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Abstract
We consider the problem of decomposing a signal with missing entries into a sum
of components, using the optimization formulation described by Meyers and Boyd
[ |. We propose a general form for the component loss functions, and an alterna-
tive algorithm based on quadratic-separable optimization. This yields a flexible and
extensible method for formulating and solving signal decomposition problems.

1 Introduction

1.1 Signal decomposition via optimization

In signal decomposition we decompose a given signal (possibly with some missing entries)
into a sum of components, each with specific characteristics. We follow the formulation of
[ ], where the components are specified via loss functions (possibly including constraints)
and the signal decomposition is carried out by minimizing the sum of the losses, subject to
the constraint that the sum of the components equals the given signal on the known entries.

We adopt the notation of | |, which we review here. We consider a scalar signal y €
(RU{?})" with some entries possibly missing. We use the value ? to denote missing entries,
and say that entry ¢ is known if y, € R. We define K as the set of indices corresponding
to known entries of y, i.e., K = {t | y» € R}. We denote the K components into which we
decompose y as z!, ...,z each in RT (and with no missing entries). We require that the
components sum to y on its known entries, i.e.,

y=x,+ - +af, tek.

The component classes are defined via loss functions ¢, : R* — R U {oco}, where ¢ (z")
gives the implausibility or undesirability of the choice z* (with infinite values corresponding
to constraints). Following a long tradition, the signal decomposition is found as a solution
or approximate solution of the signal decomposition (SD) optimization problem

minimize ¢ (x!) + -+ + ¢K($K) (1)
subject to y; =} +---+ 2k, tek,

1



with variables ', ..., 2. When all of the component losses ¢, are convex, the SD problem
is a convex optimization problem | ]-

In | ] the authors give two methods for solving the SD problem (1) when it is convex,
and approximately solving it when it is not. Both methods rely on evaluations of the so-
called masked proximal operators of the loss functions. For many simple component classes,
these can be worked out analytically or computed efficiently. For such signal decomposition
problems (of which there are many), the methods described in that paper are very effective.

For more complex component classes, evaluating the masked proximal operator requires
numerically solving an optimization problem, which is inconvenient, and also considerably
slows the methods since the optimization problem must be solved in each iteration of the
overall algorithm. In addition to slowing down the overall algorithm, it puts the burden on
the user to work out and implement the masked proximal operator.

As a very simple example, consider the class of (quadratic) smooth signals bounded by
one, with loss function

_ { T:71($t+1 —2ry+ 241)° 2]l <1
¢(x) = =2 : (2)
00 otherwise.

Implementing the masked proximal operator requires solving a quadratic program (QP).
This QP must be solved in every iteration of the algorithms given in | ]. Note that the
two parts of this component class, quadratic smoothness and boundedness, are each readily
handled, with simple analytic masked proximal operators. The masked proximal operator
of the combination, however, is not easy to evaluate.

1.2 This paper

In this paper we address the issue described above, i.e., the implementation challenge and
inefficiency when a component class is more complex. We describe a method that solves
exactly the same problem (1), but avoids the use of the masked proximal operator. The
method makes it straightforward to work with complex component classes, such as the
example above. While the methods of | | are extensible in principle, they require an
implementation of the masked proximal operator. The method described in this paper avoids
this, and is conveniently extensible.

Our method is based on a specific form for the losses, which is partial minimization of
a quadratic-separable function (explained in detail below). This form is very general, and
covers a very wide variety of useful loss functions. Moreover it is conveniently extensible; we
can easily handle new loss functions that include multiple objective terms and constraints.

Using this specific form for the loss functions, we assemble the SD problem into a large
optimization problem with a specific form we call quadratic-separable (QS). Such problems
have an objective that is the sum of a convex quadratic function and a separable (not
necessarily convex) function, and linear equality constraints. We give an operator splitting
method for solving such problems when they are convex, or approximately solving such
problems, when they are not. Our method requires only the evaluation of the proximal



operators of scalar functions, which is straightforward, and can be implemented in a library,
making it very easy for a user to specify even a complex component class without low level
programming.

We have implemented our method in an open-source software package which supports
simple and natural descriptions of the component loss functions, and handles all the rest.
It is available at https://github.com/cvxgrp/signal-decomposition. Our quadratic-
separable solver is included as a separate package called QSS.

1.3 Related work

Using optimization as a framework for solving signal decomposition problems has an exten-
sive history, discussed in detail in | , 83], so we do not repeat it here.

There is a large literature on solution methods for solving quadratic-separable and re-
lated problems using operator splitting methods. POGS | | solves graph form problems
[ |, to which quadratic-separable problems can be reduced. Like QSS, POGS imple-
ments a library of separable functions and is based on the alternating direction method of
multipliers (ADMM) [ .

Another problem form equivalent to the quadratic-separable problems is studied in the
context of portfolio optimization in | ]. The authors consider separable-affine prob-
lems, i.e., problems with a separable objective function and affine equality constraints. They
implement their method in a software package called SEPARABLEOPTIMIZATION.JL, again
based on ADMM. The package allows users to specify a piecewise-quadratic separable ob-
jective. These piecewise-quadratics are allowed to be nonconvex, in which case ADMM
is a heuristic solution algorithm. Quadratic-separable problems include QP as a special

case. The popular software package OSQP | ] uses ADMM to solve QPs. Apart from
[ ], the use of ADMM as a heuristic to solve nonconvex problems has been described
in a number of other works, see, e.g., [ , |. For optimization via abstract linear

operators, see e.g., | ].

In some respects, QSS differs from the work above, and in others it draws from and
unifies a number of the techniques they consider in order to efficiently solve large-scale QS
problems. The split performed in QSS, described below, is ideal for QS problems as it
allows for instant one-iteration termination when the problem under consideration is simply
an equality-constrained quadratic program. Additionally, QSS allows for the solution to
nonconvex problems and problems involving abstract linear operators, both of interest in
the context of signal decomposition.

1.4 Outline

In §2 we describe quadratic-separable functions, quadratic-separable problems, our specific
general form for component losses, and the SD problem that results. In §3 we give a generic
method for solving such problems when they are convex, and approximately solving them
when they are not. In §4 we describe the software implementation for the methods described
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in this paper, focusing on how extensible signal classes are expressed. We give some numerical
examples in §5.

2 Quadratic-separable formulation

2.1 Quadratic-separable optimization problems

A convex quadratic function f : R"™ — R has the form
flw) = (1/2)w" Pw +q"w +r,

where P is a symmetric positive semidefinite n x n matrix, ¢ € R", and r € R. A function
g:R" - RU{oo} is separable if it is a sum of functions of the components, i.e., it has the
form

g(w) = Z gi(w;),

where ¢g; : R — R U {o0}. We do not assume that g; (and therefore g) are convex. A
quadratic-separable (QS) function is the sum of a convex quadratic and a separable function,
i.e., f(w)+ g(w). It is convex if g; are all convex.
A quadratic-separable optimization problem has a QS objective and linear equality con-
straints, ¢.e.,
minimize  f(w) + g(w) (3)
subject to Aw = b,
with variable w € R". A QS problem is specified by the coefficients of the quadratic (P,
q, and ), the component functions gi,...,¢g,, the equality constraint coefficient matrix

A € RP*", and the equality constraint righthand side b € R?. When the functions g; are
convex, the QS problem is convex.

2.2 Quadratic-separable losses with latent variables

We will assume that the component losses ¢, in our signal decomposition problem are ex-
pressible as the partial minimization of QS functions. This means they have the form

o (2") = inf {fr(z", 2%) + ge(a®, 2") | Apa® + Br* =}, k=1... K, (4)

where f, : RY x R™ are convex quadratic, and g, : R’ — R U {o0} are separable, k =
1,....K, A, € R*T B, € R"**™ and ¢, € R?*. We refer to z¥ € R™ as the latent
variable in the loss function. We can have n;, = 0, i.e., no latent variables, or p, = 0, i.e.,
no equality constraints. We observe that ¢, is the partial minimization of the QS function
fr+gx subject to the equality constraints (see | , §3.4.4]). Partial minimization preserves
convexity, i.e., if g is convex, so is ¢y.



Example. In §1.1 we considered the class of bounded quadratic-smooth signals with loss
function (2). This loss can be expressed in the form (4) by introducing the latent variable
z=u (i.e., A=1, B= —I, and ¢ = 0), and defining

T-1 T
f(xv Z) = Z(‘rﬂ-l - 21:15 + xt—1>27 g(xu Z) - ZIOZt‘ < 1)7
t=2 t=1

where Z denotes the indicator function, which is 0 when its argument is true and oo otherwise.
In this example, f does not depend on z, and g does not depend on z. Finally, we note that
f and ¢ have simple, closed-form proximal operators, while the original loss function (2)
does not.

2.3 Signal decomposition via quadratic-separable optimization

Using the specific loss functions (4), we can express the SD problem (1) as

minimize  Yh, fu(@®, 25) + S0 gr(2F, 2F)
subject to Apax* + BpF =c¢p, k=1,..., K, (5)
y=x 4+ -+, tek,

with variables %, 2%, k = 1,..., K. The first sum in the objective is convex quadratic, and
the second is separable, and the constraints are all linear equality constraints, so this is a
QS problem. If the functions g, are all convex, it is convex.

3 A splitting method for quadratic-separable problems

In this section we describe an algorithm based on the alternating direction method of multipli-
ers (ADMM) | ] for solving the QS problem (3) when it is convex, and approximately
solving it when it is not. An open-source implementation of the method called QSS (QS
solver) is available at https://github.com/cvxgrp/qss. QSS is used in our implementation
of the SD algorithm, but is independent of it.

3.1 Consensus form ADMM

With the introduction of auxiliary variable w € R", the original problem (3) can be written
as
minimize  f(w) + g(w) + Z(Aw = b)
subject to w = w,

(6)

with variables w and w. The problem above is sometimes referred to as consensus form, in
which a variable is replicated, and a constraint added that the two versions of the variable
should be equal; the constraint w = w is called the consensus constraint.
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The ADMM updates for this problem are

w1 = argmin () + 1(1/2)8) 0w — 7+ 9)2) Y
w:Aw=b

"t = argmin (9(@) + ||(1/2)1?,1/2(0411111“rl +(1—a)a” —w+ Uk)”%) (8)

W = R RN+ a4+ (1 - a)ah - ot (9)

where ¥ € R" is an approximation of the scaled dual variable associated with the consensus
constraint w = w, and R, = diag(p*) with p* € R,, and o € (0,2) are algorithm
parameters. We can interpret the inverse of Ry as a step size, which can be different for
each component. We recover an estimate of the unscaled dual variable associated with the
constraint as y* = Rj_juf. We will explain below how p* is updated; values of a such as
1.4 or 1.9 work well for convex problems, whereas smaller values such as 0.7 or 1.0 can work
better for nonconvex problems.

Generic ADMM convergence analysis tells us that the algorithm will converge to an
optimal point if the problem is convex and has a solution, and p* is constant [ ].
The same analysis holds if p* is eventually constant, which is the case for our method. If
the original problem is not convex, there are no convergence guarantees, but ADMM-based
algorithms have been observed to often converge to good points, i.e., ones with small if not
optimal objective value. For nonconvex problems a common technique is to run the algorithm
from multiple random starting points and take the best approximate solution found among
these.

We now give more detail about how to efficiently carry out the w-update step (7) and
the w-update step (8); the dual update step (9) is straightforward.

3.2 Updating w

The w update (7) requires the solution of an equality-constrained convex quadratic problem,
which can be done by solving the associated optimality (KKT) conditions, which are linear:

P+ R, AT whtl Ry(w* —u*) — ¢
R | R (10)
Here v € R™ is the dual variable associated with Aw = b (and not used in the ADMM
algorithm). We can solve this system using either a direct method, based on factorization
of the coefficient matrix, or via an indirect or iterative method. The line between these two
approaches is not sharp; for example we can use a factorization of the coefficient matrix,
possibly simplified, as a pre-conditioner for an iterative method.

With a direct method, we can use factorization caching (see | , §4.2.3]), when pF
does not change. In this case only the right hand side of this linear system changes between
iterations; the coefficient (KKT) matrix remains the same. So we factor it once, using, say, a
sparse LD L™ factorization, and then in each iteration we solve the system using back-solves,
which are cheaper | , App. CJ. To enhance stability, we add a small regularization term

6



—el to the 2,2 block of the coefficient matrix, and then use iterative refinement to obtain

an accurate solution, as is done in e.g., | , ]. Note that any change in p* will
require a re-factorization, increasing the cost of that iteration.
Indirect methods like MINRES | | solve the linear system (10) only accessing methods

to multiply the KKT matrix and its transpose by a vector. These methods have three
advantages over direct methods. First, there is no additional cost to changing or udpating
p*. Second, it can take advantage of warm-start, with initial guesses of w and v. Third,
the method supports problems where P or A are give as abstract linear operators, and not
explicit matrices. The main disadvantage of indirect methods is the variability of solution
time, which can vary substantially with problem data.

QSS uses a direct method by default, if the data is given as explicit matrices. For larger
problems with matrices with dense blocks, which increase the cost of re-factorization, the

optional indirect method can be much faster.

3.3 Updating w

The @ update (8) involves evaluating the proximal operator of g at the point cw*™! + (1 —
a)w® +u*; e,
ot = proxg(ozwarl + (1 — a)a" 4 uP).

The key insight to this work is in choosing g to make the above update easy to evaluate.
Indeed with separable g, the update can be calculated in parallel across the components.
This involves evaluating the proximal operators of n scalar functions. This is very efficiently
done, using a library of proximal operators, as discussed in Appendix A. As we show in §5,
many useful SD class costs may be expressed with these simple functions.

3.4 Updating p

The key to good performance of ADMM-based algorithms in practice is the choice of the
step size parameter p*. While many strategies have been proposed in the literature for doing
this, we take advantage of our particular formulation to introduce a new p selection scheme
that is able to significantly boost performance in practice versus other known schemes.

We update p on a block-by-block basis, where a block refers to a contiguous range of
indices with the same g;. Blocks (of length more than one) arise naturally in many appli-
cations. We also consider a special block that consists of all indices for which g;(z) = 0.
(If needed, we can permute the original variables to create blocks, each associated with the
same ¢;.) We use the same value of p within each block, but the blocks can have different
values of p. We denote the common value of p* within block b as py, b=1,..., B, where B
is the number of blocks.

We choose each pf to attempt to balance the (relative) consensus form primal and dual
residuals (see §3.5) associated with each block. In particular, we update as follows

~ 1/2
L 75, cons[]lloo/ max{||w* [B][|oc, [|@" [b] |0 }
’ ’ ||r§7 cons[b]HOO/Hlejuk[b]Hoo 7
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where we use v[b] to represent the indices of vector v restricted to the entries associated with
block b.

Updates to p should be performed parsimoniously, since each update necessitates a refac-
torization of the KKT matrix when a direct method is used. This can be achieved by not
changing p**! unless the new value pf“ associated with at least one block b is more than,
say, b times larger or smaller than the block’s previous value pf, or by ensuring that a min-
imum number of iterations have passed between factorizations, perhaps on the order of the
amount of time required to refactorize. Finally, we can stop updating p after some number

of iterations. This ensures that convergence is still guaranteed, for convex problems.

3.5 Optimality conditions and stopping criteria

The optimality conditions for the original problem (3) are primal feasibility Aw = b and
dual feasibility
0=Pw+q+Av+h,

where v is the dual variable associated with the Aw = b constraint and h € dg(w). From
these we define primal and dual residuals for the original problem as

k A~k k _ prk T k k
rpyorig—Aw — b, Td7orig—Pw +q+ AV 4+ Rpu”,

noting that Ryu* € dg(w") when o = 1.
The associated primal and dual residuals of the consensus form of the problem (6) at
iteration £ are
k k

_ ~k k _ ~k—1 ~
Tp,cons_w —w, Td,cons_Rk(w —w )

We terminate when the norms of the primal and dual residuals for the original problem
are below tolerances levels €pim > 0 and egya1 > 0, that is, when

”rgrimHoo < €prim - and H?Jd€ua1HOO < Edual-

In our case, we choose to use the infinity norm as in | |. We take the tolerances to be
€prim = €abs 1 €rel maX{HAiEkHoo, ||b||oo}a
€dual — Eabs+€relmax{||Pwk”oo; HquomHATVkHoo; ”Rkukl‘oo}v

where €., and €q,, are user-defined absolute and relative tolerances.

3.6 Preconditioning via initial diagonal scaling

The convergence of ADMM in practice is known to benefit from diagonal scaling, which can
be effective in reducing the condition number of the matrix in the KKT system (10); see,
e.g., | , , |. In our setting, this involves choosing a diagonal matrix
with positive entries
D
=" )
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S e Riﬁm, so that the condition number of SM.S is smaller than that of M, where M &
R’ is the KKT system matrix

P AT

we[n )

To achieve this we choose S by equilibrating M, which has been shown in practice to be
effective in reducing its condition number of SM S | ]. Matrix equilibration is the task of
choosing S so that SM .S has row and column norm equal to one. There are many algorithms
for finding such an S, one of which we describe below. In addition to diagonal scaling, we
scale the objective function by ¢ > 0. This scaling results in the new problem

minimize  f(w) + g(w) (11)
subject to Aw = b,

with w = D™'w, f(w) = cf(Dw), g(w) = cg(Dw), A = EAD, and b = Eb. It is readily
seen that if the original f and ¢ are quadratic and separable, respectively, then so are the
scaled functions f and g, so the scaled problem is also a QS problem. We perform scaling
as a preconditioning step once at the beginning, then find an optimal w* (or approximately
optimal, when the problem is nonconvex), and finally recover the optimal w* via w* = Dw*.

A specific choice for diagonal scaling. We choose our diagonal scaling matrices D and
E through a matrix equilibration scheme called Ruiz equilibration | |, modified to also
yield an objective scaling c¢. This process is described in algorithm 3.1, based on the scheme
described in | |. Note that M; in the algorithm refers to the ith column of the KKT
matrix M. The algorithm produces a modified problem defined by P, g, A, and b whose
KTT matrix has columns with infinity norm close to 1.

Algorithm 3.1 RUIZ EQUILIBRATION FOR QUADRATIC-SEPARABLE PROBLEMS
Initialize. Set c=1,S=1,6=0,P=P,G=q, A=A, b=0.
while ||1 — §||oo > €cquil

1. fori=1,...,n+m
6 = 1/+/ 1 Mif|
2. Update P,q, A,b by scaling using diag(J).
3. v =1/ max{mean(|| P;]| ), [la]loc }
4. P=~P,G=1~q
5. S =diag(d)S, ¢ =c

return S, c




%)

4 Implementation

4.1 SD software

Our proposed SD framework has been implemented in software at
https://github.com/cvxgrp/signal-decomposition.

The software comes with many built-in component classes that users can use to define SD
problems. Users then provide data, with which the SD software formulates the problem
as a quadratic-separable optimization problem, handing it off to QSS (described below) for
solution.

We list the supported component classes in Appendix B. These classes can be arbitrarily
combined to form “aggregate” classes. This allows one to, e.g., define a component class that
penalizes the ¢; norm of the first difference of the component and enforces the component’s
entries to be bounded between two values.

As an example, consider the component class described above (2) that is the sum of
squared second differences with the /., norm of the component constrained to be less than
or equal to 1. This component class can be defined in software as follows.

from gfosd.components import SumSquare, Inequality
componentl = Aggregate([SumSquare(diff=2), Inequality(vmax=1, vmin=-1)])

4.2 QSS

The general QS problem solution method described in §3 has been implemented in the open-
source package QSS (Quadratic-Separable Solver), available at

https://github.com/cvxgrp/gss.

QSS comes with a built-in library of separable functions whose proximal operators have been
implemented. These functions can be weighted, scaled, and shifted. We list the functions
in Appendix A. QSS additionally comes with support for solving nonconvex problems and
support for constructing and solving problems involving abstract linear operators. It has been
extensively tested on an array of problems from signal decomposition and other application
domains.

5 Examples

In what follows, we explore the performance of our signal decomposition framework and
solution method on three problems. All timings reported are for a 2017 MacBook Pro with
a 2.3 GHz Intel Core i5 processor.
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5.1 /(; trend filtering
The ¢, trend filtering problem | | takes the form

minimize 1|y — z||3 + || Doz |1, (12)

where y € R" is the problem data (a time series), € R" is the optimization variable, A > 0
is a smoothing parameter, and Dy € R 2" ig the second difference operator, given by

Dy = ,

with entries not shown taken to be zero. With appropriate choice of A, the solution to (12)
will be sparse in its second difference, which is to say it will be piecewise linear. So the
problem is to fit a piecewise linear function to the input time series y.

Signal decomposition model. To perform ¢; trend filtering using the SD framework, we
construct a scalar SD problem with 7" = 100000 and K = 2 component classes: mean-square
small and ¢; norm-penalized second order difference.

Data set. We generate a synthetic signal y of length 7" = 100000 as a sum of two ‘true’
signal components, one that is Gaussian noise and one that is continuous and piecewise
linear with 4 kinks. The first component is denoted Z* and has ITID entries N'(0, 0.2%), while
the second component is denoted 22. We discard 20% of the entries of y at random, i.e., we
replace them with ?.

Decomposition. We perform signal decomposition with weights 70/7" and 1 for the mean-
square small and ¢; norm-penalized second difference components, respectively. The decom-
position returned by QSS is shown in figure 1. The components found can be seen to match
the true components quite well. Indeed, the RMS (root mean-square) error of the second
component z? is about 0.006. Additionally, the second difference of the 22 component, plot-
ted in figure 2, is sparse with the correct number (four) of nonzeros, which correspond to
kinks in 2. The four kink points identified are not exactly at the same points as the original
component but are very close, with the highest deviation between the true and predicted
kink points being 409 index entries away.

Comparison with other solution methods. While (12) is a strongly convex problem
and therefore has a unique global optimum, different solvers will terminate at different
apprpoximate solutions deemed acceptable as defined by their tolerance levels. As a point
of comparison, we solved the same trend filtering problem using two other solution methods.
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Table 1: Summary of runtimes of solution methods on the ¢; trend filtering problem.

Solution method | Time (s)

QSS 6.44
0SQP 2.15
11 tf 0.53

observed signal

5 ] 5 ~2
true piecewise linear component T

. . . . 2
estimated piecewise linear component x

0 20000 40000 60000 80000 100000

Figure 1: QSS solution to ¢; trend filtering signal decomposition example. Not visible in the
observed signal at this scale are the 20% of the data points that have been removed at random.

The first is OSQP [SBG20], an ADMM-based quadratic program solver. The second is 11_tf
[KIKBGOY], an implementation of an interior point method designed specifically for the ¢4
trend filtering problem. Since 11_tf cannot handle missing values, we run it on the full signal
with no missing entries.

We summarize the runtimes of the three methods in table 1. Most apparent is the
extremely fast runtime of 11_tf, perhaps expected as it is a low-level C implementation of a
solution method designed specifically for this problem. Somewhere between QSS and 11_tf
in runtime is OSQP.

It is worth noting that unlike QSS, OSQP and 11_tf were not able to produce x? compo-
nents with appropriately sparse second differences. Indeed, even as OSQP’s tolerances were
tightened to increase solve time to more than a minute, the sparsity pattern it produced did
not feature the four kink points one would expect upon inspection of the data, as shown in
figure 2.

5.2 A simple nonconvex example

In this section, we revisit the example from §2.9 of [M1322].
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QSS z? component second difference
0.0003

0.0002

0.0001

0.0000

—0.0001

OSQP z? component second difference
0.000175

0.000150
0.000125
0.000100
0.000075
0.000050

0.000025

0.000000
0 20000 40000 60000 80000 100000

Figure 2: Second difference of 22 components of the QSS and OSQP solutions to the ¢; trend
filtering signal decomposition example.
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Data. We generate data as in | , §2.9], which yields a scalar signal of length T" = 500.
This signal is composed of three known components, a noise term, a smooth term that is a
sum of sinusoids, and a switching term.

Signal decomposition model. The example from | , §2.9] concerns itself with an
SD problem of length T" = 500 with K = 3 component classes: mean-square small, mean-
square second-order smooth (with weight parameter 6), and scaled Boolean. The scaled
Boolean component class requires all entries of 2 to be in {0, 65}, parametrized by 6. As
this class is not convex, this SD problem is itself not convex. In this example, we use the
values for the two problem parameters, #; and 6,, chosen via a grid search in | , §2.9].

Decomposition. The final decomposition generated by QSS is shown in figure 3. The
components are nearly exactly recovered. This decomposition took about 2 seconds using

QSS.
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Figure 3: QSS decomposition for simple nonconvex example.
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5.3 Photovoltaic soiling

Here we consider a practical problem from the domain of photo-voltaic (PV) performance
analysis, the soiling estimation problem. Soiling losses in the context of PV power generation
refers to the reduction of system power output due to the accumulation of dirt, soot, or other
small particles on the surface of the PV modules, and soiling can result in losses as high as
-1%/day | |. The soiling estimation problem involves determining the magnitude of
soiling losses over time, given measurements of photovoltaic system energy output over time
(typically along with some reference data such as irradiance and temperature).

Data. Here, we consider synthetic data which models the performance index of a PV sys-
tem experiencing soiling losses in addition to seasonal variability and a long-term degradation
mode, as discussed in | , |]. We consider a single example of data generated by
this model, shown in figure 4. The data are constructed by generating four components—
noise, seasonal, degradation, and soiling—shown in the top four plots. These components
are multiplied together to generate the observed data, shown in the bottom plot.

Data preprocessing. We first apply a log transform to the data, converting the mul-

tiplicative component model to an additive one (see | , §2.8]). Then we standardize
the data by applying min-max scaling to the range [0, 10], a common transform available in
popular packages such as sklearn [skl]. The range was chosen to provide a good dynamic

range for the soiling and degradation components. The impact of this preprocessing on the
component data model is as follows. Defining the original generative data model as

_ 1.3 4.5
y=xx°zx°,

where the term z? has been intentionally skipped (the reason for which will be clear momen-
tarily), then the resulting data model after preprocessing is

clogy —a) __c_
b—a b—a

log z' + log 2® + log 2* + log 2° — a) ,

where a is the minimum value of logy, b is the maximum value of logy, and ¢ = 10 is the
top of the data standardization range. We note that this has introduced an offset term on
the right-hand side, which we will now include in the model as the second term. So, we let

- c(logy —a
;= ( )

b—a
P = % logat, k=1,3,45
b—a
— _ —ac
S b—c’

which gives us a data model in standard SD form,
="'+ + P+
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Figure 4: Synthetic soiling performance index data.
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Table 2: SD component definitions for PV soiling

k Name or(2)
1 | mean-square small | (1/7) |||
2 bias Z(Dyz = 0)
3 linear Z(Dyx =0)
4 | smooth & periodic | A3 ||D2x\|§ +Z (xy = zy4365 for t =1,...,T — 365)
5 soiling () 4 lo(z) + C3(x) + Ly(x)
Table 3: PV soiling SD problem weights
term | value
A3 5
/\5a 1 x ]_0_5
A5b 5x 1073
Ase | 1x 1075
Signal decomposition model. Following the methods section of | |, we define a

K =5 SD model with five component class costs, ordered in terms of increasing complexity,
summarized in table 2. We let Dy be the second-order difference matrix as previously defined,
D1 be the first-order difference matrix, and A3 be a weight parameter. We drop the tilde and
superscripts on the component variables in the interest of notational simplicity. The fifth
term, which we name “soiling”, is defined as a sum of four simpler loss functions,

l(z) = Z(x <0)
b(x) = Asallzll

f(x) = o 3 1(1/2) [(Daa),| + (2/5)(Dya)]

ly(x) = Xsel| Dozl

with weight parameters As,, Asp, and As.. In order, this costs selects for signals that (¢;) are
non-positive, (¢3) are not too large (and prefer zero values), (¢3) have more negative slope
values than positive, and (¢4) are sparse in second-order differences. We note that, unlike the
first four component cost functions, ¢5 does not have a closed-form solution for its proximal
operator. However, it is easily expressed in quadratic-separable form. Weight parameters
are chosen to provide a satisfactory decomposition but could be chosen through a holdout
procedure, as described in | , §2.7]. The chosen weights are summarized in table 3.

Results. We find very close agreement between the decomposition generated by QSS and
the known underlying components. A comparison of the estimated and actual components is
shown in figure 5. The root mean square error between the actual and estimated components
are all less than 0.01, as illustrated by figure 6.
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Figure 5: Estimated and true signal components in the synthetic soiling data.
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Figure 6: Root mean square error for the five component estimates.
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A Separable functions supported by QSS

Table 4: List of convex separable functions supported by QSS. Z is the {0, 00} indicator function.

Function | Parameters gi(x)

zero 0

abs ||

is_pos Z(x > 0)
is_neg Z(x <0)

is bound | 2 OV DO T <o <)
is_zero Z(z =0)
pos max{z,0}
neg max{—z,0}
quantile | tau: scalar in (0,1) | 0.5|z] + (7 — 0.5)z
huber M: positive scalar

Table 5: List of nonconvex separable functions supported by QSS. Z is the {0,00} indicator

22 if |z| < M,
2M|x| — M? else

function.
Function Parameters gi(z)
sqrt |z|
card 0forz=0;1forx#0
is_int Z(x is an integer)
is_finite_set | S: list of scalars | Z(z € S)
is_bool Z(z €{0,1})

B Components classes supported by SD software
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Table 6: List of convex component classes supported by SD software. Z is the {0, 00} indicator
function. The Huber and quantile functions are as defined in Appendix A.

Component class | Parameters o(x)

SumSquare >oi(a)?

SumAbs > il

SumHuber M: positive scalar >, Huber(z;; M)
SumQuantile tau: scalar in (0, 1) > quantile(z;; 7)

vmin: lower bound

I lit T (i < 15 <
nequatity vmax: upper bound 22 T(0nin < T < V)

Basis B: basis matrix Z(x = Bz for some z)

Periodic period: positive integer | Z(x is period-periodic)

Table 7: List of nonconvex component classes supported by SD software. Z is the {0, oo} indicator
function. The card function is as defined n Appendix A.

Component class | Parameters o(x)

SumCard >, card(z;)
FiniteSet values: list of scalars | ) . Z(x; € values)
Boolean > L(x; € {0,1})
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