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FURTHER RELAXATIONS OF THE SEMIDEFINITE
PROGRAMMING APPROACH TO SENSOR NETWORK
LOCALIZATION*

ZIZHUO WANGT, SONG ZHENG!, YINYU YE!, AND STEPHEN BOYDY

Abstract. Recently, a semidefinite programming (SDP) relaxation approach has been proposed
to solve the sensor network localization problem. Although it achieves high accuracy in estimating
the sensor locations, the speed of the SDP approach is not satisfactory for practical applications.
In this paper we propose methods to further relax the SDP relaxation, more precisely, to relax the
single semidefinite matrix cone into a set of small-size semidefinite submatrix cones, which we call
a sub-SDP (SSDP) approach. We present two such relaxations. Although they are weaker than the
original SDP relaxation, they retain the key theoretical property, and numerical experiments show
that they are both efficient and accurate. The speed of the SSDP is even faster than that of other
approaches based on weaker relaxations. The SSDP approach may also pave a way to efficiently
solving general SDP problems without sacrificing the solution quality.
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1. Introduction. There has been an increase in the use of ad hoc wireless sensor
networks for monitoring environmental information (e.g., temperature, sound levels,
and light) across an entire physical space, where the sensor network localization prob-
lem has received considerable attention recently. Typical networks of this type consist
of a large number of densely deployed sensor nodes which gather local data and com-
municate with other nearby nodes. The sensor data from these nodes are relevant
only if we know to what location they refer. Therefore knowledge of the node po-
sitions becomes imperative. The use of a GPS system could be a very expensive or
otherwise impossible approach to this requirement. This problem is also related to
other practical distance geometry problems.

The mathematical model of the problem can be described as follows. There are
n distinct sensor points in R?, whose locations are to be determined, and m other
fixed points (called the anchor points), whose locations a1, ag, . . ., a,, are known. The
Euclidean distance d;; between the ith and jth sensor points is known if (i,5) € Ny,
and the distance d;;, between the ith sensor and kth anchor points is known if (i, k) €
Ng. Usually, Ny = {(3,) : ||o; — zj|| = dij < rq} and Ny = {(4,k) : |z — ax]| =

dir, < rq}, where rg is a fixed parameter called the radio range. The sensor network
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localization problem is to find z; € R%, i = 1,2,...,n, for which

zs —z;l|> =d; VY (4,§) € N,
l|zi —apl|? =d%, ¥V (i,k) € N,.

Unfortunately, this problem is hard to solve in general even for d = 1; see, e.g., [15, 35].

For simplicity, we restrict ourselves to d = 2 in this paper. Many relaxations
have been developed to tackle this and other related problems; see, e.g., [1, 4, 3, 5,
23, 6, 7, 28, 29, 33, 25, 16, 21, 12, 18, 20, 22, 26, 2, 31, 30, 19]. Among them, the
work of [1, 4, 3, 5, 23, 16, 20, 19] used a Euclidean distance matrix-based approach,
where no anchor was needed or used to compute the unknown portions of the distance
matrix [36]; [12, 22] developed a global optimization approach; [21, 30] constructed
a second-order cone relaxation; [26, 18] adapted the sum-of-squares (SOS) approach;
[33] modeled a problem similar to the dual of the distance completion problem; and
[6, 27] considered bounds on the solution rank of a semidefinite programming (SDP)
problem. Recently, an SDP relaxation (see, e.g., [7, 28, 29, 25, 2, 31]) which explicitly
used the anchors’ positions as the first-order information, was applied to solving a class
of sensor network localization problems. Their relaxation model can be represented
by a standard SDP model

minimize 0Oe Z

subject to  Z(19) = I,

(1.1) (0;ei —¢j)(0s¢; — ;)" @ Z=dF; ¥ (i,7) € Ny,
(—ar;ei)(—ap;e;))T « Z =d2, ¥ (i,k) € Ny,
Z = 0.

Here I is the 2-dimensional identity matrix and Z(; 5y is the upper-left 2 x 2 principal
submatrix of Z, 0 is a vector or matrix of all zeros, and e; is the vector of all zeros,
except for a one in the ith position. If a solution

ZﬁIX
X7 v

to (1.1) is of rank 2, or, equivalently, ¥ = XTX, then X = [z1,...,2,] € R*" is
a solution to the sensor network localization problem. Note that the SDP variable
matrix has two parts: the first-order part X (positions) and the second-order part of Y
(position inner products). Both parts give valuable information about the estimation
and confidence measure of the final localization solution.

As the size of the SDP problem increases, the dimension of the matrix cone
increases and the number of variables increases quadratically, no matter how sparse
N, and N, might be. It is also known that the arithmetic operation complexity of
the SDP is at least O(n?) to obtain an approximate solution. This complexity bound
prevents solving large-size problems. Therefore, it would be very beneficial to further
relax the full SDP problem by exploiting the sparsity of N, and N, at the relaxation
modeling level.

Throughout the paper, R? denotes d-dimensional Euclidean space, S™ denotes the
space of n X n symmetric matrices, and Rank(A) denotes the rank of A. For A € S",
Aj;j denotes the (i, j) entry of A, and A(;, . ;) denotes the principal submatrix from
the rows and columns indexed by 41, ...,i;. For A,B € §", A = B means that A— B
is positive semidefinite, and A ¢ B denotes the inner product, i.e., A e B = Tr(AB).
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2. Further relaxations of the SDP model. We will give two such relaxations.
The first is a node-based relaxation, which we call the NSDP relaxation:
minimize 0O0eZ
subject to  Z(1,2) = 1,
(2.1) (0;e; —€;)(0;e; —e;)" @ Z=d3; ¥ (i,j) € Ny,
(—apie;)(—ar;e;)T @ Z =d?, VY (i,k) € N,
Z'=Za2an) 70 Vi,
where N; = {j : (i,j) € N,} is the sensor-i-connected point set. Here the single
(2 4+ n)-dimensional matrix cone is replaced by n smaller 3 4 | N;|-dimensional matrix
cones, each of which is a principal submatrix of Z. We should mention that a similar
idea was proposed in [24] for solving general SDP problems.

The second relaxation is an edge-based relaxation, which we call the ESDP re-
laxation:

minimize Qe Z
subject to  Z(1,2) = I,
(2.2) (0;e; —€;)(0;e; —e;)T" @ Z =d; ¥ (i,j) € Ny,
(—ak;e;)(—ap;e;)T @ Z=d2% V¥ (i,k) € N,
Z(1,2,i,5) =0 V(i,j) € Ny.

Here the single (2+n)-dimensional matrix cone is replaced by | V| smaller 4-dimensional
matrix cones, each of which is a principal submatrix of Z. If a solution

Z_IX
S\ xT v

to (2.2) satisfies Rank(Z(1 5 = 2 for all (i,5) € N, then X = [z1,...,2,] is a
localization for the localization problem. An edge-based decomposition was also used
for the SOS approach to localization in [26].

In practice, the distances may be corrupted by random measurement errors. In
this case the ESDP model can be adjusted by forming a suitable objective. For
example, if there is a random Laplacian noise added to each dfj and J?,w then we solve

minimize Z 1(0,e; —€;)(0,e; — ;)T  Z — d?j|

(i,5)ENg
+ Z ‘(_akuei)(_akaei)T °/ — d?k
(i,k)EN,

subject to  Z(19) = I,
Za2,i4) =0 V(i,j) € N,

which can be written as an SDP:

minimize Z (uij + vi5) + Z (wir + vir)

(1,J)ENs (i,k)EN,
subject to  Z(1,2) = I,
(2.3) (0sei —€;)(05e; — ;)" @ Z —uj; + v = d3; v (i,7) € Na,

(—ak;ei)(—ar; )" @ Z —ug +vip = d3y, Y (i, k) € N,
Za,2,5) = 0, 5,05 >0 (i, j) € Ny,
Wik, Vi > 0 V(i k) € N,.
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Similarly, NSDP can be reformulated as

minimize Z (uij + vij) + Z (wir, + vig)

(4:) €N (i,k)EN,
subject to  Z(12) = I,
(2.4) (03¢ —¢;)(05¢; — e5)" @ Z — iy + vy = df; ¥ (i,5) € Ny,

(—ag;e;)(—ax;e)’ @ Z —wy + vy, =d3, V (i,k) € N,
Z'=ZasinNy =0 Vi,
uij,vij Z 0 V(Z,]) € Nz, Uik, Uik Z O V(Z,k) S Na.

For simplicity, we focus on the feasibility models of (1.1), (2.1), and (2.2) in the rest
of this paper.

Obviously, (2.1) is a relaxation of (1.1), and (2.2) is a relaxation of (2.1). The
following proposition will formalize these relations.

ProposiTION 2.1. If
X I X
Zspp = ( xT v )

is a solution to (1.1), then Z§p, after removing the unspecified variables, is a solution

to relaxzation (2.1); if
. I X
ZNspp = ( xT v )

is a solution to (2.1), then Zyqpp, after removing the unspecified variables, is a
solution to relaxation (2.2). Hence

SDP NSDP ESDP
F CF CF ,

where F represents the solution set of the corresponding SDP relazation.

We notice that (1.1) has (n + 2)? variables and |N,| + | N,| equality constraints,
(2.1) has at most 4+2n+ Y, | N;|? variables and |N,|+ |N,| equality constraints, and
(2.2) has 4 + 3n + | N,| variables and also |N| + |N,| equality constraints. Usually,
4+ 3n + |N,| is much smaller than (n + 2)?, so that (2.2) has a much smaller number
of variables than (1.1); hence, the NSDP or ESDP relaxation has the potential to be
solved much faster than (1.1). Our computational results will confirm this fact.

But how good is the NSDP or ESDP relaxation? How do these relaxations per-
form? In the rest of the paper, we will prove that, although they are weaker than
the SDP relaxation, the NSDP and ESDP relaxations share some of the same desired
theoretical properties possessed by the full SDP relaxation, including the trace crite-
rion for accuracy. We develop a sufficient condition when NSDP coincides with SDP.
We also show that the ESDP relaxation is stronger than the second-order cone pro-
gramming (SOCP) relaxation. Furthermore, we will present computational results
and compare our method with the full SDP, SOS, SOCP relaxation, and domain-
decomposition methods. One will see that our method is among the fastest methods,
and its localization quality is comparable or superior to that of other methods.

3. Theoretical analyses of NSDP. We make the following basic assumption:
G, the undirected graph of a sensor network consisting of all sensors and anchors,
with edge sets N, and N,, is connected and contains at least three anchors. Before
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we present our results, we recall three basic concepts: the d-uniquely localizable graph,
the chordal graph, and the partial positive semidefinite matrix.

The definition of a d-uniquely localizable graph is given by [2].

DEFINITION 3.1. A sensor localization problem is d-uniquely localizable if there

is a unique localization X € RY™ and there is no x; € R", i =1,...,n, where h > d,
such that:

i — ;% = d3 V (i,5) € Na,

l(ak; 0) — x| =dZ, ¥ (i,k) € Na,

x; # (Z40) for some i € {1,...,n}.

The latter says that the problem cannot have a nontrivial localization in some higher-
dimensional space R" (i.e., a localization different from the one oblained by simply
setting x; = (Z;;0), where anchor points are augmented to (ay;0) € R").

The condition of a d-unique localizability has been proved to be the necessary
and sufficient condition for the SDP relaxation to compute a solution in R%; see [2].
For the case of d = 2, if a graph is 2-uniquely localizable, then the SDP relaxation
(1.1) produces a unique solution Z with rank 2, and X = [z1,...,z,] € R**" of Z is
the unique localization of a localization problem in R?.

DEFINITION 3.2. An undirected graph is a chordal graph if every cycle of length
greater than three has a chord; see, e.g., [8].

The chordal graph has been used for solving sparse SDP problems or reducing
the number of high-order variables in SOS relaxations; see, e.g., [24, 17, 18].

DEFINITION 3.3. A square matriz, possibly containing some unspecified entries,
is called partial symmetric if whenever the (i,7) entry of the matriz is specified, then
so is the (j,1) entry, and the two are equal. A partial semidefinite matriz is a par-
tial symmetric matrix for which every fully specified principal submatriz is positive
semidefinite.

The concept of a partial positive semidefinite matrix can be found, e.g., in [9, 13,
14].

The following result was proved in [9, 13].

LEMMA 3.4. FEwvery partial positive semidefinite matrix with undirected graph G
has positive semidefinite completion if and only if G is chordal.

Although the NSDP model is weaker than the SDP relaxation in general, the
following theorem implies that they are equivalent under the chordal condition.

THEOREM 3.5. Let the undirected graph of sensor modes with edge set N, be
chordal. Then

FSDP — FNSDP

Proof. We need only to prove that any solution to (2.1) can be completed to a
solution of (1.1). Let
I X
7= 7)

be a solution to (2.1). Then all entries of Z are specified except those Y;; such that
(i,7) € N,. The conic constraints of (2.1) indicate that every fully specified principal
submatrix of Z is positive semidefinite, since it is a principal submatrix of Z* in (2.1).
Thus, Z is a partial semidefinite matrix.

We are also given that the undirected graph induced by Y in Z is chordal. We
now prove that the undirected graph induced by Z is also chordal. Notice that the
graph of Z has a total of n+2 nodes, and every specified entry represents an edge. Let
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nodes D; and D represent the first two rows (columns) of Z, respectively. Then each
of the two nodes has edges to all other nodes in the graph. Now consider any cycle
in the graph of Z. If the cycle contains Dy or Dy or both, then it must have a chord
since each of D and Dy connect to every other node; if the cycle contains neither
Dy nor D,, then it still contains a chord since the graph of Y is chordal. Therefore,
Z has a positive semidefinite completion, say, Z, from Lemma 3.4, and Z must be a
solution to (1.1), since (2.1) and (1.1) share the same constraints involving only the
specified entries. ]

Under the condition of 2-unique localizability, we further have the following.

COROLLARY 3.6. If a sensor network is 2-uniquely localizable and its undirected
graph of sensor nodes with edge set N is chordal, then the solution of (2.1) is a unique
localization for the sensor network.

4. Theoretical analyses of ESDP. We now focus on our second relaxation,
the ESDP relaxation of (2.2).

4.1. Relation between ESDP and SDP. In the SDP relaxation model, let

I X
ZSDP=<XT Y)

be a solution to (1.1). Then it is shown that the individual traces or the diagonal
entries of Y — X7 X represent confidence measures in the accuracy of the corresponding
sensor’s location; see [7, 2]. We will show that the ESDP model retains this very
desired property. More precisely, if

I X
ZEspp = ( XT vy )

is a solution to (2.2), then the individual traces of Y — X7 X also represent confidence
measures in the accuracy of the corresponding sensor’s location.

First, we introduce a lemma involving the rank of SDP solutions.

LEMMA 4.1. Consider the following SDP:

minimize E C; e X;
i

(4.1) subject to ZAU e X;=0b; Vj,
X; =0 Vi

Then applying the path-following interior-point method will produce a maz-rank (rel-
ative interior) solution for each X;, i.e., if X' and X? are two different optimal
solutions satisfying

Rank(X7}) < Rank(X?) for at least one i.

Then solving (4.1) by applying the path-following interior-point method will not yield
solution X*'.
Proof. Problem (4.1) can be reformulated into

minimize CeX
subject to A; e X =b; Vj,
X, -
X = : : =0
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where C = diag(C;)_; and A; = diag(A;;)?,. This can also be written as
minimize C e X
subject to  A; ¢ X = b; V7,
EijeX =0V(ij) ¢D,
X =0,

where D denotes those positions that do not belong to any diagonal block of X.

Thus, the path-following algorithm will return a max-rank solution to the prob-
lem; see, e.g., [10, 11]. In other words, if X* is a solution calculated by the path-
following method, then """ , Rank(X}) is maximal among all solutions; hence, for
every i, Rank(X}) must be maximal among all solutions to (4.1). Thus, X! cannot
be a solution generated by the interior-point method. ]

By applying this lemma, we have the following result which provides a justification
for using the individual traces to measure the accuracy of computed sensor locations.

THEOREM 4.2. Let
I X
7= 7 )

be a maz-rank solution of (2.2). If the diagonal entry or individual trace

(4.2) (Y - XTX);

i Y

then the ith column of X, x;, must be the true location of the ith sensor, and x; is
invariant over all solutions Z for (2.2).

Proof. Our proof is by contradiction. Without losing generality, we assume that
(Y — XTX);; >0forall j #1i.

Note that the constraints in (2.2) ensured that Z 7 ;) = 0 for all (4,5) € N,.
Thus, (Y — X7 X)5; = 0 implies that (Y — X7 X);; = 0 for all (i,7) € N, i.e., Z197)
has rank 3 for all (i,j) € N,. Moreover, from Lemma 4.1, the max-rank of Z(1,273,5)
is at most 3 for all solutions to (2.2).

Denote by Z a true localization for (2.2), that is, Z(Lgym-) has rank 2 for all
(i,7) € N, where

Iz Iz z;
Zagig = | T 5:/1 5:%' = zF |zl* zlz;
T Y Y ozE ||lzg)?

Suppose that Z; # x;. Since the solution set is convex, then
Z°=aZ+(1-a)Z, 0<a<l,

is also a solution to (2.2). By taking « sufficiently small but strictly positive, we will
get another solution Z% which satisfies

Rank(ZE"l,Q’i,j)) 2 Rank(Z(1727i7j)) V(%,j) € Nm,

and the strict inequality holds for 4 = i. This is because for (i,5) € N,

Y&y — g gl e, o]
= aYYGJ) + (1 - a)Y'G’j) - (O‘[i'%i'j] + (1 - OZ)[(E;, xj])T(a[j-%jj] + (]_ _ OZ)[‘W;, x]])
= (1= 0)(Yay) — 25 2,) oz, 25]) + (1 — &) (g, 23] — 35, 3,)) (23, 23] — 77, 5]
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Since (Y = XTX)z = (Y = X" X)5; = (Y = XTX) ;7 =0,

0 0
Y — oz, 5] [27,35] = ( 0 ~ )

for some v > 0.
Also we are given that Z; # x;, so that ([z;, z;] — (77, Z;])T ([7, 2] — [Z7, Z;]) is a
positive semidefinite matrix whose first element is positive, which implies that

dec|-a) (0 9 ) +all - a)ona] - o) (on] - )| > o

That is, Z( ,; ) is a solution to (2.2) with rank 4, which is a contradiction.
Therefore, we proved that Z; must be the true location of the ith sensor and z;
is invariant over all solutions to (2.2). |
Theorem 4.2 is related to Proposition 2 of [30]. Moreover, the desired invariance
property of z; extends to the case with noises, which can also be seen from the proof

in [30]. In summary, we have the following.

COROLLARY 4.3. Let
I X
7= v)

be a solution to (2.2) and condition (4.2) hold for all i. Then the ESDP model (2.2)
produces a unique solution for the sensor network in R>.
Next we enhance Proposition 2.1 by the following theorem.

THEOREM 4.4. Let
I X
7= v)

be a solution to (2.2), and let

(1 X
ZZ(x‘T y)

be any solution to (1.1); both are calculated by the path-following method. If condition
(4.2) holds for Z, so it does for Z.

Proof. Our proof is again by contradiction. If (4.2) holds for Z but not for Z,
e.g., (Y —XTX); > 0. Since, for 0 < a <1,

Zo=01-a)Z+aZ

is always a solution to (2.2), by taking « sufficiently small, we will get a solution with
a higher rank than Z, and this fact contradicts Lemma 4.1. 0

Theorem 4.4 says that if the ESDP relaxation can accurately locate a certain
sensor, so can the SDP relaxation. This implies that the ESDP relaxation is weaker
than the SDP relaxation. We illustrate this by using an example.

Ezxample 1. Consider the following graph with 3 sensors and 3 anchors. The 3
anchors are located at (—0.4,0), (0.4,0), and (0,0.4), and the 3 sensors are located
at (—0.05,0.3), (—0.08,0.2), and (0.2,0.3), respectively. We set the radio range to be
0.50; see Figure 4.1.
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0.4 T T T T T T

0.35f i

0.3f b

0.25 b

0.2f b

0.15f b

0.1} i

0 L L L L L L L
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Fic. 4.1. The locations of sensors, anchors, and connection edges in Example 1.

In Figure 4.1 (and throughout this paper), we use diamonds to represent the
anchor positions. We use a solid line to connect two points (sensors and/or anchors)
when their Euclidean distance is smaller than the radio range, so that the length of
the line segment is known.

First, we use full SDP relaxation (1.1) to solve this sensor localization problem,
where the result is accurate (see Figure 4.2(a)). In Figure 4.2(a) (and throughout this
paper), a circle denotes the true location of a sensor (they are not known to the SDP
models), and a star denotes the location of a sensor computed by the SDP model.
If we use the quantity of the root mean square deviance (RMSD) to measure the
deviance of the computed result:

Lo 3
4. MSD = | — izl
(4.3) RMS (ngllx z|2>

where x; is the position vector of sensor i computed by the algorithm and Z; is its
true position vector, then the RMSD of the full SDP localization is about le—7. Note
that the NSDP model (2.1) returns the exactly same localization of the full SDP from
Theorem 3.5, since N, is a chordal graph.

Next we use the ESDP model (2.2) to solve the problem, and this time the result
is inaccurate with the RMSD at 0.048; see Figure 4.2(b), where every true sensor
location and its computed corresponding position are connected by a solid line.

Now we illustrate why this error happened. In SDP model (1.1), the solution
matrix Z* is required to be positive semidefinite. If we write

* I X
ZSDP:<XT Y)’

then the matrix Y — X7 X is required to be positive semidefinite. But in model (2.2),

¥ I X
ZESDP(XT Y)a
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0.4, T T T A4 T T T 0.4 T T T A4

0.35 0.35

0.3 ® ® 0.3 XJ

0.25 0.25 \ /
0.2 ® 0.2

0.15 0.15

0.1 0.1

0.05 0.05

-04 -03 -02 -0t 0 0.1 02 0.3 0.4 -04 -03 -02 -01 0 0.1 0.2 03 0.4

(a) Graphical localization result (b) Graphical localization result
of the SDP model of the ESDP model

Fia. 4.2. Comparision of graphical localization results generated by the SDP and ESDP in
Ezample 1.

where we just require that each 2 x 2 principal submatrix of ¥ — X7 X be positive
semidefinite. This does not imply that the entire matrix is positive semidefinite. In
fact, the solution calculated by the ESDP model (2.2) is

1 0 —0.07278 —0.13467 0.14884
0 1 0.32778 0.25467  0.24884
Zpspp = | —0.07278 0.32778  0.11072 0.09498  0.06865

—0.13467 0.25467  0.09498 0.09014  0.04540
0.14884  0.24884  0.06865 0.04540  0.08907

It can be verified that Zj¢,p satisfies all constraints in (2.2) as well as in (1.1),
and each 2 x 2 principal matrix of Y — X7 X is positive semidefinite. But the three
eigenvalues of Y — XTX are (—0.00048,0.0048,0.0091), so that the entire matrix
of Y — XTX is indefinite, and this is the cause of the difference between the two
relaxations.

4.2. Relation between ESDP and SOCP. A SOCP relaxation for the sensor
network localization problem has been proposed (see, e.g., [21, 30]):

minimize Z (uij + 'Uij) + Z (uik + Uik)
(4,5)ENx (i,k)EN,
subject to x; —x; —wi; =0 VY(i,5) € Ny, @ —ar —wir =0 VY(i,k) € Ng,
(44) Yij — wij + vig = d3; (i, §) € Nu,yyir — wir + vix = diy, V(i k) € N,
uij > 0,055 >0, (yij + §.vij — 3. wij) € SOC V(i, j) € Ny,
wip > 0,05 > 0, (Yix + 1, Yik — 3, wir) € SOC V(i,k) € N,.

The SOCP relaxation can be also viewed as a further relaxation of the SDP
relaxation, and it was proved to be faster than the SDP method and to serve as a
useful preprocessor of the actual problem. In this section, we will show that the ESDP
model is stronger than the SOCP relaxation. Our proof refers to Proposition 1 of [30].
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THEOREM 4.5. If

I X
(5 7)

is an optimal solution to (2.3), then the ith column of X, x;, i=1,...,n, and
Y7 el - 20F @+ Vi, (i K) € N

form a feasible solution for (4.4) with the same objective value.
Proof. Since Z is a feasible solution to (2.3), we have Z( 9 jy,1,2,i,5) = 0 for all
(i,7) € Ny. So, for each (i,7) € N, we have

< Yi—l|ladll Vi —ala; ) -

Vi —aiz; Vi — |23

This implies that Vi — [|z7[ > 0, Yj; — [[23]] > 0, and (Y — [|23)(Y;; — [[23])) =
(Yij — ol @)%
Hence (Y — 2]+ Y35 — a21)? 2 4(¥iy — a7, )%, Le.,

Yis + Vs — 2% 2 [l63] + a2 - 20T,

and the theorem follows. O

COROLLARY 4.6. If x; is invariant over all of the solutions of (4.4), then it is
also invariant over all of the ESDP solutions. That is, if SOCP relaxation can return
the true location for a sensor, so can ESDP relazation.

The above theorem and corollary indicate that one can always derive the same
SOCP relaxation solution from an ESDP relaxation solution; that is, the solution set
of the ESDP relaxation is smaller than that of the SOCP relaxation. Thus, the ESDP
relaxation is stronger than the SOCP relaxation. The following example shows that
the reverse is not true.

Ezxample 2. Consider the following problem with 3 anchors and 2 sensors. The
true locations of 3 anchors are a; = (—0.4,0), a2 = (0,0.5), and az = (0.4,0), and the
true locations of the 2 sensors are 1 = (0,—0.3) and x2 = (0.4, 0.2) with radio range
0.7 (see Figure 4.3).

Since there are only two sensors, the ESDP relaxation is the same with the full
SDP relaxation, and it is known that this graph is strongly localizable (see [2]), so
we know that the ESDP relaxation will give the unique solution Z where X is the
accurate positions of the sensors. However, for SOCP relaxation, since the graph is
2-realizable, its optimal value of (4.4) is 0 so that the optimal solution must satisfy
Yij = dfj and y;, = J?k. Thus, any (Z1, Z2) that satisfies

|z, — Z2||? < 0.4240.5% = 0.41,
|Z1 —a1]|*> <0.32+0.4% =0.25,
21 —as||? < 0.32+0.4%2 = 0.25,
|Z2 — az||? < 0.4% +0.32 = 0.25,
[Z2 —a3]> < 02+0.22 =0.04

must be also optimal to (4.4).
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Fic. 4.3. The locations of sensors, anchors, and connection edges in Example 2.

Now let z; = (0,0) # 7 and Ty = (0.3,0.15) # x5. Then it is easy to verify
that the above inequalities hold, so that (Z1,Z2) is also an optimal solution to (4.4).
But we know that the interior-point method would always maximize the potential
function (see [11, 10])

P(z,y)= Y log(yij—llzi — )+ Y log (yix — Il — akl®)
(,§)ENg (i,k)EN,

in the optimal solution set; and it is obvious that P(Z1, Z3) > P(z1,x2). Therefore the
SOCP relaxation model (4.4) will not give the true solution z; and x2, and, thereby,
the ESDP relaxation is strictly stronger than the SOCP relaxation for this example.

4.3. The dual problem of ESDP. For a conic programming problem, it is im-
portant to consider its dual problem. In many cases, the dual problem can give much
important information about the primal problem as well as many useful applications.
Here we will present the dual problem of (2.2) and list some basic properties between
the primal and dual.

Consider a general conic programming problem:

minimize C e X
(4.5) subject to A; e X =b; Vj,
Xiny =0 Vi,

where X € S and N; is an index subset of {1,2,...,n}. Then the dual to the problem
is

maximize Z bjy;
J
(4.6) subject to ZyjAj + ZSi =C,
J
Si

(N) = 0, and Sliej =0 VEgN;orj¢gN;; Vi

In other words, S? is an S" matrix, and its entries are zero outside the principal
submatrix of Sy, w;.
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For the ESDP model (2.2), the dual problem is

L 2 2
maximize E wijds; + E wikdsy + Uit + 2u1g + Uz

(4,§)ENz (i,k)ENa
subject to Z wij (05e; — ;)T (0;e; — ;) + Z wir(—ag; )T (—ar; e;)
(4,§)ENy (i,k)EN,
(4.7) u11 + U2 U2 0
+ U12 uzg +ui2 0 | + Z S3) =0,
0 0 0 (i.5)EN,
S35 =0, and SG7 = 0Vk ¢ {i,j} or 1€ {i,j}, V(i,j) € N,.

We have the following complementarity result. N
PROPOSITION 4.7. Let Z be a solution to (2.2) and {S™7)} be an optimal solution
to the dual. Then

S((ijg)”) ® Z1,2,,5) = 0V(i,j) € Ny.

In particular, if Rank(Sgi’g)ij)) is 2 for all (i,j) € Ny, then Rank (Z(1,2, ) is 2 for
all (i,5) € N, so that (2.2) produces a unique localization for the sensor network in
R

By using duality we can solve the dual problem and simultaneously yield a primal
solution from the complementarity proposition. We demonstrate in the next section
that the solution speed of solving the dual is about twice as fast as solving the primal

problem, which was originally observed in [34].

5. Computational results and comparison to other approaches. Now we
address the question: Will the improvement in the speed of the ESDP relaxation
compensate the loss in relaxation quality? In this section, we first present some
computational results of the ESDP relaxation model. Then we compare the model
with different kinds of approaches, including the full SDP approach (1.1) of [7], the
SOCP approach [30], the SOS approach [26], and the domain-decomposition approach
of [25, 29].

5.1. Computational results of the ESDP relaxation. In our numerical sim-
ulation, we follow [7]. We randomly generate the true positions of n points in a square
of 1 by 1, then randomly select m points to be anchors, and compute every edge length
di;. We select only those edges whose edge length is less than the given radio range
rd and add a multiplicative random noise to every selected edge length,

di; = J,;j(l +nf - randn(l)),

as the distance input data to the SDP models. Here nf is a specified noisy factor, and
randn(1) is a standard Gaussian random variable. There may still be many points
within the radio range for a sensor or anchor. Thus, in order to maintain the sparsity
of the graph, we set a limit 7 on the number of selected edges connected to every
sensor or anchor, and they are randomly chosen.

In our computational experiments we also implement the steepest-descent local
search refinement proposed in [28, 29| for solving noisy problems. All test problems
are solved by SeDuMi 1.05 [32] of Matlab7.0 on a DELL D420 laptop with 1.99 GB
memory and 1.06 GHz CPU.
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TABLE 5.1
Noisy test problems and the SDP solution time comparison.

Noisy problem # n m rd Full SDP time | ESDP time | Dual ESDP time
1 50 5 0.35 1.33 1.5 1.22
2 100 5 0.3 4.94 3.22 1.91
3 200 5 0.25 35.21 7.64 4.19
4 400 10 0.2 358.8 18.2 8.98
5 800 20 0.12 * 44.67 18.58
6 1600 | 40 0.07 * 120.58 43.91
7 3200 | 80 0.04 * 287.39 104.36
8 5000 | 100 | 0.03 * 426.85 192.08
9 6400 | 160 | 0.025 * 603.16 250.97

(a) Graphic result of the full SDP (b) Graphic result of the dual
model ESDP model

Fic. 5.1. Comparision of graphical localization results generated by the full SDP and dual ESDP
on a 10% noisy problem.

The first set of test problems has noisy factor nf = 0.1 throughout. Table 5.1
contains a computational comparison of ESDP to the full SDP relaxation [7]. Here
three models, the full SDP model (up to 400 points), the ESDP model, and the dual
of the ESDP model, are all solved by SeDuMi 1.05. In order to see the efficiency of
the ESDP model itself, the solution time (in seconds) in Table 5.1 includes only the
SeDuMi solver time; that is, the data input/preparation time is excluded.

As we can see, while the full SDP solution time increases cubically in size, the SDP
solver times of both ESDP and dual ESDP increase little faster than linearity. While
this speedup was remarkable, how about the localization quality? Figure 5.1 shows
two graphical results generated by full SDP and dual ESDP on solving a smaller
problem, where one can barely see much difference. Here diamonds represent the
anchor positions, circles represent sensor’s true positions, and stars represent the
computed sensor positions. (The codes and a few test problems have been placed
on the public site [37]. We welcome the reader to test them and draw their own
conclusions.)

Next we compare our approach to the SOS approach, the SOCP approach, and
the domain-decomposition approach. We will use the same examples presented in
these papers.
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-0.5
-0.5

Fic. 5.2. Graphical localization result of the ESDP model on the problem of Nie [26], 500
sensors, 4 anchors, rd = 0.3, nf =0, and RMSD = le — 6.

5.2. Computational comparison with the SOS method. The SOS method
is an SDP relaxation which applies to solving the problem

1) min f@) = D (w—wlE—di)*+ Y0 (o — a3 - d)?,

(4,j)ENz (i,k)EN,

where the objective function is a polynomial.

Recent study [26] has shown that by exploiting the sparsity in SOS relaxation
one can get faster computing speed than the SDP relaxation (1.1) and sometimes
higher accuracy as well. The author demonstrated that this structure can help save
computation time significantly. In [26], the author used the model of 500 sensors and
4 anchors with a radio range of 0.3 and no noises in distance measurements.

The author of [26] reported that it took totally about 1 hour and 25 minutes on
a 0.98 GB RAM and 1.46 GHz CPU computer to get a result with RMSD=2.9¢ — 6.
However, with the same parameters, our approach needs only 30 seconds to get the
result with RMSD=1e — 6. Thus, the ESDP approach is much faster than the SOS
approach in this case, and the solution quality is comparable to that of the SOS
method; see Figure 5.2.

5.3. Computational comparison with the SOCP method. The SOCP
model performs best with a large fraction of anchors and a low noise. Thus, we
test (primal) ESDP on the same set of problems reported in [30], where m = 0.1n
(10% of points are anchors) and nf < 0.01 (less than 1% noise), and the results are
shown in Table 5.2. To solve the SOCP relaxation model, two methods are proposed
in [30]: one directly uses Matlab SeDuMi, and the other uses a smoothing coordi-
nate gradient descent (SCGD) method coded in FORTRAN 77. The latter is highly
parallelizable, similar to the distributed methods of [25, 29].

From Table 5.2, we see that the ESDP approach is much faster than the SOCP
approach when both use Matlab SeDuMi, and it is slower than the tailored and
FORTRAN-coded SCGD method. On the other hand, the localization quality (see
RMSD in Table 5.3) of ESDP is much better than that reported in [30] for both
SeDuMi of SOCP and SCGD of SOCP. Figure 5.3 shows the graphical result of test
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TABLE 5.2
ESDP times are taken on DELL D420 (1.99 GB and 1.06 GHz), and SOCP times are reported
from [30] on a HP DL360 (1 G memory and 3 GHz).

Test problem # n nf rd ESDP time | SeDuMi of SOCP | SCGD of SOCP
1 1000 0 0.06 59.60 sec 3.6 min 0.2 min
2 1000 | 0.001 0.06 57.55 sec 3.2 min 0.4 min
3 1000 0.01 0.06 53.60 sec 3.9 min 1.6 min
4 4000 0 0.035 653.7 sec 202.5 min 1.6 min
5 4000 | 0.001 | 0.035 668.3 sec 193.8 min 5.1 min
6 4000 0.01 0.035 615.9 sec 196.3 min 6.2 min
TABLE 5.3

Input parameters for the test problems, the corresponding ESDP dimensions, and ESDP com-
putational results.

Test problem # n nf rd SeDuMi SDP dim || CPU time | obj | RMSD
1 1000 0 0.06 20321 x 29195 59.60 3e-3 2e-3
2 1000 | 0.001 | 0.06 20321 x 29195 57.55 5e-4 3e-3
3 1000 | 0.01 0.06 20321 x 29195 53.66 4e-2 2e-2
4 4000 0 0.035 93727 x 133285 653.7 3e-3 le-3
5 4000 | 0.001 | 0.035 93727 x 133285 668.3 7e-3 8e-4
6 4000 | 0.01 | 0.035 93727 x 133285 615.9 2e-2 3e-2

Fic. 5.3. Graphical localization result of the ESDP model on test problem 2 in Table 5.2.

problem 2 (900 sensors, 100 anchors, nf = 0.001, and rd = 0.06), where the local-
ization of ESDP is quite accurate compared with the graphical result on the same
problem reported in [30].

In Table 5.2, “ESDP time” denotes the total solution running time, including
Matlab data preparation and SeDuMi input setup time. By comparing Tables 5.1
and 5.2, one can see that, for ESDP, the Matlab data input and SeDuMi setup time
is considerable. This is because Matlab is notoriously slow on matrix loops and
data inputs. This problem should go away when the algorithm is coded in C or
FORTRAN 77.

Table 5.3 contains more detailed statistical results on this test, where “SeDuMi
SDP dim” represents problem dimensions solved by SeDuMi, “CPU time” denotes
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the total ESDP solution time in seconds (including Matlab data preparation and
SeDuMi input setup time), “obj” denotes the SDP objective value, and RMSD is the
localization quality defined by (4.3).

5.4. Computational comparison with the decomposition method. There
are other earlier approaches to speed up the SDP solution time. The domain-
decomposition method of [29] and SpaceLoc of [25] are both based on breaking the
localization problem into many geographically partitioned and smaller-sized localiza-
tion problems, since each smaller SDP problem can be solved much faster and more
accurately. Thus, they work quite well when many anchors are uniformly distributed
in the region so that one is able to partition the network into many smaller domains;
and, as a result, each of them contains enough anchors and forms its own indepen-
dent localization problem. However, when the quantity of anchors is small or most
of them are located on the boundary, such as the problems in Table 5.1, these ap-
proaches would fail at the beginning, simply because they are reduced to solving a
nearly full-size SDP problem.

In contrast, our new approach does not depend on the quantity and location of an-
chors, since it is designed to improve the efficiency of solving a full-size SDP problem.
In fact, any improvement on solving an individual SDP problem would complement
the domain-decomposition approaches, since it would be possible to handle much
larger-sized subproblems.

6. Future directions. From the computational results, we can see that the sub-
SDP approaches indeed have a great potential to save computation time in solving
sensor network localization problems, and the efficiency of the model is considerable.
At the same time, they retain some of the most important theoretical features of the
original SDP relaxation and achieve high localization quality.

There are many directions for future research. First, although our ESDP relax-
ation performs very well in localization quality, we still lack some powerful theorems
to illustrate why the model works. This is a major issue that needs to be answered.
Second, since, in our ESDP model, the decision matrix has its special structure, ap-
plying a tailored interior-point method (such as SCGD for the SOCP approach) may
save more computational time. We also see that the NSDP relaxation has its own
merit, both in theory and in practice. Therefore, further research about the NSDP
model is also worth perusing. In fact, we have experimented with the NSDP model
for solving the Max-Cut problem and will discuss its behavior and performance in an-
other report. Finally, we plan to investigate the applicability of the SSDP relaxation
idea for solving general SDP problems.
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