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Abstract— We consider a network of distributed sensors, where
each sensor takes a linear measurement of some unknown param-
eters, corrupted by independent Gaussian noises. We propose a
simple distributed iterative scheme, based on distributed average
consensus in the network, to compute the maximum-likelihood
estimate of the parameters. This scheme doesn’t involve explicit
point-to-point message passing or routing; instead, it diffuses
information across the network by updating each node’s data
with a weighted average of its neighbors’ data (they maintain
the same data structure). At each step, every node can compute
a local weighted least-squares estimate, which converges to the
global maximum-likelihood solution. This scheme is robust to
unreliable communication links. We show that it works in a
network with dynamically changing topology, provided that the
infinitely occurring communication graphs are jointly connected.

I. INTRODUCTION

Sensor networks have received significant attention in recent
years because of their huge potential in applications, and the
considerable technical challenges they present in communi-
cation, signal processing, routing and sensor management,
and many other areas (see, e.g., [1], [2]). In this paper we
focus on a specific and simple model of a distributed sensor
fusion problem, where the common goal is linear parameter
estimation, and propose an algorithm for robust distributed
sensor fusion based on average consensus in the network.

A. Maximum-likelihood parameter estimation

We consider the estimation of a vector of unknown (but
constant) parameters θ ∈ Rm using a network of n distributed
sensors. Each sensor makes a noisy vector measurement

yi = Aiθ + vi, i = 1, . . . , n,

where yi ∈ Rmi , Ai is a known matrix that relates the
unknown parameter to the ith sensor measurement, and vi is
noise modeled as a random variable. We assume vi has zero
mean and covariance matrix Σi, and that the noises vi are
independent. We will also assume that the sensor noises are
(jointly) Gaussian.

The aggregate measurement of all sensors is

y = Aθ + v

where

y =




y1

y2

...
yn


 , A =




A1

A2

...
An


 , v =




v1

v2

...
vn


 ,

and the covariance matrix of v is Σ = diag(Σ1, . . . ,Σn).
We assume that m ≤ ∑n

i=1 mi and the matrix A is full
rank. The maximum-likelihood (ML) estimate of θ, given the
measurements y1, . . . , yn, is the weighted least-squares (WLS)
approximate solution

θ̂ML =
(
AT Σ−1A

)−1
AT Σ−1y

=

(
n∑

i=1

AT
i Σ−1

i Ai

)−1 n∑
i=1

AT
i Σ−1

i yi. (1)

This estimate is unbiased (i.e., E θ̂ML = θ) and has error
covariance matrix

Q = E
(
(θ̂ML − θ)(θ̂ML − θ)T

)
=
(
AT Σ−1A

)−1
. (2)

More generally, if the noises are not Gaussian, but are indepen-
dent, and have zero mean and covariances Σi, the formula (1)
gives the linear minimum-variance unbiased estimate of θ,
given the measurements.

B. Sensor fusion schemes

In a centralized sensor fusion scheme, each sensor sends its
data (yi, Ai and Σi) either directly, or by multi-hop relay, to a
data fusion center, typically via wireless communication. The
fusion center then solves the WLS problem to find θ̂ML as
in (1). In the multi-hop relay case, each node must establish
and maintain a routing table for the data packets to reach the
fusion center (for example, by finding a minimum spanning
tree rooted at the fusion center). This is extremely challenging
if the communication graph (network topology) changes with
time due to mobility and/or power constraints of the sensors.

In a distributed sensor fusion scheme, there is no central fu-
sion center and the sensor nodes do not have any global knowl-
edge of the network topology. Each sensor only exchanges data
with its neighbors and carries out local computation. The goal
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is for each sensor to eventually have a good estimate of the
unknown parameters, e.g., to obtain θ̂ML. This is particularly
important if the sensor nodes are carrying out multiple tasks
and need θ̂ML to make local on-site decisions.

There are many ways to do distributed sensor fusion. One
straightforward method is flooding. Each sensor node broad-
casts all its stored data (i.e., yi, Ai and Σi for some subset
of the sensor nodes) to its neighbors, and stores all new data
received. Eventually each node has all the data in the network,
and thus can act as a fusion center to obtain θ̂ML. This
method can require a large amount of data communication,
storage memory, and book-keeping overhead. Much more
sophisticated algorithms for distributed detection, estimation
and inference in sensor networks have been studied in, e.g.,
[3], [4], [5], [6], [7].

In this paper we propose a simple distributed, iterative
scheme to compute θ̂ML at each sensor node based on average
consensus over the network (see, e.g., [8], [9], [10], [11]). In
our scheme, each sensor node maintains a fixed and small stor-
age memory (same data structure for all nodes), and exchanges
information with its neighbors in a very simple and isotropic
manner. This scheme doesn’t involve routing messages in the
network; instead, it diffuses information across the network
by updating each node’s data with a weighted average of its
neighbors’. At each step, every node can compute a local
weighted least-square estimate, which eventually converges to
the global maximum-likelihood solution.

In a network with unreliable communication links, each link
may work or fail at random (e.g., due to mobility, fading or
power constraints). The instantaneous communication graph
is time varying, and may be disconnected most of the time.
Nevertheless, we show that our scheme works under a mild
condition, roughly speaking, that the network should be con-
nected in the long run.

C. Notation and outline

We model the topology of a sensor network by an undirected
graph — the communication graph. Let G = (E ,V) denote an
undirected graph with vertex set V = {1, 2, . . . , n} and edge
set E ⊂ {{i, j} | i, j ∈ V}, where each edge {i, j} is an
unordered pair of distinct nodes. A graph is connected if for
any two vertices i and j there exists a sequence of edges (a
path) {i, k1}, {k1, k2}, . . . , {ks−1, ks}, {ks, j} in E .

We represent the time-varying communication graph of a
sensor network by G(t) = (E(t),V), where E(t) is the set of
active edges at time t. Let Ni(t) = {j ∈ V | {i, j} ∈ E(t)}
denote the set of neighbors of node i at time t, and di(t) =
|Ni(t)| denote the degree (number of neighbors) of node i at
time t. In this paper, the sequence of communication graphs
{G(t)}∞t=0 can be either deterministic or stochastic.

Let Gi = (Ei,V), i = 1, . . . , r, denote a finite collection of
graphs with common vertex set V . Their union is a graph G
with the same vertex set and a edge set that is the union of
the Ei’s; i.e., G = ∪r

i=1Gi = (∪r
i=1Ei,V). The set of graphs

{G1, . . . ,Gr} is called jointly connected if their union is a
connected graph [12].

This paper is organized as follows. In §II, we describe our
scheme for a scalar case of the ML parameter estimation prob-
lem. This case corresponds to distributed average consensus
of the scalar measurements over the network, and we give
two simple rules for selecting edge weights for distributed
averaging: the maximum-degree weights and the Metropolis
weights. In §III, we show that both of these two weight selec-
tion methods guarantee convergence of the average consensus
provided that the infinitely occurring communication graphs
(there are only finitely many of them) are jointly connected.
In §IV, we explain how distributed average consensus can be
used in computing the ML estimate in the general setup de-
scribed in §I-A. Finally, we demonstrate the proposed scheme
with numerical examples in §V, and discuss some interesting
extensions in §VI.

II. DISTRIBUTED AVERAGE CONSENSUS

We first explain our method for the following special case:

yi = θ + vi, i = 1, . . . , n,

where θ is a scalar to be estimated, and the noises are i.i.d.
Gaussian: vi ∼ N (0, σ2). In this case we have

θ̂ML =
1
n
1T y,

where 1 denotes the vector with all components one. In other
words, the ML estimate is the average of the measurements yi

at all the sensors. The associated mean-square error is σ2/n.
We use a distributed linear iterative method to compute

the average. At t = 0 (after all sensors have taken the
measurement), each node initializes its state as xi(0) = yi. At
each following step, each node updates its state with a linear
combination of its own state and the states at its instantaneous
neighbors (nodes that belong to Ni(t))

xi(t + 1) = Wii(t)xi(t) +
∑

j∈Ni(t)

Wij(t)xj(t), i = 1, . . . , n.

(3)
Here Wij(t) is the linear weight on xj(t) at node i. Setting
Wij(t) = 0 for j /∈ Ni(t), the above distributed iterative
process can be written in vector form as

x(t + 1) = W (t)x(t), (4)

with the initial condition x(0) = y. Note that the weight
matrix W (t) ∈ Rn×n has the sparsity pattern specified by
the communication graph G(t).

With the definition of a t-step transition matrix

Φ(t) = W (t − 1) · · ·W (1)W (0),

we have
x(t) = Φ(t)x(0).

We would like to choose the weight matrices W (t) such that
the states at all the nodes converge to θ̂ML = (1/n)1T y, i.e.,

lim
t→∞x(t) = θ̂ML1 =

(
1
n
1T x(0)

)
1.
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Since this should hold for any x(0) ∈ Rn, it is equivalent to

lim
t→∞Φ(t) =

1
n
11T . (5)

A. Choice of weights

Although we are interested here in time-varying graphs, it is
interesting to first consider the case when the communication
graph is fixed, and we use a time-invariant weight matrix W . In
this case, the following conditions are necessary and sufficient
for (5) (in this case Φ(t) = W t)

1T W = 1T , W1 = 1, ρ(W − 11T /n) < 1, (6)

where ρ(·) denote the spectral radius of a matrix; see [8], [9].
The asymptotic convergence rate of the average consensus,
defined as

rasym(W ) = sup
x(0) �=θML1

lim
t→∞

( ‖x(t) − θML1‖
‖x(0) − θML1‖

)1/t

, (7)

is precisely ρ(W − 11T /n). In other words, it is the second-
largest eigenvalue modulus of W . Moreover, as shown in [8],
for a fixed graph, we can find the symmetric weight matrix that
has the smallest asymptotic convergence rate using semidefi-
nite programming.

In the time-varying case, we determine the weight matrix
at each step as a function of the instantaneous communication
graph. In particular, we focus on the following two simple
rules for choosing the weights:

• Maximum-degree weights. Here we use the constant
weight 1/n on all the edges, and choose the self-weights
so that the sum of weights at each node is 1:

Wij(t) =




1
n

if {i, j} ∈ E(t),

1 − di(t)
n

if i = j,

0 otherwise.

(8)

• Metropolis weights. The Metropolis weight matrix is
defined as

Wij(t)=




1
1+max{di(t), dj(t)} if {i, j}∈ E(t),

1 −
∑

{i,k}∈E(t)

Wik(t) if i = j,

0 otherwise.
(9)

With Metropolis weights, the weight on each edge is one
over one plus the larger degree at its two incident vertices,
and the self-weights are chosen so the sum of weights at
each node is 1.

These two rules are adapted from methods for constructing
fast mixing Markov chains on a graph (see, e.g., [13]). In
particular, these weight matrices are symmetric and (doubly)
stochastic, so their eigenvalues are real and no more than 1
in absolute value. For a fixed communication graph, both the
maximum-degree and Metropolis weights satisfy the condi-
tions in (6) if the graph is connected. In §III we will show

that in the time-varying case, these two rules for choosing
weights lead to the convergence (5), provided that the infinitely
occurring communication graphs are jointed connected.

We note that the maximum-degree and Metropolis weights
defined above are not quite the same as the weights defined
in the traditional Markov chain literature: Here we have an
extra 1 added to the denominators for the edge weights. (In
the maximum-degree case, the maximum-degree is n − 1.)
This modification guarantees that the diagonal entries Wii are
always strictly positive, which will be needed in §III to prove
convergence.

The Metropolis weights are well suited for distributed
implementation, since each node only needs to know the
degrees of its neighbors to determine the weights. The nodes
do not need any global knowledge of the communication
graph, or even the number of nodes n. For the maximum-
degree weights, each node has to know n, or at least an upper
bound of n (replacing n with an upper bound will also give
weights that guarantee convergence to the average).

III. CONVERGENCE OF AVERAGE CONSENSUS

In this section, we show that both the maximum-degree and
Metropolis weights guarantee convergence of the average con-
sensus provided that the time-varying communication graphs
are “connected in a long run”; more precisely, if the infinitely
occurring communication graphs are jointly connected (see
definition in §I-C).

For a network of n nodes, there are only finitely many,
say a total of r, possible communication graphs. We denote
the set of all possible graphs by {G1, . . . ,Gr}, and the set
of corresponding weight matrices by {W1, . . . ,Wr} (they
are determined by either the maximum-degree rule or the
Metropolis rule). Then equation (4) can be written as

x(t + 1) = Wi(t)x(t) (10)

where the indices i(t) are integers and satisfy 1 ≤ i(t) ≤ r
for all t. The sequence {i(t)}∞t=0 can be either deterministic
or stochastic. In any case, there is a subset of the graphs
(equivalently a subset of the indices {1, 2, . . . , r}) that oc-
cur infinitely often in the sequence. We have the following
convergence theorem:

Theorem 1: If the collection of communication graphs that
occur infinitely often are jointly connected, then the itera-
tion process (10) converges with either the maximum-degree
weights or the Metropolis weights, and

lim
t→∞x(t) =

(
1
n
1T x(0)

)
1

for all x(0) ∈ Rn. Equivalently, limt→∞Φ(t)=(1/n)11T .
This theorem requires a very weak condition on the long-

term connectivity of the graph (cf. [12], [14], [15]). In partic-
ular, it does not require each link to be active for an infinite
amount of time. In fact, many links can fail permanently.
The only requirement is that the surviving links (those active
infinitely often) make a connected graph. For example, it
suffices for the surviving links to make a spanning tree of the
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original arbitrary graph. In this sense, the distributed average
consensus is quite robust to temporary and permanent link
failures.

The proof of this theorem is based on a convergence result
for nonhomogeneous infinite products of paracontracting ma-
trices [16], which we will explain next. (Theorem 1 will be
proved in §III-B.)

A. Infinite products of paracontracting matrices

The concept of paracontracting matrices was introduced
in [17]. A matrix M ∈ Rn×n is called paracontracting with
respect to a vector norm ‖ · ‖ if

Mx �= x ⇐⇒ ‖Mx‖ < ‖x‖. (11)

It is clear that a symmetric matrix is paracontracting with
respect to the Euclidean norm if and only if all its eigenvalues
lie in the interval (−1, 1].

For a paracontracting matrix M , let H(M) denote its
fixed-point subspace, i.e., its eigenspace associated with the
eigenvalue 1,

H(M) = {x | x ∈ Rn, Mx = x}.
The following is a key result in [16]. (See also the book
[18], which puts together much of the basic work on the
convergence of nonhomogeneous matrix products.)

Theorem 2 ([16]): Suppose that a finite set of square ma-
trices {W1, . . . ,Wr} are paracontracting. Let {i(t)}∞t=0, with
1 ≤ i(t) ≤ r, be a sequence of integers, and denote by J the
set of all integers that appear infinitely often in the sequence.
Then for all x(0) ∈ Rn the sequence of vectors x(t + 1) =
Wi(t)x(t), t ≥ 0, has a limit x∗ ∈ ⋂i∈J H(Wi).

Intuitively, each paracontracting matrix preserves vectors in
its fixed-point subspace, and is contractive for all other vectors.
If some paracontracting matrices occur infinitely often in the
iterative process, then the limit can only be in the intersection
of their fixed-point subspace.

B. Proof of Theorem 1

To use the result of Theorem 2, we need to prove the
following two lemmas.

Lemma 1: For any graph, both the maximum-degree weight
matrix and the Metropolis weight matrix are paracontracting
with respect to the Euclidean norm.

Proof: By the definitions (8) and (9), both the maximum-
degree and the Metropolis weight matrices are symmetric
stochastic matrices, so they are valid transition probability
matrices for a Markov chain on the graph; see, e.g., [13]. This
implies that their eigenvalues are all real and lie in the interval
[−1, 1].

The two definitions also guarantee that the diagonal entries
Wii are all strictly positive. (see the comments in §II-A). This
means that the corresponding Markov chains are aperiodic,
which is equivalent to say that −1 cannot be an eigenvalue.
Thus all the eigenvalues lie in the interval (−1, 1], and
the weight matrices are paracontracting with respect to the
Euclidean norm.

Lemma 2: If a collection of graphs {G1, . . . ,Gp} are jointly
connected, then their corresponding Metropolis weight matri-
ces (or the maximum-degree weight matrices) satisfy

p⋂
i=1

H(Wi) = span{1}. (12)

Proof: By definition (9), the Metropolis weight matrices
are stochastic, so we have 1 ∈ H(Wi) for i = 1, . . . , p.
Therefore

span{1} ⊂
p⋂

i=1

H(Wi). (13)

Notice that if Wix = x for i = 1, . . . , p, then we have(
1
p

∑p
i=1 Wi

)
x = x. Therefore

p⋂
i=1

H(Wi) ⊂ H
(

1
p

p∑
i=1

Wi

)
. (14)

But the matrix 1
p

∑p
i=1 Wi is symmetric, stochastic and irre-

ducible (since the underlying graphs are jointly connected),
which implies that 1 is its only eigenvector (up to scaling)
associated with the eigenvalue 1 (see, e.g., [19]). In other
words,

H
(

1
p

p∑
i=1

Wi

)
= span{1}. (15)

Putting the equations (13), (14) and (15) together, we get the
desired result (12). It is clear that the same result holds for
the maximum-degree weights defined in (8).

Now we are ready to prove Theorem 1. Without loss of
generality, let {G1, . . . ,Gp} (p ≤ r) be the set of infinitely
occurring communication graphs, and assume that they are
jointly connected. It is clear that the set of all communication
graphs {G1, . . . ,Gr} are also jointly connected. By Lemma 2,
we have

r⋂
i=1

H(Wi) =
p⋂

i=1

H(Wi) = span{1}.

We write the initial vector x(0) = u(0)+w(0), where u(0)
is the orthogonal projection of x(0) onto span{1}, i.e.,

u(0) =
(

1
n
1T x(0)

)
1,

and w(0) ∈ 1⊥ = {z ∈ Rn | 1T z = 0}. Because u(0) ∈
∩p

i=1H(Wi), the sequence given by u(t + 1) = Wi(t)u(t)
is constant, and we have the limit u∗ = u(0). On the other
hand, because 1⊥ is invariant under all Wi(t), the sequence
of vectors given by w(t + 1) = Wi(t)w(t) all belong to the
subspace 1⊥, and so is the limit w∗. But by Theorem 2 we
have w∗ ∈ span{1}. So the only possibility is w∗ = 0. We
conclude that the iterative process (10) has the limit

x∗ = u∗ + w∗ =
(

1
n
1T x(0)

)
1.

This finishes the proof for Theorem 1.
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C. Remarks

Because of the very weak condition we require on the
long-term connectivity, in general there may not exist a linear
convergence rate, as defined in (7) for the case of fixed graph.
To have linear convergence, we have to impose more condi-
tions on how often joint connectedness occurs. For example,
if there exists an integer T > 0 such that the set of graphs
{G(τ) | t ≤ τ < t + T} are jointly connected for all t, then it
can be shown that the sequence x(t) converges geometrically
(linear convergence). For detailed analysis of this kind, see,
e.g., [18] and references therein.

The paper [12] studied the convergence property of the
following nearest neighbor rule for coordination over time-
varying communication graphs

xi(t + 1) =
1

1 + |Ni(t)|


xi(t) +

∑
j∈Ni(t)

xj(t)




for i = 1, . . . , n. (See also [14], [15].) Note that the associated
weight matrices, though (row) stochastic, are not symmetric. It
was shown that the sequence {x(t)}∞t=0 converges to a vector
in span{1} if there exists an infinite sequence of contiguous,
non-empty, bounded time intervals such that across each
such interval the graphs are jointly connected (a stronger
assumption than ours). However, the limit vector usually is not
the orthogonal projection (1T x(0)/n)1. It depends on x(0) as
well as the switching sequence {i(t)}∞t=0. For this reason, the
nearest neighbor rule cannot be used for average consensus.

IV. DISTRIBUTED SENSOR FUSION BASED ON AVERAGE

CONSENSUS

Now we explain how distributed average consensus can be
used to compute θ̂ML in the general setup of §I-A. Through-
out this section, we assume that the collection of infinitely
occurring communication graphs are jointly connected.

A. The distributed sensor fusion scheme

In this scheme, each sensor node maintains a local compos-
ite information matrix Pi(t) ∈ Rm×m and a local composite
information state qi(t) ∈ Rm, initialized at t = 0 as

Pi(0) = AT
i Σ−1

i Ai,

qi(0) = AT
i Σ−1

i yi,

for i = 1, . . . , n. Then the nodes conduct average consensus
entry-wise for the matrices Pi(0) and vectors qi(0), i.e.,

Pi(t + 1) = Wii(t)Pi(t) +
∑

j∈Ni(t)

Wij(t)Pj(t),

qi(t + 1) = Wii(t)qi(t) +
∑

j∈Ni(t)

Wij(t)qj(t).

Here we can use either the maximum-degree weights or the
Metropolis weights.

By assumption, the communication graphs that occur in-
finitely often are jointly connected, so we have the following
convergence result (by Theorem 1)

lim
t→∞Pi(t) = (1/n)

n∑
i=1

AT
i Σ−1

i Ai,

lim
t→∞ qi(t) = (1/n)

n∑
i=1

AT
i Σ−1

i yi.

Therefore, each node asymptotically computes the ML esti-
mate via

θ̂ML = lim
t→∞Pi(t)−1qi(t), i = 1, . . . , n.

This scheme doesn’t involve explicit point-to-point message
passing or routing. Instead, it diffuses information in the
network by updating each node’s data with a weighted average
of its neighbors’. It has the following properties.

• Universal data structure. All the nodes maintain the
same, fixed data structure: Pi(t) ∈ Rm×m and qi(t) ∈
Rm, which are independent of local dimensions mi.

• Isotropic protocol. All the nodes communicate with their
instantaneous neighbors, and use the same rule to choose
averaging weights in computation.

• robust to link failures and topology changes. This scheme
works in a network with unreliable communication links,
provided the infinitely occurring communication graphs
are jointly connected.

Other distributed algorithms have been proposed to solve
the normal equation(

n∑
i=1

AT
i Σ−1

i Ai

)
θ̂ML =

n∑
i=1

AT
i Σ−1

i yi.

directly by either iterative methods such as block Gauss-Seidel
iteration [4], or by Gauss elimination [20]. However, they
may not enjoy all the properties above. More importantly,
our scheme offers reasonable intermediate estimates without
waiting for the asymptotic convergence, as analyzed next.

B. Properties of intermediate estimates

The true ML estimate is found at each node only in the
limit as t → ∞. In this section we study the properties of the
intermediate estimates,

θ̂i(t) = Pi(t)−1qi(t), i = 1, . . . , n. (16)

(This is available at node i as soon as Pi(t) is invertible.)
We show that they have some satisfying properties to serve as
intermediate estimates.

First, let’s examine the expressions for the composite infor-
mation matrices and composite information states

Pi(t) =
n∑

j=1

Φij(t)AT
j Σ−1

j Aj ,

qi(t) =
n∑

j=1

Φij(t)AT
j Σ−1

j yj .
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Thus at each step, each node has a block-scaled WLS
solution, where the scaling factors are the entries of Φ(t). As
t → ∞, the matrix Φ(t) converges to (1/n)11T , i.e., all the
scaling factors Φij(t) converge to 1/n. Therefore the estimate
θ̂i(t) converges to θ̂ML for every i = 1, . . . , n. Furthermore,
we have the following theorem.

Theorem 3: Assume that the communication graph G(t) is
a random variable, and it is independent of the measurement
noise v. Then all the intermediate estimates θ̂i(t) are unbiased,
i.e.,

E θ̂i(t) = θ, i = 1, . . . , n (17)

whenever θ̂i(t) is defined (i.e., when Pi(t) is invertible); and
the error covariance matrix at each node converges to that of
the global ML solution, i.e.,

lim
t→∞E

[
(θ̂i(t) − θ)(θ̂i(t) − θ)T

]
=
(
AT Σ−1A

)−1
. (18)

Here the expectation is taken with respect to both the measure-
ment noise v and the sequence of random graphs {G(t)}∞t=0.
(The above results also hold if the sequence of time-varying
communication graphs is deterministic.)

Proof: Whenever Pi(t) is invertible, we have

E θ̂i(t) = E Pi(t)−1qi(t)

= E Pi(t)−1

(
n∑

j=1

Φij(t)AT
j Σ−1

j (Ajθ + vj)

)

= θ + E Pi(t)−1

(
n∑

j=1

Φij(t)AT
j Σ−1

j vj

)

= θ +
n∑

j=1

E

(
Φij(t)Pi(t)−1AT

j Σ−1
j

)
Evj

= θ.

In the second-to-last equality, we used the fact that Pi(t) and
Φ(t) only depend on {G(s)}t−1

s=0, which is independent of v. To
obtain the last equality, we used the assumption that Evj = 0
for all j.

Unlike the expectation of θ̂i(t), the error covariance matri-
ces do depend on the distribution of the random communi-
cation graphs. We consider the covariance matrix conditioned
on a particular sequence {G(s)}t−1

s=0

Qi(t) = E
[
(θ̂i(t) − θ)(θ̂i(t) − θ)T

∣∣∣ {G(s)}t−1
s=0

]

= Pi(t)−1

(
n∑

j=1

Φ2
ij(t)A

T
j Σ−1

j Aj

)
Pi(t)−1.

As t increases, the coefficients Φij(t) all converge to 1/n, and
the error covariance matrices Qi(t) depend less and less on
the particular sequence of graphs. In the limit, we have

lim
t→∞Qi(t) =

(
n∑

j=1

AT
j Σ−1

j Aj

)−1

=
(
AT Σ−1A

)−1
,

which is precisely the error covariance for the ML estimate,
i.e., the matrix Q in (2). Since this limit is independent of the
sequence {G(s)}∞s=0, we have proved (18).

A

B

Fig. 1. A randomly generated sensor network with 50 nodes and 200 links.

In summary, at each step, every node can compute a
local, unbiased, weighted least-square estimate θ̂i(t) whenever
Pi(t) is invertible. All such intermediate estimates converge
to the global maximum-likelihood solution, and so do the
corresponding error covariance matrices.

One key feature of this scheme is that the sensors can
always use the intermediate estimates, whenever they are
queried, before waiting for the asymptotic convergence of the
estimation covariance. This is in contrast to those iterative
estimation schemes that requires final convergence to compute
the best estimate. There is always a trade-off between variance
of the estimate and the number of iterations. Intermediate
estimates after a few iterations tend to weight heavily on
measurement data of nearby sensors; better and better global
picture is revealed as the iterative process goes on.

V. NUMERICAL EXAMPLE

We demonstrate our method with a randomly generated
numerical example. Consider a sensor network whose commu-
nication graph is shown in Figure 1. This graph is generated
as follows: we first randomly generate n = 50 sensor nodes,
uniformly distributed on the unit square [0, 1] × [0, 1]; then
connect two nodes by an edge if their distance is less than
1/4. In the particular setup of Figure 1, there are 200 edges.
The vector of unknown parameters, θ, has dimension m = 5.
Each sensor takes a scalar measurement yi = aT

i θ+vi, where
the vectors ai were chosen from a uniform distribution on the
unit sphere in R5, and the noises are i.i.d. Gaussian with unit
variance: vi ∼ N (0, 1).

In our first experiment, we fixed the sensor network and
simulated the proposed sensor fusion scheme, with both the
max-degree weights and the Metropolis weights. We picked
two nodes, A and B (with degrees 2 and 10 respectively,
labeled in Figure 1), to plot their mean-square errors (MSE)
E‖θ̂i(t) − θ‖2 = trace(Qi(t)); see Figure 2. All the mean-
square errors converge to the optimal ML estimation error.
It can be seen that using the Metropolis weights leads to
much faster convergence than the max-degree weights. (The
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Fig. 2. MSE at nodes A and B: fixed communication graph.
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Fig. 3. MSE at nodes A and B: dynamically changing communication graph.

advantage of Metropolis weights becomes more pronounced
as the number of nodes increases.) In either case, node B has
slightly faster convergence than node A, because node B has a
larger degree and thus has “better connection” in the network.

We also simulated the proposed sensor fusion scheme with
dynamically changing communication graphs. We generated
the sequence of communication graphs as follows: at each time
step, each edge in the graph is only available with probability
1/4, independent of other edges and all previous steps. The
MSE at node A and B are plotted in Figure 3. In this case,
the curves shown are conditioned on the particular sequence
of graphs used in simulation. However, as we have shown in
Theorem 3, they always converge to the same optimal ML
estimation error.

VI. DISCUSSIONS AND EXTENSIONS

In this paper, we proposed a scheme for distributed sensor
fusion based on average consensus. In this scheme, all the
sensor nodes maintain a universal data structure: a composite

information matrix and a composite information state whose
sizes are independent of the local measurement dimensions.
All the nodes use an isotropic protocol for communication and
computation: they only communicate with their instantaneous
neighbors, and use the same rule to determine the edge
weights. At each step (whenever the composite information
matrix is invertible), every node can compute a local, unbiased
estimate, and all such intermediate estimates converge to the
global ML solution.

This scheme doesn’t involve explicit point-to-point message
passing or routing; Instead, it diffuses information by updating
each node’s data with a weighted average of its neighbors’.
Moreover, it guarantees convergence so long as the infinitely
occurring communication graphs are jointly connected. Similar
diffusive schemes have also been studied in distributed load
balancing problems, e.g., [21], [22]. The convergence result
with unreliable communication links established in this paper
applies directly to such problems.

A very interesting extension is to consider distributed data
fusion with multiple measurements at each node, where the
measurements are taken at different time steps and happen
asynchronously in the network. In this scenario, we hope to
develop a space-time diffusion scheme to do recursive least-
squares estimation (the scheme in this paper can be considered
space-diffusion). A further step would be trying to apply such
diffusion schemes in distributed Kalman filter (or information
filter); see [23] and the recent work [7].

The ML estimation problem considered in this paper can
also be considered as a special case of distributed optimization
in sensor networks. For example, incremental subgradient
methods are used in [24] to solve such problems. In our case,
the solution can be obtained by solving a set of linear equations
(see (1)), and we used an iterative scheme based on average
consensus to approximate the solution.

We have focused on a simple model which does not consider
many important practical issues such as power efficiency,
quantization of measurements, finite-bit communication, trans-
mission errors and delays, and reliable communication proto-
cols. As an effort in these directions, we will discuss the issue
of finite-bit communication in some detail.

A. Average consensus with finite-bit communication

We assume that the storage and float-point computation at
the sensor nodes use a much higher precision than the finite-bit
communication between nodes.

One of the key properties of the iterative algorithm (4) is
that the sum (and hence the average) is always preserved, i.e.,
1T x(t + 1) = 1T x(t), because 1T W (t) = 1T holds for all
the weight matrices we use. Since the weight matrices are
stochastic, we can eliminate Wii(t) using

Wii(t) = 1 −
∑

j∈Ni(t)

Wij(t).

So we can rewrite (3) as

xi(t + 1) = xi(t) +
∑

j∈Ni(t)

Wij(t)(xj(t) − xi(t)). (19)
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Now it is clear that preserving the sum relies on the fact
that the weights are symmetric, so the interchanges between
two neighboring nodes always have the same modulus with
different signs, i.e.,

Wij(t)(xj(t) − xi(t)) = −Wji(t)(xi(t) − xj(t)).

However, this may no longer be the case with finite-bit
communication where the xi(t)’s are always rounded first
before transmission. This can be seen with the following
example (we skip the time index to simplify notation). Let
xi = 4.53 and xj = 5.39. Suppose we can only transmit two
digits and use the usual rounding scheme. Then node i receives
x̃j = 5.4 and the corresponding modification is

Wij(x̃j − xi) = 0.87Wij ,

and node j receives x̃i = 4.5 and the corresponding modifi-
cation is

Wji(x̃i − xj) = −0.89Wij .

So the interchanges between the two nodes have different
modulus, and the sum 1T x(t) across the network will not be
preserved. This phenomenon will cause a drift in computing
the average.

There is a simple protocol to fix this drifting problem. The
idea is to let two neighboring nodes always agree on the same
modulus of their interchange (with different signs). Suppose
node i sends a rounded version x̃i(t) to its neighbor j. Node j
computes the difference xj(t) − x̃i(t), but uses a rounded
version of this difference, ∆ji(t), in computing its local value
xj(t + 1). At the same time, it sends ∆ij(t) = −∆ji(t)
back to node i. This makes sure that two neighboring nodes
always increase/decrease their data by the same modulus with
opposite signs. This modified algorithm can be written as

xi(t + 1) = xi(t) +
∑

j∈Ni(t)

Wij(t)∆ij(t). (20)

Since we have ∆ij(t) = −∆ji(t), it is clear that this algorithm
always preserves the sum, and hence the average, of the xi’s
in the network.

Of course, the algorithm (20) is a nonlinear iteration. It
will only converge to a neighborhood of the average vector
(1T x(0)/n)1, and may have some complex limiting behavior.
We hope to address this and other practical issues in future
research.
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