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Abstract

A wide variety of analysis and design problems aris-
ing in control, communication and information the-
ory, statistics, computational geometry and many other
�elds can be expressed as semide�nite programming

problems (SDPs) or determinant maximization prob-
lems (maxdet-problems). In engineering applications
these problems usually have matrix structure, i.e., the
optimization variables are matrices. Recent interior-
point methods can exploit such structure to gain huge
e�ciency.

In this paper, we describe the design and implementa-
tion of a parser/solver for SDPs and maxdet-problems
with matrix structure. The parser/solver parses a prob-
lem speci�cation close to its natural mathematical de-
scription, solves the compiled problem e�ciently, and
returns the results in a convenient form.

1. Introduction

We consider the design and implementation of a
parser/solver for SDPs and maxdet-problems with ma-
trix structure (see below). This parser/solver serves as
a convenient and e�cient tool, which reduces the com-
plexity of specifying and solving the problems.

1.1. Maxdet-problems and SDPs

By determinant maximization (maxdet) problems we
mean optimization problems of the form:

minimize cTx+

KX
i=1

log detG(i)(x)�1

subject to G(i)(x) > 0; i = 1; : : : ;K

F (i)(x) > 0; i = 1; : : : ; L

Ax = b;

(1)

where the optimization variable is the vector x 2 R
m.

The matrix functions G(i) : Rm ! R
li�li and F (i) :

R
m ! R

ni�ni are a�ne:

G(i)(x) = G
(i)
0 + x1G

(i)
1 + � � �+ xmG

(i)
m ; i = 1; : : : ;K

F (i)(x) = F
(i)
0 + x1F

(i)
1 + � � �+ xmF

(i)
m ; i = 1; : : : ; L

where G
(i)
j and F

(i)
j are symmetric for j = 0; : : : ;m.

The inequality signs in (1) denote matrix inequalities.
We call G(i)(x) > 0 and F (i)(x) > 0 linear matrix in-

equalities (LMIs) in the variable x. Of course the LMI
constraints in (1) can be combined into one large block-
diagonal LMI with diagonal blocks G(i)(x) and F (i)(x).

When K = 1 and G(1)(x) = 1, the maxdet-problem (1)
reduces to the semide�nite programming (SDP) prob-
lem:

minimize cTx

subject to F (i)(x) > 0; i = 1; : : : ; L

Ax = b:

(2)

The maxdet-problem (1) and the SDP (2) are con-
vex optimization problems. Indeed, LMI constraints
can represent many common convex constraints, in-
cluding linear inequalities, convex quadratic inequal-
ities, matrix norm and eigenvalue constraints. Con-
versely, many common convex optimization problems
arising in combinatorial optimization, control, statis-
tics, computational geometry, information and commu-
nication theory can be expressed as SDPs and maxdet-
problems. See Alizadeh[1], Boyd, El Ghaoui, Feron
and Balakrishnan[2], Lewis and Overton[6], Nesterov
and Nemirovsky[7, x6.4], Vandenberghe and Boyd[11]
and Vandenberghe, Boyd and Wu[12] for many exam-
ples. SDPs and maxdet-problems can be solved very
e�ciently, both in worst-case complexity theory and
in practice, using interior-point methods (see [11] and
[12]).



1.2. Matrix structure

In many SDPs and maxdet-problems, especially those
arising in control, the optimization variables are matri-
ces of various dimensions and structure, e.g., row or col-
umn vectors, symmetric or diagonal matrices. In gen-
eral, the variables of an SDP or a maxdet-problem can
be collected and expressed as (X(1); : : : ; X(M)), where
X(i) 2 R

pi�qi and X(i) may have structure (e.g., sym-
metric or diagonal). These variables can be vectorized
and put into a single vector variable x as given in (1)

and (2). To vectorizeX(i), we �nd a basisE
(i)
1 ; : : : ; E

(i)
mi

such that

X(i) =

miX
j=1

x
(i)
j E

(i)
j

with x(i) 2 R
mi denotes the vectorized X(i). For ex-

ample, if X(i) 2 R
pi�qi has no structure, we have

x(i) = vec(X(i)) and mi = piqi; if X(i) 2 R
pi�qi

is diagonal (pi = qi), we have x(i) = diag(X(i)) and
mi = pi. Doing this for i = 1; : : : ;M , we obtain the
vectorized variable x 2 R

m;m = m1 + � � �+mM , and

x =
h
x(1)

T
� � � x(M)T

iT
:

Note that each variableX(i) of the problem corresponds
to part of the vectorized variable x. With this corre-
spondence, one can convert the problem to the standard
form (1) or (2), and vice versa.

The following example illustrates how to convert an
SDP with matrix variables into the standard form (2).
Consider the problem:

minimize TrP

subject to

�
�ATP � PA �PB

�BTP R

�
> 0

P = P T > 0

R > 0; R diagonal; TrR = 1;

(3)

where A;B are given matrices, symmetric P 2 R
n�n

and diagonal R 2 R
k�k are the optimization variables.

We vectorize P and R as

P =

nX
i=1

nX
j=i

x
(1)

ij Pij ; (4)

R =

kX
i=1

x
(2)

i Ri; (5)

where Pij denotes an n�n zero matrix except the (i; j)
and (j; i) entries are 1, Ri denotes a k � k zero matrix
except the (i; i) entry is 1. Substituting (4) and (5)
for P and R everywhere in the SDP (3), we obtain the
problem of the form (2) in the optimization variable

x =
h
x
(1)

11 � � � x
(1)
nn x

(2)

1 � � � x
(2)

k

iT
2 R

n(n+1)=2+k:

1.3. Implications of the matrix structure

Clearly it is straightforward but inconvenient to convert
an SDP or a maxdet-problem with matrix structure into
the standard form (2) or (1). This conversion obscures
the problem structure and the correspondence between
the variables X(i) and the vectorized variable x, which
makes it hard to interpret the results after the problem
is solved.

Moreover, the problem structure can be exploited by
interior-point methods to gain huge e�ciency (see [10]
and [3]). To illustrate the idea, consider the operation

L(P ) = �ATP � PA

that evaluates the �ATP � PA term in the �rst LMI
of (3). L(P ) is an O(n3) operation because it involves
matrix multiplications of n � n matrices. However, if
we vectorize P as shown in (4), then L(P ) becomes

L(P ) =

nX
i=1

nX
j=i

x
(1)

ij (�A
TPij � PijA);

which is an O(n4) operation.

1.4. sdpsol and related work

In this paper, we describe the design and implementa-
tion of sdpsol, a parser/solver for SDPs and maxdet-
problems with matrix structure. As an example, the
SDP (3) can be speci�ed in the speci�cation language
as shown in sdpsol speci�cation 1

sdpsol speci�cation 1

variable P(n,n) symmetric;

variable R(k,k) diagonal;

[-A'*P-P*A, -P*B;

-B'*P, R ] > 0;

P > 0;

R > 0; Tr(R) == 1;

minimize objective = Tr(P);

There exist several similar tools that use a speci�ca-
tion language to describe and solve certain mathemat-
ical programming problems. A well-known example is
AMPL [8], which handles linear and integer program-
ming problems.

LMITOOL [4] and the LMI Control Toolbox [5], pro-
vide convenient Matlab-interfaces that allow to specify
SDPs with matrix structure, using a di�erent approach
from the parser/solver described in this paper.

In x2, we describe the design of the speci�cation
language. A preliminary implementation of the
parser/solver, sdpsol version beta, is described in x3.



Three examples are given in x4 to illustrate various fea-
tures of sdpsol. In x5, we give some future extensions
of the current design and implementation.

2. Language design

The fundamental data structure of the speci�cation lan-
guage is matrix, since the optimization problems in-
volve LMI constraints and have matrix structure. The
language provides a Matlab-like grammar, including
various facilities to manipulate matrix expressions. For
example, the language provides commands that con-
struct matrices, operations involving matrices such as
matrix multiplication and transpose, and matrix func-
tions such as trace and inner-product.

An important extension from Matlab is that the lan-
guage provides matrix variables, i.e., matrix expres-
sions without speci�c values that serve as the optimiza-
tion variables. Variables of various sizes and structure
can be declared using variable declaration statements.
For example, the statements

variable P(7,7) symmetric;

variable x(k,1), y;

declare a 7 � 7 symmetric variable P , a k � 1 variable
x and a scalar variable y. Variables can be used to
form a�ne expressions, i.e., expressions that depend
a�nely on the optimization variables. For example,
the expression (assuming P is a variable and A;D are
given square matrices)

A'*P + P*A + D

is an a�ne expression that depends a�nely on P .
A�ne expressions can be used to construct LMI con-
straints and objective functions of SDPs and maxdet-
problems.

Various types of linear constraints are supported by
the language, including matrix inequalities, component-
wise inequalities and equality constraints. Constraints
are formed with expressions and relation operators, for
example, the statements

A'*P + P*A + D < -1;

diag(P) .> 0;

Tr(P) == 1;

specify the matrix inequality ATP + PA + D < �I ,
the component-wise inequality diagP > 0, and the
equality TrP = 1.

The language supports assignments, i.e., expressions
can be assigned to internal variables that can later be
used in the problem speci�cation. Assignments can also
be used to initialize various algorithm parameters, such
as tolerance or maximum number of iterations.

The objective is speci�ed via an assignment, for exam-
ple, the statement

maximize objective = Tr(P);

assigns TrP to the internal variable objective and
makes maximizing it the objective.

3. Implementation

We have implemented a preliminary version of the
parser/solver, sdpsol version beta. The parser of
sdpsol is implemented using BISON and FLEX. Two
solvers, SP [9] and MAXDET [13], are used to solve
SDPs and maxdet-problems. Both solvers exploit only
block-diagonal structure, hence sdpsol is not partic-
ularly e�cient. Of course the user can write very ef-
�cient, dedicated programs for their problems which
outperforms sdpsol. However, for the cases when the
coding time is signi�cantly longer than the actual run-
time, sdpsol wins the tradeo� because it takes almost
no time to code using the sdpsol language. Never-
theless, we hope to improve the e�ciency of sdpsol in
the future; in particular, with an e�cient solver that
exploits sparse structure.

sdpsol uses the method described in [11, x6] to handle
the feasibility phase of the problem, that is, sdpsol ei-
ther �nds a feasible solution to start the optimization
phase, or proves that the problem is infeasible. If there
is no objective in the problem speci�cation, sdpsol sim-
ply solves the feasibility problem only.

A Matlab interface is provided by sdpsol to import
problem data and export the results. sdpsol can also
be invoked from within Matlab interactively.

4. Examples

In this section, we give three examples to illustrate var-
ious features of sdpsol.

4.1. Lyapunov inequality

As a very simple example, consider a linear system de-
scribed by the di�erential equation

_x(t) = Ax(t) (6)
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Figure 1: The mass-spring-damper system

where A 2 R
n�n is given. The linear system is stable

(i.e., all solutions of (6) converge to zero), if and only if
there exists a symmetric, positive de�nite P such that
the Lyapunov inequality

ATP + PA < 0

is satis�ed. The problem of �nding such a P (if one
exists) can be speci�ed in the sdpsol language as given
in sdpsol speci�cation 2.

sdpsol speci�cation 2

% Lyapunov inequality

variable P(n,n) symmetric;

A'*P + P*A < 0;

P > 0;

In the problem speci�cation, an n� n symmetric vari-
able P is declared. An a�ne expression ATP + PA is
formed and is used to specify the Lyapunov inequality.
Another LMI, P > 0, constrains P to be positive de�-
nite. Since no objective is given, sdpsol solves the fea-
sibility problem that either �nds a feasible P or shows
that the problem is infeasible.

Note that this problem can be solved analytically. In-
deed, we can solve the linear equation ATP+PA+I = 0
for the matrix P , which is positive de�nite if and only
if (6) is stable.

4.2. Popov analysis

Consider the mass-spring-damper system with a vibrat-
ing base shown in Figure 1. The masses are 1kg each,
the dampers have the damper constant 0:5nt/m/s, and
the springs are nonlinear: Fi = �i(xi) where

0:7 �
�i(a)

a
� 1:3; i = 1; 2; 3:

The base vibration is described by

wbase =
1

1 + s=0:3
w;

where RMS(w) � 1 but is otherwise unknown. Our
goal is to �nd an upper bound of RMS(z).

The mass-spring-damper system can be described by
the Lur'e system (see [2, x8.1]) with 7 states and 3 non-
linearities

_x = Ax+Bpp+Bww;

z = Czx;

q = Cqx;

pi(t) = ~�i(qi(t)); i = 1; 2; 3;

(7)

where x 2 R
7, p 2 R

3 and the functions ~�i satisfy the
[0; 1] sector condition, i.e.,

0 � qi ~�i(qi) � q2i

for i = 1; 2; 3. One method to �nd an upper bound is
to �nd a 
2 and a Lyapunov function of the form

V (x) = xTPx+ 2

3X
i=1

�i

Z Cqi
x

0

~�i(�)d� (8)

where Cqi denotes the ith row of Cq , such that

d

dt
V (x) � 
2wTw � zT z

for all w; z satisfying (7). The square root of 
2 is an
upperbound of the L2 gain of (7), hence it is also an
upperbound of RMS(z) because RMS(w) � 1.

The problem of �nding 
2 and the Lyapunov func-
tion (8) can be further relaxed using the S-procedure
to the following SDP (see [2, x8.1.4]):

minimize 
2

subject to P > 0; L � 0; T � 0
(9)

2
4ATP+PA+CT

z Cz PBp+A
TCT

q L+C
T

q T PBw

BT

p P+LCqA+TCq LCqBp+B
T

p C
T

q L�2T LCqBw

BT

wP BT

wC
T

q L �
2

3
5�0;

where P = P T 2 R
7�7, L; T 2 R

3�3 diagonal, and

2 2 R+ are the optimization variables. The optimal

2 of (9) is an upper bound of RMS(z) if there exists
P;L; T that satisfy the constraints.

The SDP (9) can be described using the sdpsol lan-
guage as shown in sdpsol speci�cation 3.

Again, the speci�cation in the sdpsol language is very
close to the mathematical description (9). The objec-
tive of the problem is to minimize RMS bound sqr, the
square of the RMS bound, which is equal to the variable
gamma sqr.

Unlike the previous example, this problem of �nding an
upperbound on RMS(z) has no analytical solution.



sdpsol speci�cation 3

% Popov analysis of a mass-spring-damper system

variable P(7,7) symmetric;

variable L(3,3), T(3,3) diagonal;

variable gamma_sqr;

P > 0;

L > 0;

T > 0;

[A'*P+P*A+Cz'*Cz, P*Bp+A'*Cq'*L+Cq'*T, P*Bw;

Bp'*P+L*Cq*A+T*Cq,L*Cq*Bp+Bp'*Cq'*L-2*T,L*Cq*Bw;

Bw'*P, Bw'*Cq'*L, -gamma_sqr]<0;

minimize RMS_bound_sqr = gamma_sqr;

4.3. D-optimal experiment design

Consider the problem of estimating a vector x from
a measurement y = Ax + w, where w � N(0; I) is
the measurement noise. The error covariance of the
minimum-variance estimator is equal to Ay(Ay)T =
(ATA)�1. We suppose that the rows of the matrix

A = [a1 : : : aq]
T
can be chosen among M possible test

vectors v(i) 2 R
p, i = 1; : : : ;M :

ai 2 fv
(1); : : : ; v(M)g; i = 1; : : : ; q:

The goal of experiment design is to choose the vec-
tors ai so that the determinant of the error covariance
(ATA)�1 is minimized. This is called the D-optimal
experiment design.

We can write ATA =
PM

i=1 �iv
(i)v(i)

T
, where �i is the

fraction of rows ak equal to the vector v(i). We ignore
the fact that the numbers �i are integer multiples of
1=q, and instead treat them as continuous variables,
which is justi�ed in practice when q is large.

The D-optimal design problem can be cast as the
maxdet-problem:

minimize log det

 
MX
i=1

�iv
(i)v(i)

T

!�1

subject to �i � 0; i = 1; : : : ;M

MX
i=1

�i = 1:

(10)

This problem can be described in the sdpsol language
as shown in sdpsol speci�cation 4

In the speci�cation, an M -vector lambda is declared to
be the optimization variable. The (component-wise) in-
equality constraint speci�es that each entry of lambda
is positive, and the equality constraint says the sum-
mation of all entries of lambda is 1.

sdpsol speci�cation 4

% D-optimal experiment design

variable lambda(M,1);

lambda .> 0;

sum(lambda) == 1;

Cov_inv = zeros(p,p);

for i=1:M;

Cov_inv = Cov_inv + lambda(i,1)*v(:,i)*v(:,i)';

end;

minimize log_det_Cov = -logdet(Cov_inv);

A for-loop is used to construct Cov inv, the inverse

of the covariance matrix, to be
PM

i=1 �iv
(i)v(i)

T
. The

objective of the optimization problem is to minimize the
log-determinant of the inverse of Cov inv. An implicit
LMI constraint, Cov inv > 0 is added to the problem as
soon as the objective is speci�ed. This LMI corresponds
to the G(x) > 0 term in (1), and it ensures that the log-
determinant term is well-de�ned.

5. Extensions

Using a parser/solver for SDPs and maxdet-problems
has the following advantages:

� problems with matrix structure can be conve-
niently speci�ed and solved, and

� the problem structure can be fully exploited by
sophisticated solvers.

Our rudimentary implementation, sdpsol, has the �rst
advantage but does not fully exploit the problem struc-
ture yet. Nevertheless, sdpsol reduces the complexity
of solving engineering design problems involving SDPs
and maxdet-problems, or at least, make more e�ective
use of the engineer's time.

The following features are considered to be imple-
mented in the future design:

� a data structure that handles sparse matrices,

� a solver that exploits sparse structure,

� a parser/solver that handles non-strict LMIs, and

� a parser/solver that handles other extensions of
the SDP, such as the generalized eigenvalue min-
imization problem.
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