
Robust Control Tools:

Graphical User-Interfaces

and

LMI Algorithms
�

Stephen Boydy

Information Systems Laboratory

Electrical Engineering Department

Stanford University

Stanford CA 94305

Internet: boyd@isl.stanford.edu

April 23, 1994

Abstract

Robust control theory considers a fundamental and practically im-

portant issue in control engineering: plant uncertainty. It turns out

that many of the simplest questions are very di�cult to solve, but re-

searchers have made considerable progress over the last twenty years.

Nevertheless the theory has so far had less impact on practice than

one might imagine. (Simulation and modeling tools, for example, have

probably had a wider impact on practice.) Recent techniques of ro-

bust control theory, based on convex optimization over linear matrix

�Systems, Control and Information, volume 38, number 3, pages 111-117, March 1994.

Special issue on Numerical Approaches in Control Theory, edited by S. Eiho, H. Kimura,

A. Ohara, and T. Mori.
yResearch supported in part by AFOSR (under F49620-92-J-0013-P00001) and NSF

(under ECS-9222391)

1



inequalities (LMIs), coupled with new user-interfaces, might change

this.

2



This note is not meant to report any serious scholarly work; it just a

collection of musings on the current state and future of tools for robust

control. Because of space limitations we give only a very few references; a

complete set of references can be found in the monograph [2].

The outline is as follows. In x1 we give a high-level discussion of robust

control theory. In x2 we develop an \artist's sketch" of a user-interface for

a robust control tool we might hope to develop, perhaps someday soon. In

x2 we do not consider the algorithms that do the underlying computations,

which is the main intellectual challenge, and hence the entire focus of re-

search, in robust control theory. From the point of view of robust control

theory, the discussion of x2 is vacuous.

In x3 we turn to the important question of the underlying algorithms

for such a tool. Here we simply make some general comments about some

promising methods, especially, analysis and design algorithms based on lin-

ear matrix inequalities. These methods can be thought of as extensions of

the work of Yakubovich and others in the 1960s, or as extensions of more re-

cently developed methods such as Doyle's �-synthesis or Skelton's covariance

control.

1 Robust Control Theory

One of the main goals of feedback control is to maintain overall system perfor-

mance despite changes in the plant. We now call this property robustness|

but the idea has been around since the origins of control systems.

Control system robustness received less attention in the 1960s during the

development of state-space optimal control and estimation theory (e.g., LQR

and LQG) in which the idea of plant change, variation, or uncertainty played

at best a secondary role. Some initial results showed that the state-feedback

implementation of LQR was very tolerant of changes in the plant [15]. This

led to the hope that controllers designed to be optimal for a �xed, known

plant might automatically turn out to be robust, i.e., tolerant to changes in

the plant. In a short note, Doyle pointed out that this is not the case [5].

In general, robustness does not come for free from a controller designed via

optimal control and estimation theory.

Partly in reaction to the secondary role played by robustness in opti-

mal control and estimation theory, the �eld called robust control theory was

3



developed over the last �fteen years or so. In robust control theory, plant

variation plays a central role. Some of the key questions in robust control

theory are:

� Characterizing plant variation. What is a good way to describe plant

variations or uncertainty? Some descriptions attempt to faithfully de-

scribe the variations that might be ecountered (e.g., probability dis-

tributions on physical parameters). Other descriptions are more con-

venient for the associated theory (e.g., bounds on singular values of

transfer matrix errors).

� Robustness analysis. Given a controller and plant, and some description

of the plant uncertainty, how can we determine such things as \typical"

or \worst-case" performance? How can we predict the performance

degradation caused by variation in the plant? How can we verify that

some performance speci�cations are met for some set of plants?

� Robust controller synthesis. Given a plant and some description of

the plant uncertainty, how can we design a controller that optimizes

\typical" or \worst-case" performance? How can we design a controller

that meets some performance speci�cations for some set of plants (e.g.,

all or typical)?

It's important to remember several things: First, these questions were

asked, and partial answers obtained, before the term \robust control" was

coined. Second, the quali�er \robust" shouldn't be necessary since a well-

designed controller must be able to tolerate the plant changes or variations

that can be expected. To put it another way, a controller that cannot tolerate

variations in the plant that will be encountered in operation is simply a

poorly-designed controller, not just a non-robust controller. (But the extra

quali�er \robust" has helped re-focus attention on this important aspect of

control engineering.) Finally, we mention that in the former Soviet Union a

similar �eld developed, called \guaranteed control" in English translations.

Over the last �fteen years thousands of papers and many books have been

written on the topic of robust control. Researchers have made very substan-

tial progress, and have obtained many partial answers to the questions posed

above. But with a few notable exceptions, it seems that the problems posed

above are very di�cult to solve. Some very simple problems of robustness

4



analysis have been shown to be NP-hard, hence as di�cult as some other

famous problems for which no e�cient solutions are known to exist, or are

likely to be found. One example is determining stability of a linear system

in which several parameters vary over given ranges [3, 4].

One of the most famous contributions of robust control theory is the devel-

opment of (\central") H1 controller synthesis (see, e.g., [7]). This synthesis

procedure is no more complicated than LQG synthesis, but yields controllers

that can be more robust to plant variations than LQG controllers.

The type of plant variations such H1 controllers can tolerate has a very

specialized form, and not one that can be said to accurately represent varia-

tions that might arise in actual plants. This is analogous to LQG: not many

real disturbances are accurately characterized as Gaussian processes, and

only in rare circumstances are quadratic cost functions truly appropriate. In

both cases we have an analytic solution to a problem that is not really the

problem we'd like to solve, but is similar enough to make the method useful

in practice (with a lot of trial-and-error tuning of weights). So although H1
synthesis can be a useful tool for synthesizing robust controllers, it does not

directly solve the robust controller synthesis problems that really arise.

Let's consider a simple sketch of a real robust synthesis problem, without

any details.

� The plant and its variation. The plant is a mechanical system, perhaps

a platform that we wish to isolate from base motion and vibration. Cer-

tain physical parameters (e.g., load mass, sti�ness, internal damping)

can vary in given ranges (e.g., �20%). The actuators have substantial

nonlinearities, which are fairly well modeled by lookup tables that were

determined experimentally. Measurements of various transfer functions

for this system are not repeatable at high frequencies; but from these

experiments we have some ideas of the transfer function variations that

we may encounter.

� Design goals. Our goal is to design a controller that achieves some

performance speci�cations despite these variations. The speci�cations

might be that with certain disturbances present (base motion, sensor

noises, etc.) the actuator signals and other critical signals do not exceed

given limits, and the velocity at the top of the platform is small.

Note how down-to-earth this problem statement is. It can be readily ex-

5



plained to and appreciated by any engineer, and especially, one who is not

an expert in robust control theory!

In contrast, consider the problem statement for an H1-synthesis prob-

lem. The statement involves singular values, H1 norms, and so on. It

cannot be understood even by an experienced control engineer (unless they

are up to date on the special language and concepts of robust control the-

ory). Comparing this problem statement with the one sketched above reveals

a gap between what we would really like to solve and what we can solve us-

ing H1 sunthesis. (To be fair, we should point out that an engineer using

H1-synthesis could probably synthesize a pretty good controller, with much

trial-and-error, for the real problem described above.) Teaching new control

engineers about singular values and H1 norms (which I do) is not the whole

solution to closing this gap. The point is that despite the thousands of pa-

pers and much real progress, robust control theory has not yet provided a

straightforward or direct solution to simple and realistic problems of robust

control.

A notable development that addresses this issue is �-analysis and syn-

thesis, pioneered by Doyle, Safonov, and others [16, 6]. They recognized

that describing plant variations in terms of singular values is rarely realistic,

and just a case of forcing a practical problem to �t into the hypothesis of a

theorem (the Small Gain theorem in this case). Instead they describe uncer-

tainties in much more realistic ways: they consider systems in which various

internal transfer functions can vary by frequency-dependent amounts. The

plant might consist of various subsystems, each of which has its own descrip-

tion of uncertainty. Extensions of the method include parameter variation

as well. These methods can attack the problem described above provided we

choose to ignore the nonlinearity and measure performance in certain ways.

One disadvantage is that the designer must learn the special vocabulary and

concepts associated with the method.

Most likely an engineer facing the problem sketched above would not use

the methods of robust control theory to synthesize a controller, or analyze

its robustness. To analyze robustness the engineer would probably run many

simulations of the closed-loop system under various scenarios, i.e., with many

di�erent disturbance patterns, various values of the physical parameters, and

even di�erent high frequency dynamics. For each run, he or she checks that

the actuator limits are respected, and the platform velocity stays within the

desired limits. Worst-case and typical values are noted. Of course, this

6



is nothing more than responsible simulation. (Irresponsible simulation is

when the engineer runs one or just a handful of simulations, without varying

the physical parameters, etc.) In summary, an engineer facing the problem

sketched above would probably use simulation and Monte Carlo methods for

robustness analysis, and not the methods of robust control theory (despite

the thousands of papers that have appeared : : : ).

Why is this? There are a few related reasons: First, simulation tools can

be used for a very wide variety of systems. In contrast, the results of robust

control theory (so far) apply to fairly restricted sets of systems and answer

fairly restricted sets of questions. Moreover, simulation tools have been made

convenient to use; the user of a simulation tool does not have to be an expert

on numerical integration to use the tool. In contrast, the user of a current

generation robust control tool has to know quite alot about robust control

theory.

2 User-Interface for a Robust Control Tool

It is useful to imagine how a robust control tool should look to the user, even

if we cannot yet build such a tool. I imagine it as an extension of current sys-

tem simulation tools like SystemBuild and Simulink. A graphical interface

allows the user to describe the system via block diagram, by manipulating

boxes (icons) and the connections between them. The icons contain subsys-

tems such as linear dynamics, nonlinearities (saturator, deadzone, hysteresis,

lookup table), and user-supplied subroutine call. These icons are found in

current system simulation tools, but in an extension that handles robustness

analysis, we might �nd some additional icons:

� Unknown or uncertain parameter. The user selects the range, or per-

haps a nominal value and percent variation, for a parameter. This is

used to represent unknown parameters, e.g., a physical parameter that

varies �20%. The use might optionally specify a distribution for the

parameter value. Another option might allow the user to \link" or

\bind" several uncertain parameters together, which constrains them

to have the same value. This is useful when a single parameter en-

ters the model in many places (e.g., Young's modulus, aerodynamic

pressure).

7



� Unknown transfer function. This is used to model error in transfer

functions. The user might specify, in some graphical way, the uncer-

tainty at each frequency.

� Unknown or uncertain (sector) nonlinearity. This is used to represent

a nonlinearity whose graph is known to lie between speci�ed lower and

upper bounds. The user speci�es the lower and upper bounds.

� One of many (enumerated possibilities). The icon represents one out

of a given list of possibilities, i.e., the possible values are explicitly

enumerated. As an example, suppose we have 100 transfer function

measurements of some subsystem, e.g., an actuator; in the block di-

agram we represent the actuator as one of the 100 measured transfer

functions. As another example we may list 10 typical values for some

parameter. The same mechanism could be used to describe a list of typ-

ical diturbance or command signals. The user might optionally assign

probabilites to each possibility.

The user describes the system variations or uncertainties by incorporating

these icons into the block diagram. It is not hard to imagine a block diagram

representation, including plant uncertainties, for the problem sketched above.

Such an interface would allow any engineer to build up a model of a system

that includes uncertainties, even if he or she does not know about robust

control theory (i.e., its special language, recent results, techniques).

In a similar way, the user might even describe performance speci�cations

via block diagrams. This could be accomplished with some new icons:

� Performance meter. A performance meter is used to measure the size

of a signal. The user might select RMS, peak, or other norms; time or

frequency-domain weightings, and so on.

The user might specify a maximum (or goal) level, and some level of

\hardness" varying between a constraint that must be satis�ed and an

objective that is to be minimized (see e.g., [8]).

Performance meters could also support some sort of alarm mechanism

that would stop a simulation or design, or raise some kind of alarm, if

the signal exceeds some limits. It might also have general data-logging

capabilities.

8



� Noise, disturbance, or command source. This icon is used to generate

a signal that is unpredictable or uncertain. The user selects the model

of uncertainty, e.g., stochastic, unknown-but-bounded, or one-of-many.

In addition the user sets associated parameters, e.g., amplitude, band-

width, slew rate. Similar icons are already used in simulation tools.

Once again it is not hard to imagine a block diagram that corresponds to the

speci�cations loosely described in the example sketched above.

This robust control analysis tool would support several modes beyond

simulation, e.g.:

� Monte Carlo simulation,

� approximate worst-case simulation, and

� synthesis of guaranteed bounds.

In Monte Carlo simulation, multiple simulations are performed with ran-

dom selections from the uncertain parameters, transfer functions, nonlineari-

ties, and signal sources. Important statistics could be compiled and reported.

Simulation plots could show the nominal response plot along with error bars

that summarize the response statistics point by point. Small error bars show

that the e�ect of the uncertainties is small, i.e., the system is robust.

In approximate worst-case simulation, an attempt is made to �nd the

worst response among the possible values of parameters, transfer functions,

nonlinearities, and so on. Simulation plots might show nominal responses

along with error bars showing extreme values found. This analysis mode

is based on some type of local optimization, so the results come with no

guarantee that the worst-case values and objectives found are in fact the

worst-case. (Thus, the quali�er, \approximate".) In many cases, of course,

the worst-case values found will be correct, i.e., the (global) worst-case values.

In the language of robust control theory, approximate worst-case simulation

yields lower bounds on performance degradation due to uncertainty.

In the mode synthesis of guranteed bounds, the tool searches for upper

bounds on the worst-case performance degradation. In this case the tool can

produce a \performance guarantee certi�cate" that proves some performance

speci�cation is met for all possible values of the uncertainties. (The exact

9



form of the certi�cate depends on the types of plant variations and perfor-

mance speci�cations involved. It might be a Popov-type Lyapunov function,

a set of multipliers, etc.)

Such provable bounds would be displayed graphically. The important part

is that bounds are reported back to the user in a simple and natural format,

e.g., as the report that the tool has determined that the worst-case RMS

platform velocity is no more than 0.3m/sec. In particular, understanding or

interpreting the results should not require an extensive background in robust

control theory. The user must understand the meaning of the results reported

back, but not necessarily how the results were obtained.

Consider as an analogy the user-interface of a typical simulation tool. I

can use a simulation tool even though I am not an expert in the \details"

of simulation (e.g., proper handling of sti� systems, discrete events); the in-

ternal details are appropriately hidden (from me). A dialog box might have

buttons to select Fast, rough simulation or Slow, accurate simulation. I un-

derstand what this choice means, but not exactly what happens internally

(i.e., the integration algorithm and associated parameter values that corre-

spond to each choice). A well-designed user-interface allows the advanced

user to see and manipulate the inner workings of the tool, but doesn't force

the ordinary user to deal with any more than is necessary.

I believe that user-interfaces in this style and spirit could be developed

for robust control analysis and synthesis. The ordinary user (i.e., one lacking

a background in robust control theory) could describe the system, including

uncertainties, and get back useful performance bounds, but not details such

as how the bounds were obtained. (The advanced user, however, could ac-

cess detailed information and set parameters such as the basis to use in a

\multipliers search".)

Let us return to the three modes: Monte Carlo simulation, approximate

worst-case simulation, and synthesis of guaranteed bounds. It's important to

understand that the three modes complement each other. Roughly speaking,

Monte Carlo simulation gives us an idea of \typical" performance degradation

due to plant uncertainty, whereas approximate worst-case simulation and

synthesis of guaranteed bounds give us an interval in which the true worst-

case performance degradation lies. If we are lucky, the interval is small, i.e.,

approximate worst-case simulation shows performance degradation that is

not too far from our bound on worst-case degradation. But because most

of the problems of robust control theory are inherently di�cult (or at least,

10



as hard as other problems that are generally considered di�cult) we cannot

expect the two to always be close, with reasonable computation time. On

at least some problems, we expect that the bounds will not be close, or the

time required to compute them will be large.

Let us �nish our \artist's sketch" of the user-interface for a robust control

tool by considering how controller design or synthesis might be handled. We

could introduce a few new icons that represent parameters, transfer functions,

or nonlinearities that are to be designed, e.g.:

� Design parameter. The user can change the value at any time. More

importantly, the tool can change the value (in AutoDesign mode; see

below) to optimize performance. The user could optionally set lower

and upper limits for the parameter, or add a term involving the pa-

rameter to some optimization objective.

From this atomic element, we can build up more complex subsystems that are

to be designed, for example, PID or �xed order controllers. As a convenience,

separate icons for these might be available. The user then speci�es controller

structure graphically, by building up the appropriate block diagram. The user

can specify, e.g., a decentralized linear controller, with �xed orders for each

diagonal term. As another example, the user might specify a \fuzzy-logic"

or \neural network" controller by forming the appropriate block diagram out

of nonlinearities and weights (which are the design parameters).

The tool might support an AutoDesign mode. In this mode the tool will

change the design parameters to e�ect robust synthesis. The cost function

and constraints might be set graphically with the performance meters and

noise sources. The synthesis could be set to optimize typical performance (via

Monte Carlo simulation), approximate worst-case, or guaranteed bounds.

There are many \details" of such a user-interface for robust control anal-

ysis and design that would have to be carefully thought out. But the basic

design goal is simple: it should be usable by an engineer not familiar with

the language or results of robust control theory. The user must understand

what the performance bounds or design objectives mean, but does not need

to understand exactly how the performance bounds or synthesized controller

were obtained.

11



3 LMI-based analysis and design

In the previous section we discussed what the user-interface for a robust

control tool should look like, without any consideration of the algorithms

that would do the underlying computation. In this section, we turn to the

question of what algorithms might be used in such a tool. There is not

much to say about Monte Carlo analysis, which is straightforward. Similarly,

approximate worst-case analysis can be based on standard methods of local

optimization. So we concentrate on the synthesis of guaranteed bounds.

It is clear that no analytical result (like central H1 synthesis) or con-

ventional theorem will be able to provide su�ciently good bounds for the

problems posed via block diagrams in such a tool. The problem statement is

quite detailed, whereas \analytical solutions" generally correspond to simple

problem statements. The algorithms must involve some type of numerical

search or optimization.

In any case, the distinction between an \analytical solution" and a \nu-

merical search solution" does not matter too much, at least for our robust

control tool. What does matter is the computational complexity of the al-

gorithm. As an example, an analytical result that allows us to check, say,

robust stability of a system by checking some very large but �nite number

of parameter values, although of great theoretical interest, may not be use-

ful in such a tool. A \numerical search procedure" for the same problem,

which requires us to solve some matrix inequalities by convex programming,

might have a lower computational complexity than the analytical solution,

and hence be more useful as an algorithm for use in our tool.

In my opinion, the most promising candidates are algorithms based on

convex optimization over linear matrix inequalities (LMIs). The basic idea

is to reformulate the robust control analysis or synthesis problem in terms of

LMIs, which are then solved by new interior-point algorithms. The theory is

covered in the monograph[2] and the references cited there; the new interior-

point algorithms for these problems are described in the monograph [11] and

its references, as well as the papers [1, 18, 9] and their references. Many re-

searchers are now actively pursuing this approach: Safonov, Packard, Doyle,

Feron, Balakrishnan, Gahinet, Skelton, Ohara, Geromel, Peres, Bernussou,

Gu, and others; see [2] for a fairly complete list.

There are several ways to view LMI-based design. It can be considered

an extension of work done mostly in the Soviet Union by Yakubovich and

12



colleagues in the 1960s (see e.g., [19, 20, 21, 22, 13], on quadratic and Lur'e-

Postnikov type Lyapunov functions and the so-called S-procedure. These

researchers formulated problems in terms of LMIs, and then tried to obtain

analytical, often frequency-domain, solutions (via the Kalman-Yakubovich-

Popov theorem, for example). The new twist is the ability to directly solve

LMI problems very e�ciently using interior-point algorithms. LMI-based

analysis can also be considered as the next step in the methods based on the

\structured singular value", or earlier work by Narendra, Taylor, and others

on \multipliers" for stability analysis (see, e.g., [10]).

Perhaps the earliest article that contains all the ideas of LMI-based analy-

sis is the 1982 article [14]. In this article Pyatnitski and Skorodinsky describe

a method for checking stability of a system with several sector nonlinearities,

by formulating the search for a Lur'e-Postnikov Lyapunov function as a con-

vex optimization problem which they solve with the ellipsoid algorithm. It

is not hard to imagine a user-interface like the one described in x2 for their

algorithm!

The overall tool might work as follows. From the user's block diagram

the tool compiles a complicated-looking (but readily solved) LMI problem.

Each subblock is handled appropriately|\multipliers" are associated with

each uncertain parameter, Lur`e-Postnikov Lyapunov function terms are as-

sociated with each sector nonlinearity, and so on. (The very same translation

from block diagram to LMI problem might also be interpreted as an LMI-

based approximation of a \real stuctured-singular value problem".) Then, a

specialized interior-point algorithm solves the resulting LMI problem. The

results are translated back into terms the user can understand and interpret,

and �nally, displayed graphically.

Some specialized robust synthesis problems can be directly cast as LMI-

problems and then solved. But most synthesis problems, for example those

arising when the user speci�es the controller structure as described at the end

of x2, are not likely to be reduced to LMI problems. Many researchers have

independently found a heuristic method that appears to work well in practice:

alternating between analysis, with the design parameters �xed, and synthesis,

with the analysis tool �xed (Lyapunov function, scalings, multipiers, etc.).

Each of these steps is a problem that can be cast in terms of LMIs and

hence e�ciently solved. Doyle dubbed this procedure \�-synthesis" or D{

K iteration (D is the scaling transfer matrix associated with the analysis

step; K is the controller). I think more in terms of Lyapunov functions,

13



so I might call it V {K iteration, i.e., alternating between �nding a good

Lyapunov function (V ) with the controller (K) �xed, and �nding a good

controller with the Lyapunov function �xed. The overall algorithm is not

guaranteed to converge to the globally best controller, but is reported by

Safonov, Skelton, and others to work well in practice. The V {K iteration is

heuristic in the sense of not always �nding the globally optimal controller, but

it is not heuristic in its worst-case analysis: V {K iteration terminates with

a controller K (which may not be the best) and a certi�cate that guarantees

a certain performance level.

4 Conclusion

The discussion of x1 is not to be interpreted as criticism of robust control

theory. Robust control theory has many goals, and providing algorithms

for useful software tools is just one of them. It has been very successful in

identifying and elucidating the key issues.

It has been observed many times that there is a gap between control

theory and control practice. The control engineer who faces the problem

sketched at the end of x1, and consults the (huge and growing) robust control

literature, could easily end up frustrated or disappointed. He or she will be

extremely frustrated after reading, for example, [2], which requires not only a

strong background in robust control theory but a good knowledge of convex

optimization as well. This will cause the gap to widen a little bit more.

My dream is that by coupling a well-designed user-interface to the latest

esoteric algorithms and methods of robust control theory, we can make robust

control tools nearly as convenient to use as current simulation tools. After

the practicing engineer uses such a tool to solve a few practical problems

(without learning the special language of robust control theory or interior-

point optimization for matrix inequalities) the gap will close a little bit.

And who knows, he or she may eventually become curious about the inner

workings of the tool, and even read[2].

References

[1] S. Boyd and L. El Ghaoui. Method of centers for minimizing generalized

14



eigenvalues. Linear Algebra and Applications, special issue on Numerical

Linear Algebra Methods in Control, Signals and Systems, 188:63{111,

July 1993.

[2] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix

inequalities in systems and control theory, 1993. Monograph in prepa-

ration.

[3] G. E. Coxson and C. L. DeMarco. Testing robust stability of general

matrix polytopes is an NP-hard computation. In Proc. Annual Aller-

ton Conf. on Communication, Control and Computing, Allerton House,

Monticello, Illinois, 1991.

[4] G. E. Coxson and C. L. DeMarco. Computing the real structured sin-

gular value is NP-hard. Technical Report ECE-92-4, Dept. of Elec. and

Comp. Eng., Univ. of Wisconsin-Madison, June 1992.

[5] J. Doyle. Guaranteed margins for LQG regulators. IEEE Trans. Aut.

Control, AC-23(4):756{757, August 1978.

[6] J. Doyle. Analysis of feedback systems with structured uncertainties.

IEE Proc., 129-D(6):242{250, November 1982.

[7] J. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis. State-space

solutions to standard H2 and H1 control problems. IEEE Trans. Aut.

Control, 34(8):831{847, August 1989.

[8] M. Fan, L. Wang, J. Koninckx, and A. Tits. Software package for

optimization-based design with user-supplied simulators. IEEE Control

Syst. Mag., 9(1):66{71, 1989.

[9] P. Gahinet and A. Nemirovsky. LMI Lab: A Package for Manipulating

and Solving LMIs. INRIA, 1993.

[10] K. S. Narendra and J. H. Taylor. Frequency domain criteria for absolute

stability. Electrical science. Academic Press, New York, 1973.

[11] Yu. Nesterov and A. Nemirovsky. Interior point polynomial methods in

convex programming: Theory and applications. SIAM, 1993.

15



[12] A. Ohara, K. Souda, and N. Suda. Quadratic stabilization and robust

disturbance attenuation using parametrization of stabilizing state feed-

back gains | convex optimization approach. Technical Report 92-02,

Department of Systems Engineering, Osaka University, 1992.

[13] E. S. Pyatnitskii. New research on the absolute stability of automatic

control (review). Automation and Remote Control, 29(6):855{881, June

1968.

[14] E. S. Pyatnitskii and V. I. Skorodinskii. Numerical methods of Lya-

punov function construction and their application to the absolute sta-

bility problem. Syst. Control Letters, 2(2):130{135, August 1982.

[15] M. G. Safonov. Stability and Robustness of Multivariable Feedback Sys-

tems. MIT Press, Cambridge, 1980.

[16] M. G. Safonov. Stability margins of diagonally perturbed multivariable

feedback systems. IEE Proc., 129-D:251{256, 1982.

[17] M. G. Safonov and R. Y. Chiang. Real/complex Km-synthesis without

curve �tting. In C.T. Leondes, editor, Control and Dynamic Systems,

volume 56, pages 303{324. Academic Press, New York, 1993.

[18] L. Vandenberghe and S. Boyd. Primal-dual potential reduction method

for problems involving matrix inequalities. To be published in Math.

Programming, 1993.

[19] V. A. Yakubovich. Absolute stability of nonlinear control systems in

critical cases. Pt. I,II,III. Automation and Remote Control, pages 273{

282, 655{668, 545{556, December 1963-1964.

[20] V. A. Yakubovich. Solution of certain matrix inequalities encountered

in nonlinear control theory. Soviet Math. Dokl., 5:652{656, 1964.

[21] V. A. Yakubovich. The method of matrix inequalities in the stability

theory of nonlinear control systems, I, II, III. Automation and Remote

Control, 25-26(4):905{917, 577{592, 753{763, April 1967.

[22] V. A. Yakubovich. The S-procedure in non-linear control theory. Vestnik

Leningrad Univ. Math., 4:73{93, 1977. In Russian, 1971.

16


