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EXISTENCE AND UNIQUENESS OF OPTIMAL MATRIX SCALINGS*
V. BALAKRISHNAN' AND S. BOYD?

Abstract. The problem of finding a diagonal similarity scaling to minimize the scaled singular
value of a matrix arises frequently in robustness analysis of control systems. It is shown here that
the set of optimal diagonal scalings is nonempty and bounded if and only if the matrix that is being
scaled is irreducible. For an irreducible matrix, a sufficient condition is derived for the uniqueness of
the optimal scaling.
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Notation. R (C) denotes the set of real (complex) numbers. R stands for
the set of positive real numbers. For z € C, Re z is the real part of z. The set of
m X n matrices with real (complex) entries is denoted R™*™ (C™*™). I stands for
the identity matrix with size determined from context. For a matrix P € C™*",
PT stands for the transpose and P* stands for the complex conjugate of PT. || P||
is the spectral norm (maximum singular value) of P given by the square root of the
maximum eigenvalue of P*P. (For a vector v € C", ||v|| is just the Euclidean norm.)
For P € C™*", Tr P stands for the trace, that is, the sum of the diagonal entries of
P.

1. Introduction. Given a complex matrix M € C"*™ and a nonsingular diag-
onal matrix D € C™*", the similarity-scaled singular value of M corresponding to
scaling D is defined as

f(M,D) = || DMD™||.

The optimal diagonal scaling problem is to minimize f(M, D) over all diagonal non-
singular matrices D:

(1) fwin(M) =inf {|DMD™!|| | D € C**", D is diagonal and nonsingular} .

We refer to fimin(M) as the optimally scaled singular value of M.

Problem (1) arises in the robustness analysis of control systems with structured
uncertainties. For further details, see [11] and [4]. Much research has focused on
the related problem of finding optimal (with various criteria for optimality) diagonal
preconditioners for use in iterative algorithms; see, for example, [5] and [7].

Reformulation as a convexr optimization problem. We note that f(M,|D|) =
f(M, D); we also observe that f(M, D) is homogeneous of degree zero in D, that is,
f(M,aD) = f(M, D) for all nonzero « € C. Therefore, we may rewrite (1) as

(2) Jmin(M) = inf {“eDMe“DH | D e R™™™, D is diagonal, Tr D = 0} .
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30 V. BALAKRISHNAN AND S. BOYD

The reason for rewriting (1) as (2) is that ||eD Me™P H is a convex function of D—
this fact will prove important in the sequel—while | DM D~?|| is not [12], [13]. For
convenience, we let

D={D | D€ R™", D is diagonal, Tr D =0} .

In this paper, we do not concern ourselves with the solution of (2). We instead
investigate the set of minimizers for (2), that is, the set of optimal scalings Dopt
defined by

3) Dopt £ {D | D € D, ||ePMe™|| = frin(M)} .

In the process, we provide a sufficient condition for Doy to be nonempty (which means
the infimum in (2) is achieved) and a sufficient condition for Dopt to be a singleton
(which means that there is a unique optimal scaling).

2. Boundedness of D,p;. We start with a few definitions.

DEFINITION 1. A permutation matrix P is a real, orthogonal n x n matrix (i.e.,
PPT = PTP = I) with entries that are either one or zero. We let P denote the set
of n X n permutation matrices.

DEFINITION 2. A complex matrix M is said to be reducible if there exists some
P € P such that PMP7T is block upper triangular, that is,

My Mo ]

PMPT =
[ 0 Moy

where My, My, are square matrices of appropriate sizes [6], [1]. A matrix that is
not reducible is termed irreducible.
Remark. For any permutation matrix P,

lePMe=P|| = | Pe® PTPMPTPe~PPT||.

Note that PeP PT is diagonal and corresponds to just a reordering of the diagonal
entries of eP. Therefore, as far as the scaling problem is concerned, if a matrix M is
reducible, we may assume without loss of generality that

My My, ]

M=[ 0 My

bearing in mind that a reordering of the entries of the scaling D might be necessary.

In the sequel, the phrase “within a permutation” refers to such a reordering of the

entries of D and the corresponding permutation similarity transformation on M.
Let D, denote the sublevel set

{DeD ||e’MeP| <~}.

The following theorem relates the irreducibility of M to the boundedness of the sub-
level sets.

THEOREM 2.1. For any ¥ > fmin(M), the sublevel set D., is bounded if and only
if M is irreducible.

Proof. We first note the following lemma.

LEMMA 2.2. It holds that

My, My > My; 0
0 M22 - 0 M22 ’
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where Mh1, Mi2, and Mas are matrices of appropriate sizes.
Proof. The proof is left to the reader.
We first assume that M is reducible. Then to within a permutation,

| My M,
u= [ ]

where My; € C™" with r < n.
Then given any v > fuin(M) and D € D, (note that D, is nonempty), partition
D conformally with the block upper triangular structure of M above as

_[Dy 0
D_[O 02]-

Consider now a sequence of scaling matrices D(*) of the form

(1;)= Dl—i(n—r) 0 .
D [ 0 Dotir |’ 1=1,2,....

(Note that D € D for i =1,2,....)

. @) 5 _p®
For such a sequence of scalings, ”eD Me—P ” converges to

max ([|e” Mire™ |, |e” Maze™"2)),

which is less than or equal to
”ep(i)Me_D(i) “

for every ¢, from Lemma 2.2. Thus for every v > frin(M), the set D., is unbounded.

To prove the converse, let us assume that for some v > fyin(M), Dy is not
bounded. Then there is a sequence of scalings D® in D., with some of the elements
of the diagonal scaling matrix D) with absolute value tending to infinity. Then,
there exists a subsequence D(™), which can be partitioned to within a permutation
as

where every element of D, ., diverges to —oc with 4, while every element of Dy, is
bounded below. (In fact, at least one of the elements of D, ,,, must diverge to oo, but
we will not use this fact.)

Thus the maximum singular value of

M _ eDl,niMlle"Dl,ni eDl,ni M126_D2‘ni
eP2mi MajeDPimi eDami Myge D2ns |2

remains bounded with every element of D; ,, diverging to —oo while the elements of
D, ,, are bounded below. This immediately means that Mp; = 0, which shows that
M must be reducible. 0

COROLLARY 2.3. Doy is nonempty and bounded if M is irreducible.

Proof. If M is irreducible, the sublevel set D, is bounded for every v > fmin(M);
since ||eD Me™P “ is a continuous function of D over D, the infimum in (2) is achieved.
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Thus Dypt is nonempty if M is irreducible. Boundedness of Doy follows from an
argument similar to the one in the proof of Theorem 2.1. 0

We note that this sufficient condition for the existence of optimal scalings can
also be found in [3, Prop. 4].

Remark. Thus, irreducibility of M is a sufficient condition for the existence of
optimal matrix scalings. If M is reducible, two cases are possible: Dypt may be empty
or it may be nonempty and unbounded. The following examples illustrate this.

Ezample 1 (Dopy empty).

Il
O = =
O = =
—

It is shown in the Appendix that D,p¢ is empty. The optimally scaled singular
value is the limit of the sequence of scaled singular values corresponding to scalings
D(d) with d | —o0:

d 0o 0
Dd=|0d o0
0 0 —2d

11 1
M=|11 -1
00 1
It is shown in the Appendix that
d 0 0
Dopt=4D (D=0 d 0 |, de(—o0,log(3/2)/6]
0 0 —-2d

3. D,py for irreducible matrices. We next derive a sufficient condition for
Dopt to be a singleton.

We first state without proof a condition for optimality of a scaling D.

THEOREM 3.1. Suppose the mazimum singular value of eP Me=P is isolated,
i.e., of unit multiplicity. Then D is an optimal scaling for Problem 2 if and only if

there exist vectors u and v, with ||u|| = ||v|| = 1, such that
Daf.—D
eP’Me™” v= fuin(M) u o _ L@l . _
=D M*eP = fmin(M) v, and |u'Y| = ‘v ,i1=1,2,...,n,
where u® and v®, i =1,2,...,n are the components of u and v, respectively.

Theorem 3.1, which is a “magnitude-matching” condition on the components of
the left and right singular vectors of the scaled matrix, follows immediately from
simple gradient calculations (see, for example, [9]).

We also need the following theorem about the analyticity properties of the singular
values of a complex matrix that depends on a real parameter (see [2], [10], [8]).
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THEOREM 3.2. Let A(z) be a (complex) m X n matriz, the entries of which are
analytic functions of a real parameter x. There are real analytic functions f; : R —
R,i=1,...,min(m,n) such that, for all x € R,

4) {o:(A(z)),i=1,...,min(m,n)} = {|fi(z)|,s = 1,...,min(m,n)},
where o;(A(x)) stands for the ith singular value of A(x). (Thus, the f;’s are the
unordered and unsigned singular value functions of A(z).)

For convenience, we let v = fuin(M). With D being an optimal scaling, suppose
that (i) 7 is the isolated maximum singular value of e® Me~P and (ii) the left and
right singular vectors of e? Me~P (i.e., u and v in Theorem 3.1) belong to the same
coordinate subspace, i.e., a subspace of the form |J;cyspan{e;}, where I is a proper
subset of the set of indices {1,...,n} and {e;, i = 1,...,n} are coordinate vectors
(i.e., unit vectors of R™ in the standard basis). We will show that this means that
Dopt is not a singleton.

First note that to within a permutation, we have

U1 U1
(5) U= [ 0 ] I V= [ O 9

where u;,v; € C™ with 1 < r < n; we then partition e’ Me™P as

My M ]
D -D 11 12
Me™P = ,
e e [ My, My, |

where M;; € C™*". Of course, 'ugi)’ = ’vgi)‘, 1 =1,...,r, and v is the optimally
scaled maximum singular value of M;;. Now, with

D) = [ Noohe o ] +D,

where I; is the r X r identity matrix, consider

An
DN A f.—D(N) — My, e Mo
e Me [ e_’\"le Moo ’

For every A € R, 7 is a singular value of e? Me=P™) | with u and v in (5) being the
corresponding left and right singular vectors. Moreover, every entry of e?() Me=PX)
is an analytic function of A\. Then, using Theorem 3.2 and the assumption that the
maximum singular value of ePMe~P is isolated, we conclude that the maximum
singular value of eP™ Me~P®) is isolated, and hence a real analytic function of A for
X € [—¢, €], where € > 0 is sufficiently small. It follows immediately that for A € [—¢, €],
7 is the maximum singular value of e Me=P), In other words, D()) is also an
optimal scaling for M, for A € [—¢,€].

Conversely, let us assume that Dy, is not a singleton, so that there exist Dy, D, €
Dopt, With Dy # D,. Then, from the convexity of Dopy, D(A) = AD; + (1 — A\)Ds €
Dopt for every A € [0,1]. Moreover, let us assume that -y is the isolated maximum
singular value of e Me=P®) for A € [0, 1].

Since D; # Do, to within a permutation,

L, 0 - 0
0 dyIy -+ O
D1 —D2 = . . . .

0 0 - dp,
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where p > 1, dy > d2 > -+ > dp, and I, Is,..., I, are identity matrices of sizes
n1,Mg,...,ny, respectively. Of course, -5 n; = n, and Y}%_; n;d; = 0. Note that
every entry of e Me~PO) is an analytic function of A, more specifically equal to
a ratio of polynomials of (the components of) z = [e*® ¢*2...er]. Then, using
Theorem 3.2, we conclude that since v is the maximum singular value of e?*) Me=PX)
for A € [0,1], it must be a singular value of eP* Me=PO) for all A € R.

Next, let u(\) and v()\) be the left and right singular vectors of P Me=PW)
corresponding to the singular value 7, so that

PO M e~ P y(X) =7 u(N),
(6)
e~ PO M* PO y(X) =y v(N),

with |lu(A)|| = |[lv(AN)]] = 1. Then, by a direct calculation, u(A) and v(\) can be
chosen as analytic functions of A whose every entry can be expressed as a ratio of a
polynomial of z and the square root of a polynomial of z. Therefore, the limits, as
X — %00, of u()) and v()) exist. Next, from Theorem 3.1 we have [u®)(A)| = v (})]
fori =1,2,...,n and X € [0,1], and therefore |u)(\)| = [ (X)| for i = 1,2,...,n
and for all A € R.

Partitioning eP2 Me~P2, u()) and v()\) as

My My ... My uy(A) v1(A)
oD gD — A{zl 1\4'22 ]\4.2;; us UzF)\) Cu= ’029\) ,
Mp]_ Mp2 e Mpp up(A) ’Up(>\)

where M;; € C™*™  and u;(A) and v;(A) € C™ for i = 1,2,...,p, we now show that
<y is the optimally scaled maximum singular value of My; or Mag or ... Mpp.
Consider the following equation, taken from (6).

e M Myyvi(A) + e 2 Migua(A) + - -+ + €7 Mipup(X) = ye *us (V).
Letting A — —oo in the above equation, we get
M11'U1(—OO) = 'yul(—oo).

Since v1(—00)*v1(—00) = u1(—00)*us(—00) (this follows from [u®(X)| = [v®D(N)]
fori =1,2,...,n and for A € R), we conclude that either «y is the optimally scaled
maximum singular value of Mj; or u;(—o00) = v1(—o0) = 0. Continuing similarly,
it follows that + is the optimally scaled maximum singular value of M;;, for some
i=1,...,p. (Recall our assumption that + is the isolated maximum singular value of
ePM) Me=P™ for ) € [0,1], so that only one of My, ..., M, can have a maximum
singular value of +.)

Remark. Suppose uj(—00) # 0 # v1(—00). Then, by replacing A by A+ n (where
n € R is fixed) in the preceding argument, we may show that [u;(—oc0)* 0---0]" and
[v1(—00)* 0---0]* are left and right singular vectors of eP( Me~P™ corresponding
to a singular value v for every n € R, where D(n) = nD; + (1 — 1) Ds.

Remark. If the entries of D; — Dy are distinct, then there exist left and right
singular vectors of eP?Me~P2 corresponding to the maximum singular value that
both equal the same coordinate vector.!

1 We thank Reviewer 1 for drawing our attention to this remark.
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In summary, we have shown that there exist two different optimal scalings D;
and D,, with the optimally scaled maximum singular value being isolated for all
D()\) = Dy + M(Dy — D2), X € [0,1], if and only if there exist left and right singular
vectors of eP2Me~P2 (indeed, of ePMMe=PM X\ € [0,1]) corresponding to the
isolated maximum singular value, belonging to the same coordinate subspace.

We thus arrive at the following sufficient condition for the optimal scaling to be
unique.

THEOREM 3.3. For an irreducible matriz M, let D be an optimal scaling, and let
the mazimum singular value of e® Me™P be isolated. Then D is the unique optimal

scaling if and only if there exists no pair of vectors u and v, with ||lul]| = |Jv|| =1
satisfying

Dpfe-D

e“Me P v="u,
(7)

e PM*eP u=~yv
that belong to the same coordinate subspace.

Remark. With D being an optimal scaling, if the maximum singular value of
ePMe~P is not isolated, then there always exist v and u with |jul| = |jv] = 1,
satisfying (7) and belonging to the same coordinate subspace. In this case, the optimal
scaling may or may not be unique as the following two examples illustrate.

Exzample 3 (Dopt is a singleton).

11 -1
M = 11 1
-1 1 1

It is shown in the Appendix that the unique optimal scaling is zero, i.e., the “identity”
scaling, though [1/v/2 1/v/2 0]T is both a left and right singular vector corresponding
to the maximum singular value of two. Note that the maximum singular value at the
optimal scaling is not isolated.

Ezample 4 (Dopy, is not a singleton).
11
Mol 11 1
-1 1

It is shown in the Appendix that D is given by

d 0 0
Dopt=4D |D=|0 d 0 |,de[-d.,d]},
0 0 —-2d
where
b (1) o 2 VI7
*=\6) ® 8

For every D € Dopt, [1/v2 1/v/2 0]T is both a left and right singular vector of
ePMeP corresponding to the maximum singular value of two. Note that the maxi-
mum singular value at the optimal scaling

de 0 0
0 d. 0
0 0 -2

is not isolated, as with Example 3.
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4. Conclusion. We have derived sufficient conditions for existence and unique-
ness of optimal diagonal similarity scalings for scaled singular value minimization.
These conditions can be extended to the other structured scaling problems such as
block diagonal similarity scaling.

Appendix. More on the examples. Example 1. Let d;, d2, and ds be the
diagonal entries of D, with d; + d2 + d3 = 0. Then,

1 1 ]. ]_ edl —d2 edl —d3
M=]111 and ePMe P = | ede—hr 1 ed2—ds
0 0 1 0 0 1

We observe that if d; # da, then |[e®Me™P|| > 2, since the maximum singular
value of the principal 2 x 2 block exceeds 2. With d; = dy = d, ||eD Me=P || > 2 once
again, since

, 2 2 2e3d
(eDJl{[e_D) ePMe™P = 2 2 2¢3¢
234 2¢3¢ 1 4 284

is a matrix with positive entries, and therefore its spectral radius (the maximum mag-
nitude of its eigenvalues) is strictly greater than four, which is the spectral radius of its
principal 2 x 2 block (see, for example, [1]). Therefore, it follows that ||e? Me~P|| > 2
for every scaling D.

Finally, we note that with di = dy = d, as d — —oo, ||ePMe~P|| — 2.

A plot of the singular values of of e Me~P as a function of d is shown in Fig. 1.

5

45+

4+

35+

3

2.5F

-1 -0.8 -0.6 -0.4 -0.2 0 012 0:4
d

FiG. 1. Ezample 1.

Ezxample 2. We have

1 1 1 1 ed1—d2 edl-—d;;
M=]11 -1 and ePMe™P = | el—h 1 —ed2—ds |
0 0 1 0 0 1
with d] + d2 + d3 =0.
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Once again, if dy # dg, then ”eD MeP ” > 2. However, in contrast with Exam-
ple 1, with dy = dy = d, ||[ePMe™? || is only greater than or equal to two. Since

X 2 2 0
(eDMe_D) ePMe P =12 2 0
0 0 14 2e8

)

the singular values of e?Me™P are v/1+ 2¢%4, 2, and 0. Therefore if d < d, =
log(3/2)/6, ||ePMeP|| = 2.
A plot of the singular values of of e Me~P as a function of d is shown in Fig. 2.

5

4.5} 4
4} i
3.5+ 4
3r 4

51 i
* Jeoare-2]

-1 -0.8 -0.6 -0.4 -0.2 0 d. 0.2 0.4
d

FIG. 2. Ezample 2.

Ezxample 3. We have

11 -1 1 eh—d2  _edi—ds
M = 11 1 and ePMe P =| eb—h 1 ed2—ds |
-1 1 1 —eda=dr  gds—dz 1

with d1 + d2 + d3 = 0.
Once again, if d; # ds, then ”eDMe"D“ > 2. With d; = ds = d, consider

2+ e—6d 9 — e—6d _e—3d
(eDMe‘D)* ePMe P =| 2-e08 2406 -3d
_e—3d e—3d 1+ 266d

The eigenvalues of this matrix are

4, % ((1 + 284 4 2¢764) + \/(1 + 2¢6d 4 2¢-6d)% 16) :

Therefore the maximum singular value of e®? Me~? exceeds two if d # 0, and equals
two if d = 0. In other words, the unique optimal scaling is zero, i.e., the “identity”
scaling. Note that the maximum singular value at the optimal scaling is not isolated.

A plot of the singular values of of e® Me™ as a function of d is shown in Fig. 3.



38 V. BALAKRISHNAN AND S. BOYD

05 -04 -03 -02 01 0 0.1 0.2 03 04 0.5
d
FiG. 3. Ezample 3.

Example 4. We have

1 -1 1 eh—dz  _gdi—ds
M= 1 edz—d1 1 ed2—da

|
—

1
1 11 and ePMe P =
1 _eds—d1 gdz—dz

V2 V2
with d; +ds + d3 = 0.

e

5

4st 4
RN |
35|

3t |
25| ]

2

1.5¢ E

Fi1G. 4. Ezample 4.
Once again, if d; # dg, then “eDMe‘D“ > 2. With d; = dy = d, consider

2 + ¢~ 6d 2-e78  _(1/v/2)e 3
(ePMe P)"ePMe™P = 2 — 04 2+e7 8  (1/v2)e 3
—(1/v/2)e=%¢  (1/1/2)e=3¢  1/2 + 2¢54
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The eigenvalues of this matrix are

4, % <(1/2 + 2¢% 4 2¢764) + \/ (1/2 + 2€8¢ + 2¢—6d)% — 16) :

From this, it follows that the maximum singular value of e®?Me™P equals two if
d € [—d, ,d.], where

d, = (1/6)log 9—+é——‘/1_7

Note that the maximum singular value of e Me~P is isolated for d € (—dx , dx).
A plot of the singular values of of e Me™P as a function of d is shown in Fig. 4.

REFERENCES

[1] A.BERMAN AND R. J. PLEMMONS, Nonnegative matrices in the mathematical sciences, Comput.
Sci. Appl. Math., Academic Press, New York, 1979.
[2] S. BoyD AND V. BALAKRISHNAN, A regularity result for the singular values of a transfer matriz
and a quadratically convergent algorithm for computing its Loo-norm, Systems Control
Let., 15 (1990), pp. 1-7.
[3] M. K. FaN AND A. L. TiTs, m-form numerical range and the computation of the structured
singular value, IEEE Trans. Automat. Control, 33 (1988), pp. 284-289.
[4] M. K. H. FaN, A. L. T1Ts, AND J. C. DOYLE, Robustness in the presence of mized parametric
uncertainty and unmodeled dynamics, IEEE Trans. Automat. Control, 36 (1991), pp. 25—
38.
[5] G. E. FORSYTHE AND E. G. STRAUS, On best conditioned matrices, Proc. Amer. Math. Soc., 6
(1955), pp. 340-345.
[6] F. R. GANTMACHER, The Theory of Matrices, Vol. 2, Chelsea, New York, 1959.
[7] A. GREENBAUM AND G. H. RODRIGUE, Optimal preconditioners of a given sparsity pattern,
BIT, 29 (1989), pp. 610-634.
[8] T. KaTo, A Short Introduction to Perturbation Theory for Linear Operators, Springer-Verlag,
New York, Berlin, 1982.
[9] N. M. KHRAISHI AND A. EMAMI-NAEINI, A characterization of optimal scaling for structured
singular value computation, Systems Control Lett., 15 (1990), pp. 105-109.
[10] B. D. MOOR AND S. BoYD, Analytic properties of singular values and vectors, Tech. Report
ESAT-SISTA Report 1989-28, Department of Electrical Engineering, Katholieke Univer-
siteit Leuven, Belgium, December 1989.
[11] M. G. SAFoNoV, Stability margins of diagonally pérturbed multivariable feedback systems, IEE
Proc., 120-D (1982), pp. 251-256.

[12] R. SEZGINER AND M. OVERTON, The largest singular value of eX Age=X is conver on convexr
sets of commuting matrices, IEEE Trans. Automat. Control, 35 (1990), pp. 229-230.

[13] N.-K. TsING, Convexity of the largest singular value of eP Me~P: a convezity lemma, IEEE
Trans. Automat. Control, 35 (1990), pp. 748-749.



