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Abstract

In classic Kelly gambling, bets are chosen to maximize the expected log growth,
under a known probability distribution. In this note we consider the distributional
robust version of the Kelly gambling problem, in which the probability distribution
is not known, but lies in a given set of possible distribitions. The bet is chosen to
maximize the worst-case (smallest) log growth among the distributions in the given
set. This distributional robust Kelly gambling problem is convex, but in general need
not be tractable. We show that it can be tractably solved in the case of a finite number
of outcomes, and some useful sets of distributions.

1 Introduction

Gambling. We consider a setting where a gambler repeatedly allocates a fraction of her
wealth (assumed positive) across n different bets in multiple rounds. We assume there are
n bets available to the gambler, who can bet any nonnegative amount on each of the bets.
We let b ∈ Rn denote the bet allocation, so b ≥ 0 and 1T b = 1, where 1 is the vector with
all entries one. Letting Sn denote the probability simplex in Rn, we have b ∈ Sn. With
bet allocation b, the gambler is betting Wbi (in dollars) on outcome i, where W > 0 is the
gambler’s wealth (in dollars).

We let r ∈ Rn
+ denote the random returns on the n bets, with ri ≥ 0 the amount won by

the gambler for each dollar she puts on bet i. With allocation b, the total she wins is rT bW ,
which means her wealth increases by the (random) factor rT b. We assume that the returns
r is different rounds are IID. We will assume that rn = 1 almost surely, so bn corresponds
to the fraction of wealth the gambler holds in cash; the allocation b = en corresponds to not
betting at all. Since her wealth is multiplied in each round by the IID random factor rT b,
the log of the wealth over time is therefore a random walk, with increment distribution given
by log(rT b).

Finite outcome case. We consider here the case where one of K events occurs, i.e.,
r is supported on only K points. We let r1, . . . , rK denote the return vectors, and π =
(π1, . . . , πK) ∈ SK the corresponding probabilities. We collect the K payoff vectors into a
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matrix R ∈ Rn×K , with columns r1, . . . , rK . The vector RT b ∈ RK gives the wealth growth
factor in the K possible outcomes. The mean log growth rate is

Gπ(b) = E log(rT b) = πT log(RT b) =
K∑
k=1

πk log(rTk b),

where the log in the middle term is applied to the vector elementwise. This is the mean drift
in the log wealth random walk.

Kelly gambling. In a 1956 classic paper [1], John Kelly proposed to choose the allocation
vector b so as to maximize the mean log growth rate Gπ(b), subject to b ≥ 0, 1T b = 1. This
method was called the Kelly criterion; since then, much work has been done on this topic
[2, 3, 4, 5, 6, 7]. The mean log growth rate Gπ(b) is a concave function of b, so choosing b is
a convex optimization problem [8, 9]. It can be solved analytically in simple cases, such as
when there are K = 2 possible outcomes. It is easily solved in other cases using standard
methods and algorithms, and readily expressed in various domain specific languages (DSLs)
for convex optimization such as CVX [10], CVXPY [11], Convex.jl [12], or CVXR [13]. We
can add additional convex constraints on b, which we denote as b ∈ B, with B ⊆ SK a
convex set. These additional constraints while preserve convexity, and therefore tractability,
of the optimization problem. While Kelly did not consider additional constraints, or indeed
the use of a numerical optimizer to find the optimal bet allocation vector, we still refer to
the problem of maximizing Gπ(b) subject to b ∈ B as the Kelly (gambling) problem (KP).

There have been many papers exploring and extending the Kelly framework; for example,
a drawdown risk constraint, that preserves convexity (hence, tractability) is described in
[14]. The Bayesian version of Kelly optimal betting is described in [15]. In [16], Kelly
gambling is generalized to maximize the proportion of wealth relative to the total wealth in
the population.

Distributional robust Kelly gambling. In this note we study a distributional robust
version of Kelly gambling, in which the probability distribution π is not known. Rather, it
is known that π ∈ Π, a set of possible distributions. We define the worst-case log growth
rate (under Π) as

GΠ(b) = inf
π∈Π

Gπ(b).

This is evidently a concave function of b, since it is an infimum of a family of concave functions
of b, i.e., Gπ(b) for π ∈ Π. The distributional robust Kelly problem (DRKP) is to choose
b ∈ B to maximize GΠ(b). This is in principle a convex optimization problem, specifically
a distributional robust problem; but such problems in general need not be tractable, as
discussed in [17, 18, 19] The purpose of this note is to show how the DRKP can be tractably
solved for some useful probability sets Π.

Related work on distributional robust optimization. Distributional robust optimiza-
tion is a well studied topic. Previous work to distribution robust optimization studied finite-
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dimensional parametrization for probability set like moments, support or directional devia-
tions constraints in [20, 21, 22, 23, 24, 25]. Beyond finite-dimensional parametrization for
probability set, people have also studied non-parametric distances for probability measure,
like f -divergences (e.g., Kullback-Leibler divergences) [26, 27, 28, 29, 30] and Wasserstein
distances [31, 32, 33, 34].

2 Tractable distributional robust Kelly gambling

In this section we show how to formulate DRKP as a tractable convex optimization problem
for a variety of distribution set Π. The key is to derive a tractable description of the worst-
case log growthGΠ(b). We use duality to expressGΠ(b) as the value of a convex maximization
problem, which allows us to solve DRKP as one convex problem.

2.1 Polyhedral distribution sets

Here we consider the case when Π is a poyhedron.

Convex hull of finite set. We start with the simplest example, when Π is a polyhedron
defined as the convex hull of a finite set of points, Π = conv(π, . . . , πs). The infimum of the
log growth over π ∈ Π is the same as the minimum over the vertices:

GΠ(b) = min
i
Gπi(b) = min

i
πTi log(RT b).

Then the DRKP becomes
maximize mini π

T
i log(RT b)

subject to b ∈ B,
with variable b. This problem is tractable, and indeed in modern domain specific languages
for convex optimization, can be specified in just a few lines of simple code.

Polyhedron defined by linear inequalities and equalities. Here we consider the case
when Π is given by a finite set of linear inequalities and equalities,

Π = {π ∈ SK | A0π = d0, A1π ≤ d1},

where A0 ∈ Rm0×K , b0 ∈ Rm0 , A1 ∈ Rm1×K , b1 ∈ Rm1 . The worst-case log growth rate
GΠ(b) is given by the optimal value of the linear program (LP)

minimize πT log(RT b)
subject to 1Tπ = 1, π ≥ 0,

A0π = d0, A1π ≤ d1,
(1)

with variable π.
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We form a dual of this problem, working with the constraints A0π = d0, A1π ≤ d1; we
keep the simplex constraints π ≥ 0, 1Tπ = 1 as an indicator function IS(π) in the objective.
The Lagrangian is

L(ν, λ, π) = πT log(RT b) + νT (A0π − d0) + λT (A1π − d1) + IS(π),

where ν ∈ Rm0 and λ ∈ Rm1 are the dual variables, with λ ≥ 0. Minimizing over π we
obtain the dual function,

g(ν, λ) = inf
π∈SK

L(ν, λ, π) = min(log(RT b) + AT0 ν + AT1 λ)− dT0 µ− dT1 λ,

where the min of a vector is the minimum of its entries. The dual problem associated with (1)
is then

maximize min(log(RT b) + AT0 µ+ AT1 λ)− dT0 µ− dT1 λ
subject to λ ≥ 0,

with variables µ, λ. This problem has the same optimal value as (1), i.e.,

GΠ(b) = sup
ν,λ≥0

(
min(log(RT b) + AT0 µ+ AT1 λ)− dT0 µ− dT1 λ

)
.

Using this expression for GΠ(b), the DRKP becomes

maximize min(log(RT b) + AT0 µ+ AT1 λ)− dT0 µ− dT1 λ
subject to b ∈ B, λ ≥ 0,

with variables b, µ, λ. This is a tractable convex optimization problem, readily expressed in
domain specific languages for convex optimization.

Box distribution set. We consider a special case of a polyhedral distribution set, with
lower and upper bounds for each πk:

Π = {π ∈ SK | |π − πnom| ≤ ρ},

where πnom ∈ SK is the nominal distribution, and ρ ∈ Rn
+ is a vector of radii. (The inequality

|π − πnom| ≤ ρ is interpreted elementwise.)
Using the general method above, expressing the limits as A1π ≤ d1 with

A1 =

[
I
−I

]
, d1 =

[
πnom + ρ
ρ− πnom

]
,

the DRKP problem becomes

maximize
(
min(log(RT b) + λ+ − λ−)

)
− (πnom)T (λ+ − λ−)− ρT (λ+ + λ−)

subject to b ∈ B, λ+ ≥ 0, λ− ≥ 0,

with variables b, λ+, λ−. Defining λ = λ+−λ−, we have |λ| = λ++λ−, so the DRKP becomes

maximize min(log(RT b) + λ)− (πnom)Tλ− ρT |λ|
subject to b ∈ B,

with variables b, λ.
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2.2 Ellipsoidal distribution set

Here we consider the case when Π is the inverse image of a p-norm ball, with p ≥ 1, under
an affine mapping. This includes an ellipsoid (and indeed the box set described above) as a
special case. We take

Π = {π ∈ SK | ‖W−1(π − πnom)‖p ≤ 1},

where W is a nonsingular matrix. As usual we define q by 1/p+ 1/q = 1.
We define x = − log(RT b), z = W−1(π − πnom), and Dp,W = {z | ‖z‖p ≤ 1, 1TWz =

0, πnom +Wz ≥ 0}. Then we have

GΠ(b) = − supπ∈Π((π − πnom)Tx+ (πnom)Tx)
= − supz∈Dp,W

zTWx+ (πnom)Tx

= supµ,λ≥0 (− sup‖z‖p≤1 z
TW (x+ λ− µ1) + (πnom)T (λ+ x))

= supµ,λ≥0 (−‖W (x+ λ− µ1)‖q + (πnom)T (λ+ x)).

Here the second last equation is the Lagrangian form where we keep the p-norm constraint
as a convex indicator, and the last equation is based on the Hölder equality

sup‖z‖p≤1 z
TW (x+ λ− µ1) = ‖W (x+ λ− µ1)‖q,

Using this expression for GΠ(b), DRKP becomes

maximize −‖W (λ− log(RT b)− µ1)‖q − (πnom)Tλ+ (πnom)T log(RT b)
subject to λ ≥ 0, b ∈ B,

with variables b, λ, µ.

2.3 Divergence based distribution set

Let π1, π2SK be two distributions. For a convex function f : R+ → R with f(1) = 0, the
f -divergence of π1 from π2 is defined as

Df (π1‖π2) = πT2 f(π1/π2),

where the ratio is meant elementwise. Recall that the Fenchel conjugate of f is f ∗(s) =
supt≥0(ts− f(t)).

We can use the f -devirgence from a nominal distribution to define a set of distributions.
We take

Π = {π ∈ SK | Df (π‖πnom) ≤ ε},
where ε > 0 is a given value. In other words, our set of distributions is those with ε of the
distribution πnom, as measured by the f -divergence. (Such sets arise naturally when πnom is
the empirical distribution of a set of samples from a distribution.)

We define x = − log(RT b) again. Our goal is to minimize −GΠ(b) = supπ∈Π π
Tx. We

form a dual of this problem, working with the constraints Df (π‖π0) ≤ ε and 1Tπ = 1; we
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keep the constraint π ≥ 0 implicit. With dual variables λ ∈ R+, γ ∈ R, then for π ≥ 0, the
Lagrangian is

L(γ, λ, π) = πTx+ λ(−(πnom)Tf( π
πnom ) + ε)− γ(eTπ − 1) + I+(π),

where I+ is the indicator function of RK
+ . The dual objective function is

supπ≥0 L(γ, λ, π) = supπ≥0(
∑K

i=1 π
nom
i ( πi

πnom
i

xi − πi
πnom
i

γ − λf( πi
πnom
i

))) + λε+ γ

=
∑K

i=1 π0,i supti≥0(ti(xi − γ)− λf(ti)) + λε+ γ

=
∑K

i=1 π0,iλf
∗(xi−γ

λ
) + λε+ γ,

so the DRKP becomes

maximize −(πnom)Tλf ∗(− log(RT b)−γ
λ

)− λε− γ
subject to λ ≥ 0, b ∈ B,

with variables b, γ, λ.
We now show some more specific examples of f -divergences; for a more detailed discussion

see [29].

• Reverse KL-divergence. With f(t) = − log(t) + t − 1, the f -divergence is the reverse
KL-divergence. We have f ∗(s) = − log(1− s) for s < 1.

• KL-divergence. With f(t) = t log(t) − t + 1, we obtain the KL-divergence. We have
f ∗(s) = exp(s)− 1.

• χ2-divergence. With f(t) = (t− 1)2/t, we obtain the χ2-divergence. We have f ∗(s) =
2− 2

√
1− s, s < 1.

• Total variation distance. With f(t) = |t − 1|, the f -divergence is the total variation
distance. We have f ∗(s) = −1 for s ≤ −1 and f ∗(s) = s for −1 ≤ s ≤ 1.

2.4 Wasserstein distance distribution set

The Wasserstein distance Dc(π, π
nom) with cost c ∈ RK×K

+ is defined as the opitmal value of
the problem

minimize
∑

i,j Qi,jci,j
subject to Q1 = π, QT1 = πnom, Q ≥ 0,

with variable Q. The Wasserstein distance distribution set is

Π = {π ∈ SK | Dc(π, π
nom) ≤ ε},

with ε > 0. The Wasserstein distance has severla other names, including Monge-Kantorovich,
earth-mover’s, or optimal transport distance [31, 32, 33, 34].
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The worst-case log growth GΠ(b) is given by the value of the following LP,

minimize πT log(RT b)
subject to Q1 = π, QT1 = πnom, Q ≥ 0,∑

i,j Qi,jci,j ≤ s,

with variable Q. Using strong duality for LP, the DRKP becomes

maximize
(∑

j π
nom
j mini(log(RT b)i + λcij)− sλ

)
subject to b ∈ B, λ ≥ 0.

where λ ∈ R+ is the dual variable.

3 Numerical example

In this section we illustrate distributional robust Kelly gambling with an example. Our
example is a simple horse race with n horses, with bets placed on each horse placing, i.e.,
coming in first or second. There are thus K = n(n − 1)/2 outcomes (indexed as j, k with
j < k ≤ n), and n bets (one for each horse to place).

We first describe the nominal distribution of outcomes πnom. We model the speed of the
horses as independent random variables, with the fastest and second fastest horses placing.
With this model, πnom is entirely described by the probability that horse i comes in first, we
which denote βi. For j < k, we have

πnom
jk = P (horse j and horse k are the first and second fastest)

= P (j is 1st, k is 2nd) + P (k is 1st, j is 2nd)
= P (j is 1st)P (k is 2nd | j is 1st) + P (k is 1st)P (j is 2nd | k is 1st)
= βj(βk/(1− βj)) + βk(βj/(1− βk))
= βjβk(

1
1−βi + 1

1−βj ).

The fourth line uses P (k is 2nd | j is 1st) = βk/(1− βj).
Our set of possible distributions is the box

Π = {π | |π − πnom| ≤ ηπnom, 1Tπ = 1, π ≥ 0},

where η ∈ (0, 1). Roughly speaking, each probability can vary by up to the factor η from its
nominal value.

For the return matrix, we use parimutuel betting, with the fraction of bets on each horse
equal to βi, the probability that it will win (under the nominal probability distribution).
The return matrix R ∈ Rn×K then has the form

Ri,jk =


n

1+βj/βk
i = j

n
1+βk/βj

i = k

0 i 6∈ {j, k},
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Figure 1: The Kelly optimal bets for the nominal distribution, and the distribu-
tional robust optimal bets.

bK bRK

G(b) 4.28% 2.38%
GΠ(b) 0.75% 1.15%

Table 1: Growth rate and worst-case growth rate for the Kelly optimal and the
distributional robust Kelly optimal bets.

where we index the columns (outcomes) by the pair jk, with j < k.
For our specific example instance, we take n = 20 horses, so there are K = 190 outcomes.

We choose βi, the probability distribution of the winning horse, proportional to exp zi, where
we sample independently zi ∼ N (0, 1/4). This results in βi ranging from around 20% (the
fastest horse) to around 1% (the slowest horse). For the set of distributions, we take η = 0.15,
i.e., each probability can vary by ±15% from its nominal value.

We find the nominal Kelly optimal bet bK and the distributional robust Kelly bet bRK,
which are shown in figure 1. The corresponding growth rate and worst-case growth rates
are shown in table 1. We can see that, as expected, the Kelly optimal bet has higher log
growth under the nominal distribution, and the distributional robust Kelly bet has better
worst-case log growth. We see that the worst-case growth of the distributional robust Kelly
bet is more than 1.5 times the worst-case growth of the nominal Kelly optimal bet.

For each of our bets bK and bRK we find a corresponding worst case distribution, denoted
πwc,K and πwc,RK, which minimize Gπ(b) over π ∈ Π. These distributions, shown in figure 2,
achieve the corresponding worst-case log growth for the two bet vectors. The worst-case
distributions are generally, but not always, at the limit of ±15% deviation from the nominal
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Figure 2: The nominal distribution πnom (sorted) and the two worst-case distribu-
tions πwc,K and πwc,RK.

distribution.

Appendix

All of the formulations of DRKP are not only tractable, but easily expressed in DSLs for
convex optimization. The CVXPY code to specify and solve the DRKP for box constraints,
for example, is given below.

pi_nom = Parameter(K, nonneg=True)

rho = Parameter(K,nonneg=True)

b = Variable(n)

mu = Variable(K)

wc_growth_rate = min(log(R.T*b) + mu )-pi_nom.T*abs(mu )-rho.T*mu

constraints = [sum(b) == 1, b >= 0]

DRKP = Problem(Maximize(wc_growth_rate), constraints)

DRKP.solve()

Here R is the matrix whose columns are the return vectors, pi_nom is the vector of nominal
probabilities, and rho is K dimensional box constraint. The second to last line forms the
problem, and in the last line the problem is solved. The robust optimal bet is written into
b.value. The code for this example can be found at

https://github.com/QingyunSun/Distributional-Robust-Kelly-Gambling.
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