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1 INTRODUCTION

We consider convex optimization problems with linear matrix inequality (LMI)

constraints, i.e., constraints of the form

F (x) = F0 + x1F1 + � � �+ xmFm � 0; (1.1)

where the matrices Fi = F T
i 2 Rn�n are given, and the inequality F (x) � 0

means F (x) is positive semide�nite. The LMI (1.1) is a convex constraint in

the variable x 2 Rm. Conversely, many nonlinear convex constraints can be

expressed as LMIs (see the recent surveys by Alizadeh [Ali95], Boyd, El Ghaoui,

Feron and Balakrishnan [BEFB94], Lewis and Overton [LO96], Nesterov and

Nemirovsky [NN94] and Vandenberghe and Boyd [VB96]).

The purpose of the paper is to explore some connections between optimization

with LMI constraints and semi-in�nite programming. We immediately note

that the LMI (1.1) is equivalent to an in�nite set of linear inequalities: F (x) � 0

if and only if

vTF (x)v = vTF0v +

mX
i=1

xi
�
vTFiv

�
� 0

for all v in the compact set fv 2 Rn j kvk = 1g. It is therefore clear that

convex optimization problems with LMI constraints can be studied as special
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cases of semi-in�nite programming. Perhaps more interestingly, we will see

that some important semi-in�nite optimization problems can be formulated in

terms of linear matrix inequalities. Such a reduction, if possible, has important

practical consequences: It means that those SIPs can be solved e�ciently with

recent interior-point methods for LMI problems. The emphasis of the paper

will be on illustrating this point with examples from systems and control, signal

processing, computational geometry, and statistics.

The examples in this paper will fall in two categories. The �rst is known as

the semide�nite programming problem or SDP. In an SDP we minimize a linear

function of a variable x 2 Rm subject to an LMI:

minimize cTx

subject to F (x) = F0 + x1F1 + � � �+ xmFm � 0:
(1.2)

Semide�nite programming can be regarded as an extension of linear program-

ming where the componentwise inequalities between vectors are replaced by

matrix inequalities, or, equivalently, the �rst orthant is replaced by the cone

of positive semide�nite matrices. Although the SDP (1.2) looks very spe-

cialized, it is much more general than a (�nite-dimensional) linear program,

and it has many applications in engineering and combinatorial optimization

[Ali95, BEFB94, LO96, NN94, VB96]. Most interior-point methods for linear

programming have been generalized to semide�nite programs. As in linear pro-

gramming, these methods have polynomial worst-case complexity, and perform

very well in practice.

We can express the SDP as a semi-in�nite linear program

minimize cTx

subject to vTF (x)v � 0 for all v:

Lasserre [Las95] and Pataki [Pat95] have exploited this fact to formulate Simplex-

like algorithms for SDP. The observation is also interesting for theoretical pur-

poses since it allows us to apply, for example, duality results from SIP to SDP.

The second problem that we will encounter is the problem of maximizing the

determinant of a matrix subject to LMI constraints. We call this the determi-

nant maximization or maxdet-problem.

maximize detG(x)

subject to G(x) = G0 + x1G1 + � � �+ xmGm > 0

F (x) = F0 + x1F1 + � � �+ xmFm � 0:

The matrices Gi = GT
i 2 Rl�l are given matrices. The problem is equivalent to

minimizing the convex function log detG(x)�1 subject to the LMI constraints.
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The max-det objective arises naturally in applications in computational geom-

etry, control, information theory, and statistics.

A uni�ed form that includes both the SDP and the determinant maximization

problem is
minimize cTx+ log detG(x)�1

subject to G(x) > 0

F (x) � 0:

(1.3)

This problem was studied in detail in Vandenberghe, Boyd and Wu [VBW98].

The basic facts about these two optimization problems, and of the uni�ed

form (1.3), can be summarized as follows.

Both problems are convex.

There is an extensive and useful duality theory for the problems.

Very e�cient interior-point methods for the problems have been developed

recently [NN94].

The problems look very specialized, but include a wide variety of convex

optimization problems, with many applications in engineering.

2 DUALITY

In [VBW98] it was shown that we can associate with with (1.3) the dual problem

maximize log detW �Tr G0W �Tr F0Z + l

subject to Tr GiW +Tr FiZ = ci; i = 1; :::;m;

W =W T > 0; Z = ZT � 0:

(2.1)

The variables areW 2 Rl�l and Z 2 Rn�n. We sayW and Z are dual feasible

if they satisfy the constraints in (2.1), and strictly dual feasible if in addition

Z > 0. We also refer to (1.3) as the primal problem and say x is primal feasible

if F (x) � 0 and G(x) > 0, and strictly primal feasible if F (x) > 0 and G(x) > 0.

Let p? and d? be the optimal values of problem (1.3) and (2.1), respectively

(with the convention that p? = +1 if the primal problem is infeasible, and

d? = �1 if the dual problem is infeasible). The following theorem follows from

standard results in convex analysis (Rockafellar [Roc70], see also [VBW98]).
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Theorem 2.1 p? � d?. If (1.3) is strictly feasible, the dual optimum is

achieved; if (2.1) is strictly feasible, the primal optimum is achieved. In both

cases, p? = d?.

As an illustration, we derive the dual problem for the SDP (1.2). Substituting

G0 = 1, Gi = 0, n = 1, in (2.1) yields

maximize logW �W �Tr F0Z + 1

subject to Tr FiZ = ci; i = 1; : : : ;m;

W > 0; Z � 0:

The optimal value of W is one, so the dual problem reduces to

maximize �Tr F0Z
subject to Tr FiZ = ci; i = 1; : : : ;m;

Z � 0;

(2.2)

which is the dual SDP (in the notation used in [VB96]). Applying the duality

result of Theorem 2.1 we see that the the optimal values of (1.2) and (2.2) are

equal if at least one of the problems is strictly feasible.

Examples of primal and dual problems with nonzero optimal duality gap are

well known in the semi-in�nite programming literature, and also arise in SDP

(see [VB96] for an example).

3 ELLIPSOIDAL APPROXIMATION

Our �rst class of examples are ellipsoidal approximation problems. We can

distinguish two basic forms. The �rst is the problem of �nding the minimum-

volume ellipsoid around a given set C. The second problem is the problem of

�nding the maximum-volume ellipsoid contained in a given convex set C. Both

can be formulated as convex semi-in�nite programming problems.

To solve the the �rst problem, it is convenient to parametrize the ellipsoid as

the pre-image of a unit ball under an a�ne transformation, i.e.,

E = fv j kAv + bk � 1g :

It can be assumed without loss of generality that A = AT > 0, in which case

the volume of E is proportional to detA�1. The problem of computing the
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minimum-volume ellipsoid containing C can be written as

minimize log detA�1

subject to A = AT > 0

kAv + bk � 1; 8v 2 C;

(3.1)

where the variables are A and b. For general C, this is a semi-in�nite program-

ming problem. Note that both the objective function and the constraints are

convex in A and b.

For the second problem, where we maximize the volume of ellipsoids enclosed

in a convex set C, it is more convenient to represent the ellipsoid as the image

of the unit ball under an a�ne transformation, i.e., as

E = fBy + d j kyk � 1g :

Again it can be assumed that B = BT > 0. The volume is proportional to

detB, so we can �nd the maximum volume ellipsoid inside C by solving the

convex optimization problem

maximize log detB

subject to B = BT > 0

By + d 2 C 8y; kyk � 1;

(3.2)

in the variables B and d. For general convex C, this is again a convex semi-

in�nite optimization problem.

The ellipsoid of least volume containing a set is often called the L�owner ellip-

soid (after Danzer, Gr�unbaum, and Klee [DGK63, p.139]), or the L�owner-John

ellipsoid (Gr�otschel, Lov�asz and Schrijver [GLS88, p.69]). John in [Joh85] has

shown that if one shrinks the minimum volume outer ellipsoid of a convex set

C � Rn by a factor n about its center, one obtains an ellipsoid contained in

C. Thus the L�owner-John ellipsoid serves as an ellipsoidal approximation of

a convex set, with bounds that depend only on the dimension of the ambient

space, and not in any other way on the set C.

Minimum volume ellipsoid containing given points.

The best known example is the problem of determining the minimum volume

ellipsoid that contains given points x1, . . . , xK in Rn, i.e.,

C = fx1; : : : ; xKg;

(or, equivalently, the convex hull Co fx1; : : : ; xKg). This problem has applica-

tions in cluster analysis (Rosen [Ros65], Barnes [Bar82]), robust statistics (in
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Figure 1 Maximum volume ellipsoid contained in a polyhedron.

ellipsoidal peeling methods for outlier detection (Rousseeuw and Leroy [RL87,

x7]), and robotics (Rimon and Boyd [RB96]).

Applying (3.1), we can write this problem as

minimize log detA�1

subject to kAxi + bk � 1; i = 1; : : : ;K

A = AT > 0;

(3.3)

where the variables are A = AT 2 Rn�n and b 2 Rn. The norm constraints

kAxi + bk � 1, which are just convex quadratic inequalities in the variables A

and b, can be expressed as LMIs�
I Axi + b

(Axi + b)T 1

�
� 0:

so (3.3) is a maxdet-problem in the variables A and b.

Maximum volume ellipsoid in polytope.

Assume the set C is a polytope described by a set of linear inequalities:

C = fx j aTi x � bi; i = 1; : : : ; Lg

(see Figure 1). To apply (3.2) we �rst work out the last constraint:

By + d 2 C if kyk = 1 () aTi (By + d) � bi if kyk � 1 (3.4)

() max
kyk�1

aTi By + aTi d � bi (3.5)

() kBaik+ aTi d � bi; i = 1; : : : ; L: (3.6)
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This is a set of L convex constraints in B and d, and equivalent to the L LMIs�
(bi � aTi d)I Bai

aTi B bi � aTi d

�
� 0; i = 1; : : : ; L:

We can therefore formulate (3.2) as a maxdet-problem in the variables B and d:

minimize log detB�1

subject to B > 0�
(bi � aTi d)I Bai
(Bai)

T bi � aTi d

�
� 0; i = 1; : : : ; L:

Minimum volume ellipsoid containing ellipsoids.

These techniques extend to several interesting cases where C is not �nite or

polyhedral, but is de�ned as a combination (the sum, union, or intersection)

of ellipsoids. In particular, it is possible to compute the optimal inner ap-

proximation of the intersection or the sum of ellipsoids, and the optimal outer

approximation of the union or sum of ellipsoids, by solving a maxdet problem.

We refer to [BEFB94] and Chernousko [Che94] for details.

As an example, consider the problem of �nding the minimum volume ellipsoid

E0 containing K given ellipsoids E1; : : : ; EK . For this problem we describe the

ellipsoids as sublevel sets of convex quadratic functions:

Ei = fx j xTAix+ 2bTi x+ ci � 0g; i = 0; : : : ;K:

The solution can be found by solving the following maxdet-problem in the

variables A0 = AT
0 , b0, and K scalar variables �i:

minimize log detA�10
subject to A0 = AT

0 > 0

�1 � 0; : : : ; �K � 02
4 A0 b0 0

bT0 �1 bT0
0 b0 �A0

3
5� �i

2
4 Ai bi 0

bTi ci 0

0 0 0

3
5 � 0; i = 1; : : : ;K:

(c0 is given by c0 = bT0 A
�1
0 b0 � 1.) See [BEFB94, p.43] for details. Figure 2

shows an instance of the problem.
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Figure 2 Minimum volume ellipsoid containing �ve given ellipsoids. Finding

such an ellipsoid can be cast as a maxdet-problem, hence e�ciently solved.

4 EXPERIMENT DESIGN

As a second group of examples, we consider problems in optimal experiment

design. We consider the problem of estimating a vector x from a measurement

y = Ax + w, where w � N (0; I) is measurement noise. We assume A has

full column rank. The minimum-variance estimator is bx = A+y, where A+ is

the pseudo-inverse of A, i.e., A+ = (ATA)�1AT . The error covariance of the

minimum-variance estimator is equal to A+(A+)T = (ATA)�1. We suppose

that the rows of the matrix A = [a1 : : : aq ]
T
can be chosen among M possible

test vectors v(i) 2 Rp, i = 1; : : : ;M :

ai 2 fv
(1); : : : ; v(M)g; i = 1; : : : ; q:

The goal of experiment design is to choose the vectors ai so that the error

covariance (ATA)�1 is `small'. We can interpret each component of y as the

result of an experiment or measurement that can be chosen from a �xed menu

of possible experiments; our job is to �nd a set of measurements that (together)

are maximally informative.

We can write ATA = q
PM

i=1 �iv
(i)v(i)

T
, where �i is the fraction of rows ak

equal to the vector v(i). We ignore the fact that the numbers �i are integer

multiples of 1=q, and instead treat them as continuous variables, which is jus-
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Figure 3 A D-optimal experiment design involving 50 test vectors in R2.

The circle is the origin; the dots are the test vectors that are not used in

the experiment (i.e., have a weight �i = 0); the crosses are the test vectors

that are used (i.e., have a weight �i > 0). The D-optimal design allocates all

measurements to only two test vectors.

ti�ed in practice when q is large. (Alternatively, we can imagine that we are

designing a random experiment: each experiment ai has the form v(k) with

probability �k.)

Many di�erent criteria for measuring the size of the matrix (ATA)�1 have been

proposed. For example, in D-optimal design, we minimize the determinant of

the error covariance (ATA)�1, which leads to the maxdet-problem

minimize log det

 
MX
i=1

�iv
(i)v(i)

T

!�1
subject to �i � 0; i = 1; : : : ;M

MX
i=1

�i = 1:

(4.1)

An example is shown in Figure 3.

Fedorov [Fed71], Atkinson and Donev [AD92], and Pukelsheim [Puk93] give

surveys and additional references on optimal experiment design. The formu-

lation of D-optimal design as a maxdet-problem has the advantage that one
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can easily incorporate additional useful convex constraints. See [VBW98] for

examples.

There is an interesting relation between optimal experiment design and el-

lipsoidal approximation. We �rst derive the dual of the experiment design

problem (4.1), applying (2.1). After a few simpli�cations we obtain

maximize log detW + p� z

subject to W =W T > 0

v(i)
T
Wv(i) � z; i = 1; : : : ;M;

(4.2)

where the variables are the matrix W and the scalar variable z. Problem (4.2)

can be further simpli�ed. The constraints are homogeneous in W and z, so for

each dual feasible W , z we have a ray of dual feasible solutions tW , tz, t > 0.

It turns out that we can analytically optimize over t: replacing W by tW and

z by tz changes the objective to log detW +p log t+p� tz, which is maximized

for t = p=z. After this simpli�cation, and with a new variable ~W = (p=z)W ,

problem (4.2) becomes

maximize log det ~W

subject to ~W > 0

v(i)
T ~Wv(i) � p; i = 1; : : : ;M:

(4.3)

Problem (4.3) has an interesting geometrical meaning: the constraints state

that ~W determines an ellipsoid fx j xT ~Wx � pg, centered at the origin, that

contains the points v(i), i = 1; : : : ;M ; the objective is to maximize det ~W , i.e.,

to minimize the volume of the ellipsoid.

There is an interesting connection between the optimal primal variables �i and

the points v(i) that lie on the boundary of the optimal ellipsoid E . First note

that the duality gap associated with a primal feasible � and a dual feasible ~W

is equal to

log det

 
MX
i=1

�iv
(i)v(i)

T

!�1
� log det ~W;

and is zero (hence, � is optimal) if and only if ~W =
�PM

i=1 �iv
(i)v(i)

T
��1

.

Hence, � is optimal if

E =

8<
:x 2 Rp

������ xT
 

MX
i=1

�iv
(i)v(i)

T

!�1
x � p

9=
;
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is the minimum-volume ellipsoid, centered at the origin, that contains the points

v(j), j = 1; : : : ;M . We also have (in fact, for any feasible �)

MX
j=1

�j

0
@p� v(j)

T

 
MX
i=1

�iv
(i)v(i)

T

!�1
v(j)

1
A

= p�Tr

0
@ MX

j=1

�jv
(j)v(j)

T

1
A MX

i=1

�iv
(i)v(i)

T

!�1
= 0: (4.4)

If � is optimal, then each term in the sum on the left hand side is positive

(since E contains all vectors v(j)), and therefore the sum can only be zero if

each term is zero:

�j > 0 =) v(j)
T

 
MX
i=1

�iv
(i)v(i)

T

!�1
v(j) = p;

Geometrically, �j is nonzero only if v(j) lies on the boundary of the minimum

volume ellipsoid. This makes more precise the intuitive idea that an optimal ex-

periment only uses `extreme' test vectors. Figure 4 shows the optimal ellipsoid

for the experiment design example of Figure 3.

The duality between D-optimal experiment designs and minimum-volume ellip-

soids also extends to non-�nite compacts sets (Titterington [Tit75], Pronzato

and Walter [PW94]). The D-optimal experiment design problem on a compact

set C � Rp is

maximize log detEvvT (4.5)

over all probability measures on C. This is a convex but semi-in�nite optimiza-

tion problem, with dual ([Tit75])

maximize log det ~W

subject to ~W > 0

vT ~Wv � p; v 2 C:

(4.6)

Again, we see that the dual is the problem of computing the minimum volume

ellipsoid, centered at the origin, and covering the set C.

General methods for solving the semi-in�nite optimization problems (4.5) and (4.6)

fall outside the scope of this paper. In particular cases, however, these problems

can be solved as maxdet-problems. One interesting example arises when C is

the union of a �nite number of ellipsoids. In this case, the dual (4.6) can be

cast as a maxdet-problem (see x3) and hence e�ciently solved; by duality, we

can recover from the dual solution the probability distribution that solves (4.5).
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Figure 4 In the dual of the D-optimal experiment design problem we com-

pute the minimum-volume ellipsoid, centered at the origin, that contains the

test vectors. The test vectors with a nonzero weight lie on the boundary of the

optimal ellipsoid. Same data and notation as in Figure 3.

5 PROBLEMS INVOLVING POWER

MOMENTS

Bounds on expected values via semide�nite program-

ming.

Let t be a random real variable. The expected values Etk are called the (power)

moments of the distribution of t. The following classical result gives a charac-

terization of a moment sequence: There exists a probability distribution on R

such that xk = Etk, k = 0; : : : ; 2n, if and only if x0 = 1 and

H(x0; : : : ; x2n) =

2
66666664

x0 x1 x2 : : : xn�1 xn
x1 x2 x3 : : : xn xn+1
x2 x3 x4 : : : xn+1 xn+2
...

...
...

...
...

xn�1 xn xn+1 : : : x2n�2 x2n�1
xn xn+1 xn+2 : : : x2n�1 x2n

3
77777775
� 0: (5.1)
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It is easy to see that the condition is necessary: let xi = Eti, i = 0; : : : ; 2n be

the moments of some distribution, and let y = [y0 y1 � � � yn]
T
2 Rn+1. Then

we have

yTH(x0; : : : ; x2n)y =

nX
i;j=0

yiyjEt
i+j = E

�
y0 + y1t

1 + � � �+ ynt
n
�2
� 0:

Su�ciency is less obvious. The proof is classical (and based on convexity ar-

guments); see e.g., Krein and Nudelman [KN77, p.182] or Karlin and Studden

[KS66, p.189{199]. There are similar conditions for distributions on �nite or

semi-in�nite intervals.

Note that condition (5.1) is an LMI in the variables xk , i.e., the condition that

x0, . . . , x2n be the moments of some distribution on R can be expressed as an

LMI in x. Using this fact, we can cast some interesting moment problems as

SDPs and maxdet-problems.

Suppose t is a random variable on R. We do not know its distribution, but we

do know some bounds on the moments, i.e.,

�
k
� Etk � �k

(which includes, as a special case, knowing exact values of some of the mo-

ments). Let p(t) = c0 + c1t + � � � + c2nt
2n be a given polynomial in t. The

expected value of p(t) is linear in the moments Eti:

Ep(t) =

2nX
i=0

ciEt
i =

2nX
i=0

cixi:

We can compute upper and lower bounds for Ep(t),

minimize (maximize) Ep(t)

subject to �
k
� Etk � �k; k = 1; : : : ; 2n;

over all probability distributions that satisfy the given moment bounds, by

solving the SDPs

minimize (maximize) c1x1 + � � �+ c2nx2n

subject to �
k
� xk � �k; k = 1; : : : ; 2n

H(1; x1; : : : ; x2n) � 0

over the variables x1, . . . , x2n. This gives bounds on Ep(t), over all probabil-

ity distributions that satisfy the known moment constraints. The bounds are
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sharp in the sense that there are distributions, whose moments satisfy the given

moment bounds, for which Ep(t) takes on the upper and lower bounds found

by these SDPs.

A related problem was considered by Dahlquist, Eisenstat and Golub [DEG72],

who analytically compute bounds on Et�1 and Et�2, given the moments Eti,

i = 1; : : : ; n. (Here t is a random variable in a �nite interval.) Using semide�-

nite programming one can solve more general problems where upper and lower

bounds on Eti, i = 1 : : : ; n, (or the expected value of some polynomials) are

known.

Another application arises in the optimal control of queuing networks (see Bert-

simas et al. [BPT94, Ber95] and Schwerer [Sch96]).

Upper bound on the variance via semide�nite program-

ming.

As another example, one can maximize the variance of t, over all probability

distributions that satisfy the moment constraints (to obtain a sharp upper

bound on the variance of t):

maximize Et2 � (Et)
2

subject to �
k
� Etk � �k; k = 1; : : : ; 2n;

which is equivalent to the SDP

maximize y

subject to

�
x2 � y x1
x1 1

�
� 0

�
k
� xk � �k; k = 1; : : : ; 2n

H(1; x1; : : : ; x2n) � 0

with variables y, x1, . . . , x2n. The 2 � 2-LMI is equivalent to y � x2 � x21.

More generally, one can compute an upper bound on the variance of a given

polynomial Ep(t)2 � (Ep(t))
2
. Thus we can compute an upper bound on the

variance of a polynomial p(t), given some bounds on the moments.
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A robust estimate of the moments.

Another interesting problem is the maxdet-problem

maximize log detH(1; x1; : : : ; x2n)

subject to �
k
� xk � �k; k = 1; : : : ; 2n

H(1; x1; : : : ; x2n) > 0:

(5.2)

The solution can serve as a `robust' solution to the feasibility problem of �nding

a probability distribution that satis�es given bounds on the moments. While

the SDPs provide lower and upper bounds on Ep(t), the maxdet-problem should

provide a reasonable guess of Ep(t).

Note that the maxdet-problem (5.2) is equivalent to

maximize log detEf(t)f(t)T

subject to � � Ef(t) � �
(5.3)

over all probability distributions on R, where f(t) =
�
1 t t2 : : : tn

�T
. We can

interpret this as the problem of designing a random experiment to estimate the

coe�cients of a polynomial p(t) = c0 + c1t+ � � �+ cnt
n.

6 POSITIVE-REAL LEMMA

Linear system theory provides numerous examples of semi-in�nite constraints

that can be cast as LMIs (see [BEFB94] for an extensive survey). One of the

fundamental theorems, the positive-real lemma, can be interpreted in this light.

The positive-real lemma [AV73] gives a condition that guarantees that a rational

function H : C! Rm�m, de�ned as

H(s) = C(sI �A)�1B +D

where A 2 Rn�n (and of minimial dimension), C 2 Rm�n, B 2 Rn�m, D 2
Rm�m, satis�es certain inequalities in the complex plane. The theorem states

that

H(s) +H(s)� � 0 for all <s > 0 (6.1)

if and only if there exists a P = P T such that

P > 0;

�
ATP + PA PB � CT

BTP � C �D �DT

�
� 0: (6.2)
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In other words, the in�nite set of inequalities (6.1) is equivalent to the �nite

matrix inequality (6.2) with the auxiliary variable P .

Assume, for example, that A and B are given, and that the matrices C and D

depend a�nely on certain parameters � 2 Rp. Then (6.1) is an in�nite set of

LMIs in �, while (6.2) is a �nite LMI in � and P .

Other examples in systems and control theory include the bounded-real lemma,

and the Nevanlinna-Pick problem [BEFB94]. An application of the positive-real

lemma in �lter design is described in [WBV96, WBV97].

7 CONCLUSION

We have discussed examples of semi-in�nite optimization problems that can

be reduced to semide�nite programming or determinant maximization prob-

lems. It is clear that a reduction of SIPs to SDPs or maxdet-problems is not

always possible. It is important, however, to recognize when such a reduction

is possible, since it implies that the problems can be solved e�cienlty using

interior-point methods.
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