and
spreads. It will be convenient to work with the worst case (i.e., most negative) change
in log portfolio value, defined as

Δwc = min
(y,s)∈U

Δ = log Vwc − log V nom.

When (ynom, snom) ∈ U , the worst case log value change is nonpositive.

3.1 Worst Case Analysis Problem

We can evaluate Δwc by solving the convex optimization problem

minimize Δ

subject to (y, s) ∈ U ,
(7)

with variables y and s. The optimal value of this problem is Δwc (from which we
can obtain Vwc); by solving it, we also find an associated worst case yield curve and
spread, which are themselves interesting. We refer to (7) as the worst case analysis
problem.

Implications One consequence is that we can evaluate Δwc very efficiently using
standard methods of convex optimization [3]. Depending on the uncertainty set U ,
the problem (7) can be expressed very compactly and naturally using domain specific
languages for convex optimization, such as CVXPY [6], CVX [12], Convex.jl [26],
or CVXR [11]. Appendix A gives an example illustrating how simple and natural the
full CVXPY code to solve the worst case analysis problem is.
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MaximumElementWemention here a special casewith a simple analytical solution.
The objective Δ is monotone nonincreasing in its arguments, i.e., increasing any yt or
si reduces the portfolio value. It follows that ifU has amaximumelement (ymax, smax),
i.e.,

(ymax, smax) ≥ (y, s) for all (y, s) ∈ U

(with the inequality elementwise), then it is the solution of the worst case analysis
problem. As a simple example, consider

U = {(y, u) | ymin ≤ y ≤ ymax, smin ≤ s ≤ smax},

i.e., we are given a range of possible values for each point in the yield curve, and for
each spread. This uncertainty set, which is a hyper-rectangle or box, has maximum
element (ymax, smax), which is (obviously) the choice that minimizes portfolio value.

More interesting choices of uncertainty sets do not have a maximum element; for
these cases we must numerically solve the worst case analysis problem (7).

3.2 LinearizedWorst Case Analysis Problem

We can replace the objective in (7) with the lower bound (6) to obtain the linearized
worst case portfolio value problem

minimize Δ̂ = DT
yld(y − ynom) + DT

spr(s − snom)

subject to (y, s) ∈ U ,
(8)

with variables y and s. Here the objective is affine, whereas in (7) the objective is
nonlinear (but convex). From the inequality (6), solving this linearized worst case
analysis problem gives us a lower bound onΔwc, as well as a very good approximation
when the changes in yield curve and spreads are not large. We refer to (8) as the
linearized worst case analysis problem, and we denote its optimal value, the worst
case change in log value predicted by the linearized approximation, by Δ̂wc. This
estimate of Δwc is conservative, i.e., we have Δ̂wc ≤ Δwc. The linearized problem is
commonly used in practice, and therefore provides a baseline for comparison.

3.3 Yield/Spread Uncertainty Sets

In this section we describe some possible choices of the yield/spread uncertainty setU ,
described as a list of constraints. Before getting to specifics, we make some comments
about high level methods one might use to construct uncertainty sets.

From All Historical Data Here we construct U from all historical data. This con-
servative approach measures the sensitivity of the portfolio to the yield and spread
changing to any previous value, or to a value consistent with some model of the past
that we build.
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From Recent Historical Data Here we construct U from recent historical data, or
create a model that places higher weight on recent data. The idea here is to model plau-
sible changes to the yield curve and spreads using a model based on recent historical
values.

From Forecasts of Future ValuesHere we constructU as a forecasted set of possible
values over the future, for example a confidence set associated with some predictions.

From Current Yield and Spread Estimation Error Here U represents the set of
possible values of the current yield and spreads, which acknowledges that the current
values are only estimates of some true but unknown value. See, for example, [10]
for a discussion of yield curve estimation and a method that can provide uncertainty
quantification.

3.3.1 Scenarios

Here U is the convex hull of a set of yield curves and spreads,

U = conv{(y1, s1), . . . , (yK , sK )},

which is a polyhedron defined by its vertices. In this case we can think of (yk, sk)
as K economic regimes or scenarios. In the linearized worst case analysis problem,
we minimize a linear function over this polyhedron, so there is always a solution at a
vertex, i.e., the worst case yield curve and spread is one of our scenarios. In this case
we can solve the worst case analysis problem by simply evaluating the portfolio value
for each of our scenarios, and taking the smallest value. When using the true portfolio
value, however, we must solve the problem numerically, since the worst case scenario
need not be on the vertex; it can be a convex combination of multiple vertices.

3.3.2 Confidence Ellipsoid

Another natural uncertainty set is based on a vector Gaussian model of (y, s), with
mean μ ∈ RT+n and covariance Σ ∈ ST+n++ , where Sk++ denotes the set of symmetric
positive definite k × k matrices. We take U as the associated (1 − α)-confidence
ellipsoid,

U = {(y, s) | ((y, s) − μ)TΣ−1((y, s) − μ) ≤ F−1(1 − α)},

where F is the cumulative distribution function of a χ2 distribution with T +n degrees
of freedom.

3.3.3 Factor Model

A standard method for describing yield curves and spreads is via a factor model, with

(y, s) = Z f + v,
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where f ∈ Rk is a vector of factors that drive yield curves and spreads, and v represents
idiosyncratic variation, i.e., not due to the factors. (In a statistical model, the entries
of v are assumed to be uncorrelated to each other and the factor f .) The matrix
Z ∈ R(T+n)×k gives the factor loadings of the yield curve values and spreads.

Typical factors include treasury yields with various maturities, as well as other
economic quantities. A simple factor model for yields can contain only two or three
factors, which are the first few principal components of historical yield curves, called
level, slope, and curvature [5, 17].

Using a factor model, we can specify U by giving an uncertainty set F ⊂ Rk for
the factors, for example as

U = {Z f + v | f ∈ F , ‖D−1v‖22 ≤ 1},

where D is a positive diagonal matrix with its entries giving the idiosyncratic variation
of individual yield curve and spread values. We note that while a factor model is
typically used to develop a statistical model of the yield curve and spreads, we use it
here to define a (deterministic) set of possible values.

3.3.4 Perturbation Description

The uncertainty setU can be described in terms of possible perturbations to the current
values (ynom, snom). We describe this for the yield curve only, but similar ideas can
be used to describe the spreads as well. We take y = ynom + δ, where δ ∈ RT is the
perturbation to the yield curve. Wemight impose constraints on the perturbations such
as

δmin ≤ δ ≤ δmax,

T∑

t=1

δ2t ≤ κ,

T−1∑

t=1

(δt+1 − δt )
2 ≤ ω, (9)

where δmin, δmax, κ , and ω are given parameters, and the first inequalities are elemen-
twise. The first constraint limits the perturbation in yield for any t ; the second limits
the mean square perturbation, and the third is a smoothness constraint, which limits
the roughness of the yield curve perturbation. This is of course just an example; one
could add many further constraints, such as insisting that the perturbed yield have
nonnegative slope, is concave, or that the perturbation is plausible under a statistical
model of short term changes in yields.

3.3.5 Constraints

We can add any convex constraints in our description of U . For example, we might
add the constraints (9) to a factor model, or confidence ellipsoid. As an example of a
constraint related to spreads, we can require that the spreads are nonincreasing as a
function of the bond rating, i.e., we always have si ≤ s j if bond i has a higher rating
than bond j . This is a set of linear inequalities on the vector of spreads s.
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4 Robust Portfolio Construction

In the worst case analysis problem described in Sect. 3, the portfolio is given as
hnom. Here we consider the case where the portfolio is to be chosen. We denote the
new portfolio as h, with hnom denoting the nominal or current portfolio. Our goal
is to choose h, which we do by minimizing an objective function, subject to some
constraints.

4.1 Nominal Portfolio Construction Problem

We first describe the nominal bond portfolio construction problem. We are given a
nominal objective function φ : Rn → R which is to be minimized. The nominal
objective function might include tracking error against a benchmark, a risk term, and
possibly a transaction cost term if the portfolio is to be constructed from the existing
portfolio hnom (see, e.g., [2]). We will assume that the nominal objective function is
convex.

We also have a set of portfolio constraints, which we denote as h ∈ H, where
H ⊂ Rn+. The constraint set includes the long-only constraint h ≥ 0, as well as a
budget constraint, such as pT h = pT hnom, which states that the new portfolio has the
same value as the original one. (This can be extended to take into account transaction
costs if needed.) The constraint setH can include constraints on exposures to regions
or sectors, average ratings, duration, a limit on risk, and so on. We will assume thatH
is convex. The nominal portfolio construction problem is

minimize φ(h)

subject to h ∈ H,

with variable h. This is a convex optimization problem.

4.2 Robust Portfolio Construction Problem

To obtain the robust portfolio construction problem we add one more penalty term to
the nominal objective function, which penalizes the worst case change in value over
the given uncertainty set U .

The term, which we refer to as the robustness penalty, is −λΔwc(h), where λ > 0
is a parameter used to trade off the nominal objective φ and the worst case change in
log portfolio value −Δwc(h). Here we write the worst case change in log value with
argument h, to show its dependence on h.

We arrive at the optimization problem

minimize φ(h) − λΔwc(h)

subject to h ∈ H,
(10)
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with variable h. We refer to this as the robust bond portfolio construction problem.
The objective is convex since φ is convex and Δwc is a concave function of h. This
means that the robust bond portfolio construction problem is convex.

However, the robustness penalty term−Δwc(h) is not directly amenable to standard
convex optimization, since it involves a minimization (over y and s) itself. We will
address the question of how to tractably handle the robustness penalty term below
using methods for convex–concave saddle point optimization.

A different framing of the robust bond portfolio construction problem is tominimize
φ subject to a constraint on Δwc. This is readily handled, but we defer the discussion
to Sect. 6.

4.3 Linearized Robust Portfolio Construction Problem

As in the worst case analysis problem we can use the linearized approximation of the
worst case log value instead of the true log portfolio value, which gives the problem

minimize φ(h) − λΔ̂wc(h)

subject to h ∈ H,
(11)

with variable h. Here Δ̂wc is the worst case change in log portfolio value predicted
by the linearized approximation, i.e., the optimal value of (8), as a function of h. We
note that Δ̂wc is, like Δwc, a concave function of h.

4.4 Convex–Concave Saddle Point Formulation

We can write the robust portfolio construction problem (10) as

minimize
h∈H

max
(y,s)∈U

(φ(h) − λΔ(h, y, s)) . (12)

(Maximizing−λΔ(h, y, s) over (y, s) ∈ U gives−λΔwc(h).) The objective in (12) is
convex in h and concave in (y, u), so this is a convex–concave saddle point problem.
Replacing Δ with Δ̂ yields the saddle point version of the linearized robust portfolio
construction problem.

Sion’s minimax theorem [24] tells us that if H is compact, when we reverse the
order of the minimization and maximization we obtain the same value, which implies
that there exists a saddle point (h�, y�, s�), which satisfies

φ(h�) − λΔ(h�, y, s) ≤ φ(h�) − λΔ(h�, y�, s�) ≤ φ(h) − λΔ(h, y�, s�)

for all h ∈ H and (y, s) ∈ U . The left hand inequality shows that φ(h�)−λΔ(h�, y, s)
is maximized over (y, s) ∈ U by (y�, s�); the right hand inequality shows that φ(h)−
λΔ(h, y�, s�) is minimized over h ∈ H by h�. It follows that φ(h�) − λΔ(h�, y�, s�)

is the optimal value of the robust portfolio construction problem, h� is an optimal
portfolio, and (y�, s�) is a worst case yield curve and spread.

123



Journal of Optimization Theory and Applications

5 Duality Based Saddle Point Method

The robust bond portfolio construction problem (12) is convex, but unfortunately not
immediately representable in a DSL. In this section we use a well known trick to
transform the problem to one that can be handled directly in a DSL. Using duality we
will express Δwc as the maximum of a concave function over some variables that lie
in a convex set. This method of transforming an inner minimization is not new; it has
been used since the 1950s when Von Neumann proved the minimax theorem using
strong duality in his work with Morgenstern on game theory [29].

We now describe the dualization method for the case when U is a polyhedron of
the form

U = {(y, s) | A(y, s) ≤ b},

with A ∈ Rp×(T+n) and b ∈ Rp, and the inequality is elementwise, but similar
derivations can be carried out for other descriptions of U .

5.1 Dual Form ofWorst Case Change in logValue

We assume Slater’s condition hold, since any uncertainty set in practice will have a
nonempty relative interior. From strong duality, it follows that

Δwc(h) = max
μ≥0, ν

g(h, μ, ν), (13)

where

g(h, μ, ν) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− log(pT h) − μT b −
n∑

i=1

T∑
t=1

ζ(ci,t hi ,
νi,t
t ) if ATμ − FT ν = 0,

1T ν = 1, ν ≥ 0

−∞ otherwise,
(14)

with

ζ(x, t) = −t log(x/t) = t log(t/x) = t log(t) − t log(x),

which is the relative entropy. Here μ ∈ Rp and ν ∈ RnT are variables, and the matrix
F ∈ RnT×(T+n) will be defined below. The relative entropy is convex (see, e.g., [3,
§3.2.6]), which implies that g is jointly concave in (h, μ, ν). A full derivation of (13)
is given in Sect. C.
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5.2 Single Optimization Problem Form

Using (14) we can write the robust bond portfolio construction problem as a single
optimization problem compatible with DSLs, with variables h, μ, and ν:

minimize φ(h) + λ

(
μT b +

n∑
i=1

T∑
t=1

ζ(ci,t ,
νi,t
t ) + log(pT h)

)

subject to μ ≥ 0, ATμ − FT ν = 0, ν ≥ 0, 1T ν = 1
h ∈ H.

This is a convex optimization problem because the objective is convex and the
constraints are linear equality and inequalities. This form is tractable for DSLs.

5.3 Automated DualizationVia Conic Representation

While for many uncertainty sets explicit dual forms can be derived by hand, this
process can be tedious and error-prone. In recent work, Juditsky and Nemirovski [14]
present a method for transforming general structured convex–concave saddle point
problems to a single minimization problem via a generalized conic representation of
convex–concave functions. Similar to disciplined convex programming (DCP) [13],
the method introduces some basic atoms of known convex–concave saddle functions,
as well as a set of rules for combining them to form composite problems, making it
extremely general.

Juditsky and Nemirovski define a general notion of conic representability for
convex–concave saddle point problems

min
x∈X

max
y∈Y

ψ(x, y). (15)

If the convex–concaveψ can bewritten in this general form, then (15) can bewritten as
a single minimization problem, with variables comprising x together with additional
variables. See [14] for details on conic representability, which is beyond the scope of
this paper. The set of conically representable convex–concave functions is large and
includes generalized inner products of the form F(x)T G(y) where F is elementwise
convex andnonnegative andG(y) is elementwise concave andnonnegative, and special
atoms like weighted log-sum-exp, log(

∑
i xi exp(yi )), which appears in the robust

bond portfolio construction problem.
The authors have developed a package for disciplined saddle point programming

called DSP, described in [23]. DSP automates the dualization, following the ideas of
Juditsky and Nemirovski, and allows users to easily express and then solve convex–
concave saddle point problems, including as a special case the robust bond portfolio
construction problem. Roughly speaking DSP hides the complexity of dualization
from the user, who expresses the saddle point problem using a natural description.
We refer the reader to [23] for a (much) more detailed description of DSP and its
associated domain specific language.
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5.4 DSP Specification

To illustrate the use of DSP for robust bond portfolio construction, we give below the
code needed to formulate and solve it. We assume that several objects have already
been defined: C is the cash flowmatrix, H and U are DCP compliant descriptions of the
portfolio and yield/spread uncertainty set, phi is a DCP compliant convex nominal
objective function, and lamb is a positive parameter.

1 import cvxpy as cp
2 import dsp
3

4 y = cp.Variable(T)
5 s = cp.Variable(n)
6 h = cp.Variable(n, nonneg=True)
7

8 exponents = []
9 weights = []

10 for i in range(n):
11 for t in range(T):
12 if C[i, t] > 0:
13 exponents.append(-(t + 1) * (y[t] + s[i]))
14 weights.append(h[i] * C[i, t])
15

16 Delta = dsp.weighted_log_sum_exp(
17 cp.hstack(exponents), cp.hstack(weights)
18 )
19

20 obj = dsp.MinimizeMaximize(phi - lamb * Delta)
21

22 constraints = H + U
23

24 saddle_problem = dsp.SaddleProblem(obj, constraints)
25 saddle_problem.solve()

In lines 8–16 we construct an expression forΔ, where in line 16 we use the convex–
concave DSP atomic function weighted_log_sum_exp. In line 20 the addition
symbol concatenates H and U, which are lists of CVXPY constraints that define H
and U , respectively. In line 22 we construct the saddle point problem, and in line 23
we solve it. The optimal portfolio can then be found in h.value, and the worst case
yield and spreads in y.value and s.value, respectively.
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6 Variations and Extensions

Periodically Compounded Growth To handle periodically compounded interest,
simply observe that in this case,

yt = p−1/t
t − 1, t = 1, . . . , T ,

and the portfolio value is f (y) = ∑T
t=1 ct (1 + yt )−t . This is a convex function of y

because ct ≥ 0 and xa is convex for any a < 0 and nonnegative argument.
Multiple Reference Yield CurvesWe can immediately extend to the case where each

bond has its own reference yield curve yi ∈ RT for i = 1, . . . , n. This effectively
means the spread can be time varying for each bond. All the convexity properties are
preserved; in fact this just corresponds to an unconstrained z variable in Sect, C.

Constrained Form It is natural and interpretable to pose (10) in constrained form,
that is,

minimize φ(h)

subject to Δwc(h) ≥ −η

h ∈ H,

for some η > 0. For example, one could consider minimizing the tracking error to a
reference bond portfolio, subject to the constraint that the worst case change in bond
portfolio value does not exceed a given tolerance. Using the conic representability
method in Sect. 5.3, we can immediately include Δwc(h) ≥ −η as a DCP compliant
constraint. See our recent paper on DSP [23] for details.

7 Examples

In this section we illustrate worst case analysis and robust portfolio construction with
numerical examples. The examples all use the data constructed as described below.
We emphasize that we consider a simplified small problem only so the results are
interpretable, and not due to any limitation in the algorithms used to carry out worst
case analysis or robust portfolio construction, which readily scale to much larger
problems.

The full source code and data to re-create the results shown here is available online
at

https://github.com/cvxgrp/robust_bond_portfolio.

7.1 Data

Weworkwith a simpler and smaller universe of bonds that is derived from, and captures
the main elements of, a real portfolio.

Bond Universe We start with the bonds in the iShares Global Aggregate Bond
UCITS ETF (AGGG), which tracks the Bloomberg Global Aggregate Bond Index
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Table 1 The 20 bond universe used for numerical examples

Ticker Rating Term to maturity Coupon rate Dist Price

T 2 5/8 03/31/25 AAA 2.46 2.625 SA 101.86

T 1 1/4 12/31/26 AAA 4.21 1.250 SA 92.63

T 0 5/8 12/31/27 AAA 5.21 0.625 SA 85.43

T 3 1/4 05/15/42 AAA 19.58 3.250 SA 128.96

T 3 08/15/52 AAA 29.84 3.000 SA 130.55

FHLMC 0 3/8 09/23/25 AA 2.94 0.375 SA 89.13

NSWTC 3 05/20/27 AA 4.60 3.000 SA 106.66

WATC 3 1/4 07/20/28 AA 5.77 3.250 SA 110.63

NSWTC 2 1/4 05/07/41 AA 18.56 2.250 SA 99.64

BGB 3 3/4 06/22/45 AA 22.69 3.750 A 88.60

JGB 0.4 09/20/25 #340 A 2.93 0.400 SA 88.35

JGB 0.1 09/20/27 #348 A 4.93 0.100 SA 79.62

JGB 0.1 06/20/31 #363 A 8.68 0.100 SA 67.39

JGB 1 12/20/35 #155 A 13.18 1.000 SA 72.75

JGB 1.7 09/20/44 #44 A 21.94 1.700 SA 80.12

SPGB 3.8 04/30/24 BBB 1.54 3.800 A 96.39

SPGB 2.15 10/31/25 BBB 3.05 2.150 A 90.01

SPGB 1.45 10/31/27 BBB 5.05 1.450 A 81.71

SPGB 2.35 07/30/33 BBB 10.79 2.350 A 75.07

SPGB 2.9 10/31/46 BBB 24.05 2.900 A 66.14

The prices are computed as of 2022-09-12. SA and A denote semi-annual and annual distribution,
respectively

[1], a market-cap weighted index of global investment grade bonds. As of 2022-
09-12, AGGG held 10,564 bonds, which we partition into 20 groups by rating and
maturity. We consider the four ratings AAA, AA, A, and BBB, and five buckets of
maturities, 0–3, 3–5, 5–10, 10–20, and 20–30 years. From each of the 20 rating-
maturity groups, we select the bond in AGGG with the highest market capitalization.
These 20 bonds constitute the universe we consider. They are listed in table 1, with
data as of 2022-09-12.

For each bond we construct its cash flow based on the coupon rate, maturity, and
frequency of coupon payments, assuming the cash flows are paid at the end of each
period. All bonds in the universe distribute either semi-annual or annual coupons, so
we use a period length of six months. The longest term to maturity in our universe is
30 years, so we take T = 60. We assemble the cash flows into a matrix C ∈ R20×60.
We price the bonds according to (1), using US treasury yield curve data and spreads
that depend on the rating, with data as of 2022-09-12, as listed in Table 1.

Nominal PortfolioOur nominal portfolio hnom puts weight on each of our 20 bonds
equal to the total weight of all bonds in the corresponding rating-maturity group in
AGGG. The weights are shown in Fig. 1.
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Fig. 1 The nominal portfolio weights

Fig. 2 Historical mean values of (annualized) yield and spreads. The nominal yield and spreads, date
2022-9-12, are also shown

7.2 Uncertainty Sets

We create uncertainty sets using historical daily yield curves and spreads. Data for
the yield curve is obtained from the US Treasury [27], and the spreads are obtained
from the Federal Reserve Bank of St. Louis [9], spanning the period 1997-01-02 to
2022-09-12, for a total of 5,430 observations. As our period length is 6 months, we
only consider the 9 key rate durations of 6 months, as well as 1, 2, 3, 5, 7, 10, 20,
and 30 years. Joining the 9 rates with the 4 ratings, our total data is represented as
a 5, 430 × 13 matrix. The mean value of each column, denoted μhist, as well as the
nominal, i.e., most recent, yields and spreads are shown in Fig. 2. We use simple linear
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Table 2 Worst case change in
portfolio value, for two
uncertainty sets, using both the
exact and linearized methods

α (%) Worst case (%) Linearized (%)

50 −29.34 −33.43

99 −39.64 −45.95

interpolation to obtain the full yield curve y ∈ R60.
We model the uncertainty set as a (degenerate) ellipsoid. We compute the empirical

mean and covariance of the historical data, denoted μhist and Σhist, respectively. We
define Z ∈ R80×13 as the matrix that maps the key rates and ratings, (yk, sr ) ∈ R13

to the yields and spreads, (y, s) ∈ R80, i.e.,

(y, s) = Z(yk, sr ).

The matrix Z encodes linear interpolation between key rates; other linear mappings
like spline interpolation could also be used.

Our uncertainty set is then defined in terms of key rates and ratings,

U = {Z(yk, sr ) |
(
(yk, sr) − μhist

)T (
Σhist

)−1 (
(yk, sr) − μhist

)
≤ F−1(1 − α)},

where F is the CDF of a χ2 random variable with 13 degrees of freedom, and α ∈
(0, 1) is a confidence level. This uncertainty set is a degenerate ellipsoid, with affine
dimension 13.

To represent a modest uncertainty set, we use confidence levels 50%. We also
consider a more extreme uncertainty set, with confidence level 99%. These two uncer-
tainty sets are meant only to illustrate our method; in practice, we would likely create
uncertainty sets that change over time, and are based on more recent yield curves and
spreads, as opposed to a long history of yields and spreads.

7.3 Worst Case Analysis

Table 2 shows worst case change in portfolio value for the 50 and 99% confidence
levels, each using both the exact and linearized methods. The values are given as
relative change in portfolio value, i.e., we have already converted from log returns.

For α = 50%, the exact method gives a worst case change in portfolio value of
around −29%, and the linearized method predicts a change in portfolio value around
four percentage points lower. For α = 99% the approximation error of the linearized
method is greater, more than six percentage points. We can see that in both cases the
linearized method is conservative, i.e., predicts a change in value that is lower than
the exact method.

Figure 3 shows the corresponding annualized worst case yields and spreads. For
the modest uncertainty case, the linearized and exact methods produce similar results,
while for the extreme case, the linearized method deviates more for shorter yields and
across all spreads.
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Fig. 3 Worst (annualized) yield curve and spreads for the two uncertainty sets, using the exact and linearized
methods

7.4 Robust Portfolio Construction

Wenow consider the case where instead of holding the nominal portfolio hnom exactly,
we try to track it, with a penalty term on the worst case change in portfolio value, as
described in Sect. 4.2. Our nominal objective is the turnover distance between our
holdings and the nominal portfolio, given by

φ(h) = (1/2)‖h − hnom‖1.

Figure 4 shows the turnover distance for both uncertainty sets and both the exact
and linearizedmethods. For small values of λ, the nominal portfolio is held exactly. As
expected, the turnover distance increases with λ, but more rapidly so for the extreme
uncertainty set. We also see that the linearized method gives very similar results. For
some values of λ, the resulting portfolio obtains the same turnover distance as the
exact method, but for other values it is slightly worse due to the conservative linear
approximation.

Figure 5 shows the resulting portfolio holdings for the two uncertainty sets across
varying values of λ. For λ = 1, the weights are exactly the nominal weights. For
λ = 5, the weights have shifted to shorter maturities, reducing the worst case change
in portfolio. However, this shift is more pronounced for the extreme uncertainty set,
where the weights are only allocated up to the 3–5 year bucket, whereas for the modest
uncertainty set the weights include bonds up to the 5–10 year bucket. A similar obser-
vation can be made for λ = 15, where the optimization under the modest uncertainty
set still allocates in bonds across all ratings in the bucket containing bonds with less
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Fig. 4 Turnover distance to thenominal portfolio, for twouncertainty sets, usingboth the exact and linearized
methods

than 3 years to maturity. In contrast, under the extreme uncertainty set the weights are
only allocated to two bonds in this bucket. Specifically, the highest weight is assigned
to the bond with BBB rating, and a smaller weight to the AAA bond. This is explained
by the much shorter maturity of the BBB bond (see Table 1), which outweighs the
lower risk due to the higher rating of the AAA bond. Indeed, when manually setting
thematurities of these bonds to the same value, we find that weights would be assigned
to the AAA bond for large values of λ instead.

8 Conclusions

We have observed that the greatest decrease in value of a long-only bond portfolio,
over a given convex set of possible yield curves and spreads, can be found exactly
by solving a tractable convex optimization problem that can be expressed in just a
few lines using a DSL. Current practice is to estimate the worst case decrease in
value using key rate durations, which is equivalent to finding the worst case change
in portfolio value using a linearized approximation of the portfolio value. We show
that this estimate is always conservative. Numerical examples show that it is a good
approximation of the actual worst case value for modest changes in the yield curve
and spread, but less good for large uncertainty sets.

We also show that the problem of constructing a long-only bond portfolio which
includes the worst case value over an uncertainty set in its objective or constraints can
be tractably solved by formulating it as a convex–concavesaddle point problem. Such
problems can also be specified in just a few lines of a DSL.
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Fig. 5 Portfolio holdings, for both uncertainty sets for λ ∈ {1, 5, 15}

A Worst Case Analysis CVXPY Code

1 import numpy as np
2 import cvxpy as cp
3

4 y = cp.Variable(T)
5 s = cp.Variable(n)
6

7 V = h @ p
8

9 exponents = []
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10 for i in range(n):
11 for t_idx in range(T):
12 t = t_idx + 1 # account for 0-indexing
13 w_it = h[i] * C[i,t_idx]
14 if w_it > 0:
15 exponents.append(-t * (y[t_idx] + s[i]) + np

.log(w_it))
16

17 Delta = cp.log_sum_exp(cp.hstack(exponents)) - np.log(V)
18 obj = cp.Minimize(Delta)
19 prob = cp.Problem(obj, [A @ cp.hstack([y,s]) <= b])
20 prob.solve()

B Explicit Dual Portfolio Construction CVXPY Code

1 import numpy as np
2 import cvxpy as cp
3

4 F_1 = np.tile(np.eye(T), (n, 1))
5 F_2 = np.repeat(np.eye(n), repeats=T, axis=0)
6 F = np.hstack([F_1, F_2])
7

8 lam = cp.Variable(len(b), nonneg=True)
9 nu = cp.Variable(n * T, nonneg=True)

10

11 h = cp.Variable(n, nonneg=True)
12

13 B = 1
14

15 term = 0
16 for i in range(n):
17 for t in range(1, T):
18 nu_i_t = nu[i * T + t]
19 term -= cp.rel_entr(C[i, t] * h[i], nu_i_t / t)
20

21 obj = cp.Maximize(-lam @ b + term - np.log(B))
22 constraints = [
23 A.T @ lam == F.T @ nu,
24 cp.sum(nu) == 1,
25 p @ h == B,
26 ]
27 prob = cp.Problem(obj, constraints)
28 prob.solve()
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C Derivation of Dual Form

We now derive the dual form of the worst case portfolio construction problem for the
case where the uncertainty set in polyhedral. We note that the worst case log change in
portfolio value for a fixed h, Δwc(h) is given by the optimal value of the optimization
problem

minimize log
(∑n

i=1
∑T

t=1 hi ci,t exp(−t(yt + si ))
)

− log(pT h)

subject to A(y, s) � b.

We have written this problemwith (y, s) explicitly, instead of with x , to emphasize the
objective’s dependence on each component. We note that due to our budget constraint,
log(V (y, s)) = log(pT h).

In order to obtain a closed form dual, we introduce a new variable z ∈ RnT ,
where we think of zi,t as corresponding to yt + si . This is a very general formulation
which allows each bond to be associated with its own yield curve yi ∈ RT , with zi,t
corresponding to the t’th entry of the i’th bond’s yield curve. Since we model each
bond as having its own yield curve, this formulation generalizes the earlier treatment
with yields and spreads handled separately. We can recover the original structure with
the linear constraints

zi,t = yt + si , t = 1, . . . , T , i = 1, . . . , n, (16)

which are representable as z = Fx for an appropriate F ∈ RnT×(T+n). As such, the
problem is equivalent to

minimize log
(∑n

i=1
∑T

t=1 hi ci,t exp(−t zi,t )
)

− log(pT h)

subject to Ax � b, z = Fx .
(17)

Strong duality tells us that Δwc(h) is equal to the optimal value of the dual problem
of (17) [3, §5.2].

Dual Problem We derive the dual of the problem

minimize log
(∑n

i=1
∑T

t=1 hi ci,t exp(−t zi,t )
)

− log(pT h)

subject to Ax � b, z = Fx .
(18)

First, with f the log-sum-exp function f (x) = log
(∑

exp xi
)
, we observe that our

problem can be rewritten as

minimize f (Cz + d) − log(pT h)

subject to Ax � b, z = Fx .

We define C to be the diagonal matrix with Ci,t = −t , where we are using unwound
vectorized indexing for z, and d ∈ RnT to be the vector with di,t = log(ci,t hi ). Then,
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the Lagrangian is given by

L(z, x, μ, ν) = f (Cz + d) + μT (Ax − c) + νT (z − Fx) − log(pT h).

The Lagrange dual function is given by

g(μ, ν) = inf
z,x

L(z, x, μ, ν) = inf
z

(
f (Cz + d) + νT z

)
+ inf

x

(
μT Ax − νT Fx

)

−μT c − log(pT h).

The second term is equal to −∞ unless ATμ + FT ν = 0, so this condition will
implicitly restrict the domain of g. Now, note that with g(z) = f (Cz + d), the first
term can be rewritten as

inf
z

(
f (Cz + d) + νT z

)
= inf

z

(
g(z) + νT z

)

= −max
z

(
−νT z − g(z)

)

= −g∗(−ν),

where g∗(y) = max yyT z − g(z) is the conjugate of g. [3, §3.3.1].
We now use two facts from [3, §3.3.2]. First, in general the conjugate of the linear

precomposition φ(z) = ρ(Cz + d) can be written in terms of the conjugate of ρ as
φ∗(y) = ρ∗(C−T y) − dTC−T y. Second, the dual of the log-sum-exp function f is

f ∗(y) =
{∑

i yi log(yi ) if y ≥ 0, 1T y = 1
∞ otherwise.

Combining these two facts, and expanding terms, we find that

g(μ, ν) =

⎧
⎪⎨

⎪⎩
− log(pT h) − μT b −

n∑
i=1

T∑
t=1

ζ(ci,t hi ,
νi,t
t ) if AT μ − FT ν = 0, 1T ν = 1, ν ≥ 0

−∞ otherwise,

with

ζ(x, t) = −t log(x/t) = t log(t/x) = t log(t) − t log(x).

Thus the robust bond portfolio problem can be written as

minimize φ(h) − λmax
μ,ν

g(μ, ν)

subject to μ ≥ 0, ATμ − FT ν = 0, 1T ν = 1, ν ≥ 0
h ∈ H,

where we have moved the implicit constraints in the definition of g to explicit con-
straints in the optimization problem. Note this equivalent optimization problem has
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new variables μ and ν. By using that −λmaxμ,ν g(μ, ν) = minμ,ν −λg(μ, ν) and
collecting the minimization over h, μ, and ν, we obtain the form in Sect. 5.2.
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