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Abstract
Policies for the joint identification and control of un-
certain systems are presented. The discussion fo-
cuses on the case of a multiple input, single output
linear system, with no dynamics and quadratic cost,
and system parameters assumed to have a known
Gaussian distribution. Extensions for multiple out-
put, and for finite impulse response systems are
straightforward. The policies proposed are heuris-
tics, and an approximation of the optimal dynamic
programming solution, that exploit convex optimiza-
tion techniques. Numerical experiments are encour-
aging.

1 Introduction

This paper addresses the problem of controlling uncertain
systems, where a policy for joint identification and control
(or dual control) is required. While the measure of success of
such a policy is by its control performance alone, it may be
desirable to sacrifice some immediate control performance in
order to select inputs that generate more information about
the system – and thereby improve control performance in
the future. If the policy is passive with respect to learning,
i.e., if in the selection of the inputs no attention is paid to
their effect on system identification, the overall control per-
formance can be severely degraded (in the extreme case, and
for some systems, this can lead to intermittent instability, or
bursting phenomena, as described by B. Anderson [1]).

This paper discusses the case of a multiple input, single out-
put linear system, with no dynamics and quadratic cost.
This choice is justified by the need to clarify concepts, and to
keep expressions simple. Extensions for multiple output, and
for finite impulse response systems are straightforward. The
simple problem discussed here has, nevertheless, a number
of industrial applications.

With the currently available convex optimization techniques,
and given ever increasing processor speed and memory, con-
vex programs can be solved in real-time at ever faster rates,
which opens the way to many new control policies.

2 Problem statement

Consider a sequence of T linear input-output relations with
random disturbances,

yk = bTuk + ek, k = 1, . . . , T. (1)
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We refer to k as the time index, and to T as the horizon.
Inputs u1, . . . , uT ∈ Rn are to be selected, with the goal of
producing outputs y1, . . . , yT ∈ R with some desired prop-
erty. The e1, . . . , eT ∈ R are disturbances (or output noises),
each with normal distribution N (0, σ2

e), and mutually inde-
pendent. The system parameters b ∈ Rn are imprecisely
known. The a priori distribution of b is normal N (b̂0,Σ0),
and independent of the ek. We’ll assume the covariance ma-
trix Σ0 ∈ Rn×n to be positive definite, and define the a
priori information matrix as

Π0
∆
= Σ−1

0 .

The goal is to optimize a performance measure which is
a function of the outputs y1, . . . , yT . In this paper, we
seek to minimize the expected value of the sum of the
squares of the deviations from some desired output trajec-
tory ydes

1 , . . . , ydes
T ∈ R (i.e., the `2-norm of the tracking

error). The full sequence ydes
1 , . . . , ydes

T is assumed known
a priori. In addition, we consider an additional cost term
quadratic in the inputs, weighted by ρ ≥ 0. The expected
cost is then

φ
∆
= E
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yk − ydes

k
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+ ρuTk uk

!
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!
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The expectation is over the distributions of b, e1, . . . , eT .

We define a feasible policy to be one where the choice of
the uk is non-anticipating in k, in the sense that it relies
only on information available up to time k− 1, in particular
on y1, . . . , yk−1. It may also use the a priori information
about the distributions of b and e1, . . . , eT , and about the
full sequence of desired outputs ydes

1 , . . . , ydes
T . Formally, the

problem consists in finding the functions ψ1, . . . , ψT , of the
form

uk = ψk(b̂0,Π0, σ
2
e , y

des
1 , . . . , ydes

T , y1, . . . , yk−1), (3)

that minimize (2). In a feasible policy, uk is a random vari-
able measurable σ(y1, . . . , yk−1). (We’ll also consider a gen-
eralization, which we call randomized feasible policy, where
uk is measurable σ(y1, . . . , yk−1, w), with w some indepen-
dent random variable introduced to allow for the random-
ization of uk.)

Intuitively, finding the best input uk requires solving the
tradeoff between 1) choosing a uk expected to produce an
output that is close to ydes

k and 2) introducing perturbations
in the input to improve knowledge of b and, as a consequence,
obtain better performance in problems k+1, . . . , T . The two
goals may conflict. For instance, if a zero output is desired
at some time k, the smallest expected error is obtained by



selecting a zero input uk. But a zero input is also the least
informative. In terms of the overall expected cost, it may be
better to select a (small) non-zero input that is more infor-
mative, in the sense that it improves the accuracy with which
we can estimate b, leading to improved tracking performance
in future times k+1 to T . This trade-off between design for
estimation (or experiment design, or system identification)
and optimization (or control), is the central concern of our
study.

The true solution to the problem is given by a dynamic pro-
gram which is very hard to solve numerically. It requires
numerical integration over a high dimensional space (what
has been called the “curse of dimensionality”). We propose
an approximation which results in a semidefinite program,
for which very effective solution methods have been devel-
oped in recent years. Prior to the development of these al-
gorithms, the approximation we introduce might have been
considered almost as complex as the original problem. For
further discussion of dual control and dynamic programming,
see A. Fel’dbaum [2, 3], Y. Bar-Shalom [4, 5, 6], Kumar and
Varaiya [7, §6.8], and D. Bertsekas [8, §6].

The other approach discussed in this paper is heuristic in
nature, and relates to some recent work on plant-friendly
identification (see Genceli and Nikolaou [9], and Cooley and
Lee [10]). We place this idea in a more general and produc-
tive framework, by introducing measures of input informa-
tiveness.

Results for this problem translate directly to the receeding
horizon case, where after the application of the first input u1

the problem is extended to include consideration of ydes
T+1 (so

that the horizon T remains constant). Note, however, that
receeding horizon control is but a heuristic for the infinite
horizon problem, which we do not address in this paper. For
references on model predictive predictive control see, e.g.,
R. Bitmead et al. [11].

2.1 Conditional distribution of b
This section succinctly presents, for later use, standard re-
sults on the conditional distribution of b given the outputs
y1, . . . , yk (see, e.g., L. Ljung [12]). Define

Uk
∆
=

2
64
uT1
...
uTk

3
75 , Yk

∆
=

2
64
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...
yk

3
75 , Y des

k
∆
=

2
64
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1
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ydes
k

3
75 .

The conditional distribution of b given Uk and Yk is normal
N (b̂k,Σk) = N (b̂k,Π

−1
k ), with

Πk = Π0 + σ−2
e UTk Uk,

b̂k = Π−1
k

�
Π0b̂0 + σ−2

e UTk Yk
�
.

Equivalent, recursive formulas are

Πk+1 = Πk + σ−2
e uk+1u

T
k+1,

b̂k+1 = b̂k + σ−2
e Π−1

k+1uk+1

�
yk+1 − b̂Tk uk+1

�
.

Note that, since all distributions are assumed normal, b̂k and
Π−1
k are sufficient statistics and summarize all information

available about b. They can be interpreted as a system state.
We’ll also use the notation b̃k = b− b̂k.

3 Passive learning (adaptive control)

3.1 Certainty equivalent policy
This section addresses a suboptimal feasible policy, which
is the equivalent of adaptive control applied to our problem.
Consider the conditional distribution, described by b̂k−1 and
Πk−1, and updated as described in §2.1. At each time index
k, the input uk is chosen as if b was precisely known, and
equal to b̂k−1. That is, the input is selected as if Σk−1 = 0
and, in this sense, we call it a certainty equivalent policy.
In the selection of the input at each time step k, we use
b̂k−1 which depends on y1, . . . , yk−1 (b̂k−1 also depends on
u1, . . . , uk−1, which are in turn functions of y1, . . . , yk−2). If
it were true that Σk−1 = 0, the expected cost conditional on
Yk−1 would be

φ =
Pk−1
l=1 (yl − ydes

l )2 + σ2
e + (b̂Tk−1uk − ydes

k )2 + ρuTk uk

+
PT

l=k+1

�
σ2
e + E

�
(b̂Tk−1ul − ydes

l )2 + ρ uTl ul
��

.

Differentiating with respect to uk and equating to zero, we
obtain the desired policy,

uk = (b̂k−1b̂
T
k−1 +ρI)−1b̂k−1y

des
k =

1

‖b̂k−1‖2 + ρ
b̂k−1y

des
k ,

where we used the matrix inversion lemma for a rank one
update (and the fact that, if Σk−1 = 0, uk+1, . . . , uT are in-
dependent of uk). With this policy, the expected cost (using
the true value of Σk−1 6= 0) is

φ = Tσ2
e + E

 
TX
k=1

(ydes
k )2

ρ+ ‖b̂k−1‖2

 
ρ +

b̂Tk−1Π
−1
k−1b̂k−1

ρ+ ‖b̂k−1‖2

!!
.

Note that for k = 1, . . . , T − 1, b̂k and Πk are random vari-
ables, because they are functions of y1, . . . , yk−1.

In this policy, b̂k−1 is used as an estimate of b. The accu-
racy of this estimate improves at each time index, due to the
information gained from successive outputs (summarized in
the updating of Πk and b̂k). From the last equation we see
that small Π0, . . . ,ΠT−1 yield a large expected cost (where
small here may be taken to mean, e.g., a small λmin). Nev-
ertheless, in the selection of u1, . . . , uT−1, no effort is made
to make the Πk large (note, from §2.1, that Πk is quadratic
in u1, . . . , uk). The inputs are designed without regard for
their effect on the estimation procedure, warranting the term
passive learning.

3.2 Regularized policy
Consider now another passive learning policy, where instead
of using the certainty equivalent approximation at time k,
the conditional distribution of b given y1, . . . , yk−1 is taken
into account. The input uk is selected to minimize only the
immediate expected cost given the available information

E
��
yk − ydes

k

�2
+ ρuku

T
k

���Yk−1

�
=

= uTkΠ−1
k−1uk +

�
b̂Tk−1uk − ydes

k

�2

+ σ2
e + ρuku

T
k .

The minimizing input, obtained by differentiating and equat-
ing to zero, is

uk =
�
Π−1
k−1 + b̂k−1b̂

T
k−1 + ρI

�−1

b̂k−1y
des
k .

Note that Π−1
k−1 can be seen as a regularization term. In

some sense, it adds a measure of caution to account for the



uncertainty in the estimate of b. As ‖Πk−1‖ → 0, the optimal
input goes to zero. The expected cost, for ρ = 0, simplifies
to

φ = Tσ2
e +

TX
k=1

E

 
(ydes
k )2

1 + b̂Tk−1Πk−1b̂k−1

!
.

As ‖Πk−1‖ → 0, the minimum expected cost approaches an
upper bound, which is the cost of selecting a zero input.

Again, small Π0, . . . ,ΠT−1 yield a large expected cost. The
policy is suboptimal because the selection of uk does not take
into account its effect on Πk, . . . ,ΠT−1 (which are quadratic
in uk). This is, in effect, a greedy policy: At each time
index, uk is selected to minimize the immediate expected
cost, E((yk − ydes

k )2), without regard for future costs. As
in §3.1, there is no design for estimation, in the sense that
the benefits to be gained from selecting inputs that make the
Πk large are not considered.

3.3 Derivative of the expected cost with respect to
information
An invaluable and generally overlooked fact is that, for many
regularized or robust policies, the derivative of the cost with
respect to the information matrix is easily computed. For
the regularized passive learning policy with ρ = 0, we have
that

d

dΠ0

 
σ2
e +

(ydes
1 )2

1 + b̂T0 Π0b̂0

!
= − (ydes

1 )2�
1 + b̂T0 Π0b̂0

�2 b̂0b̂
T
0 .

4 Persistency of excitation, dithering, and
maximally informative inputs

We have seen that the cost incurred at time k may be
large if λmin(Πk) is small. In other words, if the covariance
Σk = Π−1

k is large, b̂k is an unreliable estimate of the system
parameters b, and this leads to poor performance. The most
immediate solution is to ensure that some measure of infor-
mation, such as λmin(Πk) = λmin(Π0 + σ−2

e UTk Uk), is large.
This can be translated into a requirement that Uk be well-
conditioned, which is what is usually meant by persistency
of excitation. Informally, we want the uk to span the whole
input space.

4.1 Dithering
Several solutions have been proposed to satisfy the persis-
tency of excitation requirement. Dithering is a randomized
feasible policy that consists of adding to the inputs some
white noise (i.e., normal, zero mean and independent ran-
dom terms). This can work well since, given a high enough
noise level, Πk will be well-conditioned with high probability.
Although it has the advantage of very simple implementa-
tion, dithering is obviously a sub-optimal policy, and the
selection of a good noise level can be problematic.

Example
Consider the problem described by

n = 2, b̂0 =

�
0
1

�
, Π0 =

�
6 2
2 10

�
, σ2

e = 0.1,

T = 10, Y des
10 = [ 0 0 0 0 0 10 10 10 10 10 ]T .

We implement a dithered policy based on regularized pas-
sive learning (§3.2). Figure 1 plots the expected cost as the

variance of the random terms (the input noise level) ranges
from 1.0×10−9 to 10. These values were obtained by Monte
Carlo simulation, with 1000 runs at each input noise level
(the corresponding error bars are also plotted). Note that
this may seem counterintuitive: The performance of the pol-
icy is improved by adding independent noise to the inputs.
As the noise level goes to zero, we approach the non-dithered
regularized passive learning policy, which has an average cost
of 9.3 (±0.43). At the optimal input noise level (selected a
posteriori), the average cost is 4.0 (±0.19). Of course, any
practical dithering policy must select the input noise level a
priori, which may be difficult.
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Figure 1: Expected cost as a function of dithering level.

4.2 Measuring and valuing information
A more thoughtful approach is to select a perturbation that,
for a given level of control disturbance, maximizes the infor-
mation gathered. For this purpose, we need a measure of
information. A list of possible measures, using the naming
convention from experiment design, is

• E-optimal: λmax
−1(Σk) = λmin(Πk)

• D-optimal: log det Πk

• A-optimal: −Tr (Σk) = −Tr
�
Π−1
k

�
The E-optimal and A-optimal measures may be scaled to
account for the derivative of the expected cost with respect to
information (§3.3), while the D-optimal measure is invariant
with scaling. For a numerically effective heuristic, we would
like a measure that is concave in the inputs. These measures
are concave-quadratic, and linearizing Πk in Uk makes them
concave. This linearization can be expected to work well if
the perturbations introduced for the purpose of identification
are small. We return to this point in §5.5.

4.3 Maximally informative inputs
One approach consists of expressing explicitly the trade-off
between control and information, by adding to the objective
function an extra term valuing information. A very simple
example of such a policy is to select the u1 that minimizes

uT1 Π−1
0 u1 + (b̂T0 u1 − ydes

1 )2 + ρu1u
T
1 − γ λmin(Π1),

and likewise for u2, . . . , uT , with the appropriate updating
of Πk and b̂k. The extra term makes this policy, in part, an
experiment design problem. As with dithering, a perturba-
tion will be introduced in the input, what we might now call



an “intelligent noise”. The factor γ > 0 weighs the trade-off
between identification and control. Selecting γ presents the
same difficulties as for selecting the dithering level.

An alternative approach is what has been termed plant-
friendly identification. Although it is essentially a solution to
a different problem, plant-friendly identification can be used
as a heuristic for simultaneous estimation and control. The
idea is to select the maximally informative input from within
the set of inputs that keep some measure of the tracking error
within a bound. For a simple example, we use a constraint
on the absolute tracking error (specified by M ∈ R). The
policy is defined by the program

maximize λmin(Π1)

subject to |̂bT0 u1 − ydes
1 | ≤M.

The bound M can be seen as the trade-off factor, with a
role similar to γ in the previous problem. However, M is a
more “physically meaningful” number, and should be easier
to select in practical applications. The constraint on per-
formance used here disregards the uncertainty in b. A ro-
bust constraint can be used in its place (such a constraint
is convex in the inputs – in fact, it is a second-order cone
constraint, see S. Boyd et al. [13]).

Both these problems are convex if we linearize Π1 in u1,
in which case they are readily solved. If this procedure –
linearization followed by the solution of a convex program
– is iterated, a (local) minimum of the non-convex problem
will be reached.

Note that these heuristics do not use the future desired out-
puts ydes

k , which we assumed known. This is part of the
suboptimal nature of the heuristics, and has the effect of
reducing the sensitivity of their performance with respect
to the future trajectory. This reduced sensitivity may be a
positive feature in applications where the future trajectory
is not fully certain.

5 Optimal policy, dynamic program and
approximation

These heuristic approaches still leave us with some questions,
in particular about 1) what measure of information to use,
and 2) how to decide on the inevitable trade-off between the
informativeness of uk and the output error expected to result
from its application. Roughly speaking, the answer to the
second question is that the trade-off should be such that the
current loss in tracking performance (incurred for the sake
of informativeness) equals the total expected future gains in
tracking performance (due to improved information about
the system). This, in turn, leads to an answer for the first
question: The information measure should be such that it
captures the expected future gain in tracking performance.

The true solution to the problem is given by a dynamic pro-
gram, of which we will outline the derivation. This dynamic
program is, however, hard to solve. We propose an approxi-
mation which results in a semidefinite program.

5.1 Optimal policy for T = 1
We assume, from here on, ρ = 0. Consider the simplest case,
where T = 1. An input u1 is to be selected so as to minimize
the expected cost

φT=1
∆
= Eb,e1

��
y1 − ydes

1

�2
�

= Eb,e1

��
bTu1 + e1 − ydes

1

�2
�

= Eb,e1

��
b̃T0 u1| {z }

1

+(b̂T0 u1 − ydes
1 )| {z }

2

+ e1|{z}
3

�2
�

= uT1 Π−1
0 u1| {z }
1

+(b̂T0 u1 − ydes
1 )2| {z }

2

+ σ2
e|{z}
3

.

The three terms marked can be interpreted as 1) the cost
due to inaccuracy in the estimate of b, 2) the cost due to
deviation from the certainty equivalence policy, and 3) the
cost due to output noise. The input that minimizes this
function, obtained by differentiating and equating to zero,
is

u1 = ψ1(b̂0,Π0, σ
2
e , y

des
1 ) =

�
Π−1

0 + b̂0b̂
T
0

�−1

b̂0y
des
1 .

Note that Π−1
0 can be seen as a regularization term. As

‖Π0‖ becomes small, the optimal input goes to zero. The
minimum expected cost is

φ∗
T=1(b̂0,Π0, σ

2
e , y

des
1 ) = σ2

e +
(ydes

1 )2

1 + b̂T0 Π0b̂0
,

where we used the matrix inversion lemma for a rank one
update. Note that φ∗

T=1 is convex in Σ0 and concave in Π0.
For small ‖Π0‖, the minimum expected cost approaches an
upper bound, which is the cost of selecting a zero input.

5.2 Optimal policy for T = 2
For T = 2, the expected cost is
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+Ey1
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uT2 Π−1

1 u2 + (b̂T1 u2 − ydes
2 )2 + σ2

e

�
, (4)

where (from §2.1)
Π1 = Π0 + σ−2

e u1u
T
1 , b̂1 = Π−1

1

�
Π0b̂0 + σ−2

e u1y1
�
.

We used the tower property of conditional expectation, and
the fact that, if y1 is given, then b̂1 and u2 are constants
and b̃1 has zero mean and covariance Π−1

1 . Also, it is trivial
to see that b̃0 and e1 are independent, and b̃1 and e2 are
independent.

φT=2 is to be minimized over u1 = ψ1 and u2 = ψ2, with ψ2

a function of y1 and u1 (both ψ1 and ψ2 are also functions
of b̂0, Π0, σ

2
e , y

des
1 and ydes

2 , but for clarity these parameters



will be omitted). The minimum of φT=2 can be found by
minimizing first over ψ2 (i.e., finding the minimizing second
input u2 as a function of the first input u1 and output y1).
To find the minimum of (4) we will need to compute

inf
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Ey1
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We conclude that the minimum expected cost is
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Note that we have just derived Bellman’s principle of opti-
mality from first principles for this particular problem. The
solution requires computing an integral of the form

EX

�
1

a0X2 + a1X + a2

�
, X ∼ N (0, σ2).

where

a0
∆
= σ−4

e uT1 Π1u1, a1
∆
= 2b̂T0 u1σ

−2
e , a2

∆
= 1 + b̂T0 Π1b̂0,

X
∆
= b̃T0 u1 + e1 ∼ N (0, σ2), σ2 ∆

= uT1 Π−1
0 u1 + σ2

e .

The denominator polynomial can be shown to be positive for
all X. If an iterative optimization procedure is to be used,
this expectation must be evaluated numerically at each iter-
ation. Alternatively, we will propose using a simple approx-
imation.

Example
Consider the previous example (in §4.1), but with a shorter
horizon. In particular,

T = 2, Y des
2 = [ 0 10 ]T ,

and n, b̂0,Π0, σ
2
e as before. For a given u1, the expected

cost φ is computed assuming that u2 is selected optimally
at k = 2. The expectation in (5) is evaluated by numer-
ical integration. Ranging over values for the two entries
of u1, this produces Figure 2. The optimum is achieved

at u∗
1 =

�
0.200 0.998

�T
, for which the expected cost is

φ∗ = 2.568. This is to be compared with the standard pro-
cedure of minimizing the expected square error at each time
step (i.e., the regularized passive learning policy), which

yields u∗
1 =

�
0 0

�T
, and φ = 9.111.

5.3 Approximate solution for T = 2
Consider the approximation

EX
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�
≈ 1
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.

With this approximation, the problem becomes that of min-
imizing
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Figure 2: Expected cost as a function of first and second
entry of u1 (with u2 optimal).

over u1 ∈ Rn. “Undoing” the minimization over u2, we see
that this is equivalent to minimizing

fT=2
∆
= uT1 Π−1

0 u1 + uT2 (Π0 + σ−2
e u1u

T
1 )−1u2

+(uT1 b̂0 − ydes
1 )2 + (uT2 b̂0 − ydes

2 )2 + 2σ2
e

over u1, u2 ∈ Rn. This approximation is equivalent to mak-
ing the approximation b̂1 ≈ b̂0 in (4), which will be the moti-
vation for an extension of the approximation for any T > 2.
We will take b̂k ≈ b̂0, k = 1, . . . , T − 1, in the equivalent
expression for the expected cost.

An intuitive description of this approximation is as follows.
First, note that the a priori distribution of b can be described
by the ellipsoid ‖(x−b̂0)TΠ0(x−b̂0)‖ ≤ 1 (the maximum vol-
ume set with a given probability). Likewise, the conditional
distribution of b given y1 can be described by the ellipsoid
‖(x − b̂1)TΠ1(x − b̂1)‖ ≤ 1. The total cost will depend on
both the centers (b̂0, b̂1) and the volumes (defined by Π0,Π1)
of the two ellipsoids. From one time index to the next, with
the added knowledge of y1, the center and volume of the el-
lipsoid change (see Figure 3). The center changes randomly,
and this is the term that introduces increased complexity in
the dynamic program (as a side note, this random change
has a zero mean normal distribution that depends on the
inputs, and is easily computed). On the other hand, the vol-
ume changes in a deterministic fashion. Given the inputs,
this change in volume can be precisely predicted. With the
approximation described, we are assuming that the change
in volume is more important in determining the cost than
the change in center, i.e., we assume that the cost is much
less sensitive to the mean of the distribution than to its co-
variance. This is reasonable for systems that are not overde-
termined, which includes our problem.

b̂0

Σ0

b̂1

Σ1

Figure 3: Changes in the conditional distribution of b.



Example
With the same example as in §5.2, for a given u1 we com-
pute fT=2. Again we assume that u2 is selected optimally.
Ranging over values for the two entries of u1, this produces
Figure 4. The minimum of the approximate objective func-

tion fT=2 is achieved at u1 =
�

0.184 0.918
�T

. The ap-
proximate expected cost at this point is fT=2 = 1.997, and
the true expected cost is φT=2 = 2.592. The performance
degradation relative to the optimal policy is 0.9% with the
approximation, as compared to 255% with the regularized
passive learning policy. Figure 5 plots the approximation er-
ror as a function of u1. Note the small error in the region
where the optimum is located, which seems to be a general
feature of this approximation.
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Figure 4: Approximation of the expected cost.
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Figure 5: Approximation error.

5.4 Optimal policy and approximation for T > 2
Following the previous analysis for T = 1 and T = 2, and by
induction on T , the problem of minimizing φ can be written
as a dynamic program. The optimum is given by φ∗ = ϕ∗

1,
with

ϕ∗
k = infuk

�
E((yk − ydes

k )2) + E (ϕ∗
k+1))

�
= infuk

�
uTkΠ−1

k−1uk| {z }
1

+ (b̂Tk−1uk − ydes
k )2| {z }

2

+ σ2
e|{z}
3

+E(ϕ∗
k+1)

�
,

for k = 1, . . . , T , and ϕ∗
T+1 = 0. All infimums are over

the space of feasible policies, i.e., over all uk measurable
σ(y1, . . . , yk−1). The three marked terms can be interpreted
as 1) the cost due to inaccuracy in the estimate of b, 2) the
cost due to the perturbation introduced to improve estima-
tion of b, and 3) the cost due to output noise. To make the
dynamic program tractable we take the same approach as
before, and use the approximation

b̂1 ≈ b̂0, b̂2 ≈ b̂0, · · · b̂T−1 ≈ b̂0.

With this approximation, we can remove the nested condi-
tional expectation, and group the inf operators, so that

φ∗ ≈ inf
u1,...,uT

fT ,

with

fT
∆
=

TX
k=1

uTkΠ−1
k−1uk +

TX
k=1

(b̂T0 uk − ydes
k )2 + Tσ2

e .

Finding this minimum is not a convex program, which
greatly limits our ability to solve large scale problems in
practice.

5.5 Convex approximation (linearization of Πk)
A convex approximation of the objective function above can
be obtained by linearizing the information matrix in the in-
puts. Writing Uk = U0

k + ∆Uk, and for ‖∆Uk‖ small,

UTk Uk ≈ (U0
k )
TU0

k + (U0
k )
T∆Uk + ∆UTk U

0
k

= (U0
k )
TUk + UTk U

0
k − (U0

k )TU0
k .

Likewise,

Πk ≈ Π0 + σ−2
e

�
(U0

k )TUk + UTk U
0
k − (U0

k )TU0
k

�
∆
= Pk.

The term omitted is O(σ2
e‖∆Uk‖2). It is positive semidefi-

nite, hence the approximation undervalues information. We
can expect that a solution based on this approximation will
be conservative in the introduction of perturbations for the
purpose of identification.

The problem now involves a sum of matrix fractional and
quadratic terms, all of which are convex,

minimize
TX
k=1

uTk P
−1
k−1uk +

TX
k=1

(b̂T0 uk − ydes
k )2

where Pk−1 is as above, and the variables are u1, . . . , uT ∈
Rn. This is a matrix-fractional and second-order cone pro-
gram, which is equivalent to the semidefinite program

minimize

TX
k=1

(αk + βk)

subject to�
αk (b̂T0 uk − ydes

k )

(b̂T0 uk − ydes
k ) 1

�
� 0, k = 1, . . . , T

�
βk uTk
uk Pk−1

�
� 0, k = 1, . . . , T

Pk−1 = Π0 + σ−2
e

k−1X
j=1

�
uj(u

0
j )
T + u0

ju
T
j − u0

j (u
0
j )
T
�
,

k = 1, . . . , T,

where the variables are α1, . . . , αT , β1, . . . , βT ∈ R, and
u1, . . . , uT ∈ Rn. Algorithms for solving semidefinite pro-
grams are of polynomial complexity. The complexity of solv-
ing this particular problem with an interior-point method is

bounded by O
�
T

7
2n

9
2

�
. For more on semidefinite program-

ming see, e.g., Vandenberghe and Boyd [14].

5.6 Algorithm
A possible practical algorithm is as follows.

1. Find a nominal input sequence u0
1, . . . , u

0
T according to

a simple policy, such as minimizing
PT
k=1 u

T
kΠ−1

0 uk +PT
k=1(b̂

T
0 uk−ydes

k )2. This amounts to solving without
accounting for the benefits of extra information.



2. Linearize the information matrices Π1, . . . ,ΠT−1

around the nominal input sequence, to obtain the
affine functions P1(u1), . . . , PT−1(u1, . . . , uT−1). (To
avoid the obvious convergence problems that occur
when u0

k = 0, we add a small random term to the
nominal input sequence before linearizing.)

3. Solve the semidefinite program above, to obtain a new
nominal input sequence.

4. Relinearize around the new nominal input sequence
and repeat the optimization. This may be repeated
for a fixed number of times or until convergence (nu-
merical experiments have shown convergence after a
very small number of iterations).

5. Apply the first input of the resulting input sequence
to the system, measure the output, update the distri-
bution of b, and repeat with horizon T ← T−1.

(For the receeding horizon case, instead of repeating with a
decreasing horizon, a new desired output ydes

T+1 is introduced
after application of u1.)

Example
As a numerical example, consider the problem described
for the dithering example in §4.1, with the same simula-
tion methodology. We saw then that the expected cost with
regularized passive learning was 9.3 (±0.43), and that the
expected cost with the best dithering level was 4.0 (±0.19).
With the algorithm described here, the expected cost is 2.0
(±0.08).

6 Conclusions

While the computation of the exact solution to the simul-
taneous estimation and optimization problem seems to be
fundamentally intractable, the mathematical tools and com-
puting resources now available should allow us to solve ef-
fective approximations of the problem in real-time for many
applications. In this paper, we have described some early
results for a simple class of problems. This class is neverthe-
less complex enough to explore the key ideas involved, and
straightforward extensions include the class of finite impulse
response dynamic systems. Numerical examples have shown
that, at least in some cases, the approximation introduced
can perform vastly better than standard adaptive control
techniques. Future research will look into extending these
results, in particular for wider classes of problems, and into
developing a better understanding of the properties of the
different heuristics and approximations.
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