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EXISTENCE AND UNIQUENESS OF OPTIMAL MATRIX SCALINGS*

V. BALAKRISHNANt AND S. BOYD$

Abstract. The problem of finding a diagonal similarity scaling to minimize the scaled singular
value of a matrix arises frequently in robustness analysis of control systems. It is shown here that
the set of optimal diagonal scalings is nonempty and bounded if and only if the matrix that is being
scaled is irreducible. For an irreducible matrix, a sufficient condition is derived for the uniqueness of
the optimal scaling.
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Notation. R (C) denotes the set of real (complex) numbers. R+ stands for
the set of positive real numbers. For z E C, Re z is the real part of z. The set of
rn n matrices with real (complex) entries is denoted Rmn (cmn). I stands for
the identity matrix with size determined from context. For a matrix P Cmn
pT stands for the transpose and P* stands for the complex conjugate of pT. iipi
is the spectral norm (maximum singular value) of P given by the square root of the
maximum eigenvalue of P*P. (For a vector v Cn, Ilvll is just the Euclidean norm.)
For P Cnn, Tr P stands for the trace, that is, the sum of the diagonal entries of
P.

1. Introduction. Given a complex matrix M Cnn and a nonsingular diag-
onal matrix D Cnn, the similarity-scaled singular value of M corresponding to
scaling D is defined as

f(M, D) IIDMD-l[.
The optimal diagonal scaling problem is to minimize f(M, D) over all diagonal non-
singular matrices D"

(1) fmin(M) inf {IIDMD-1IIID cnxn, D is diagonal and nonsingular}.

We refer to fmin(M) as the optimally scaled singular value of M.
Problem (1) arises in the robustness analysis of control systems with structured

uncertainties. For further details, see [11] and [4]. Much research has focused on
the related problem of finding optimal (with various criteria for optimality) diagonal
preconditioners for use in iterative algorithms; see, for example, [5] and [7].

Reformulation as a convex optimization problem. We note that f(M, IDI)
f(M,D); we also observe that f(M,D) is homogeneous of degree zero in D, that is,
f(M, aD) f(M, D) for all nonzero a E C. Therefore, we may rewrite (1) as

(2) fmin(M) inf {lieDMe-D II D Rnn, D is diagonal, Tr D 0}.
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The reason for rewriting (1) as (2)is that IleDMe-DII is a convex function of D--
this fact will prove important in the sequel--while IIDMD-111 is not [12], [13]. For
convenience, we let

V {D D e Rnn, D is diagonal, Tr D 0}.
In this paper, We do not concern ourselves with the solution of (2). We instead

investigate the set of minimizers for (2), that is, the set of optimal scalings )opt
defined by

(3) :Dop {D D T, I[eDMe-DII fmin(M)}
In the process, we provide a sufficient condition for :/:)opt to be nonempty (which means
the infimum in (2) is achieved) and a sufficient condition for Topt to be a singleton
(which means that there is a unique optimal scaling).

2. Boundedness of opt. We start with a few definitions.
DEFINITION 1. A permutation matrix P is a real, orthogonal n x n matrix (i.e.,

ppT pTp I) with entries that are either one or zero. We let P denote the set
of n z n permutation matrices.

DEFINITION 2. A complex matrix M is said to be reducible if there exists some
P P such that PMPT is block upper triangular, that is,

pMpT= [ Mll M2 ]0 M
where M, M22 are square matrices of appropriate sizes [6], [1]. A matrix that is
not reducible is termed ieducible.

Remark. For any permutation matrix P,

[]eDMe-D[] ][peDpTpMpTpe-DpT[.
Note that peDpT is diagonal and corresponds to just a reordering of the diagonM
entries of ep. Therefore, as far as the scaling problem is concerned, if a matrix M is
reducible, we may assume without loss of generMity that

0 M
bearing in mind that a reordering of the entries of the scMing D might be necessary.
In the sequel, the phrase "within a permutation" refers to such a reordering of the
entries of D and the corresponding permutation similarity transformation on M.

Let denote the sblevel set

The following theorem relates the irreducibility of M to the boundedness of the sub-
level sets.
Toa 2.1. For ae 7 > fmin(M), the sblevel set is boeded if ad ol

if M is irreducible.
Pro@ We first note the Nllowing lemma.
LEMMA 2.2. B holds that

Mll 0 ]0 M22
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where Mll, M12, and M22 are matrices of appropriate sizes.
Proof. The proof is left to the reader.
We first assume that M is reducible. Then to within a permutation,

M- 0 M22 J
where Mll E Cr r with r < n.

Then given any /> fmin(M) and D E T) (note that T) is nonempty), partition
D conformally with the block upper triangular structure of M above as

0 D2

Consider now a sequence of scaling matrices D(i) of the form

D(i)= [Dl-i(n-r) 0 ] i=1 2,0 D2+ir

(Note that D(i) e T) for 1, 2,
a sequence of scalings, IleD()Me-D()]I converges to

mx (il
which is less hn or equal

for every i, from Lemma 2.2. Thus for every -), > fmin (M), the set 7) is unbounded.
To prove the converse, let us assume that for some - > fmin(M), - is not

bounded. Then there is a sequence of scalings D(i) in D with some of the elements
of the diagonal scaling matrix D(i) with absolute value tending to infinity. Then,
there exists a subsequence D(n), which can be partitioned to within a permutation
&s

0 D2,n

where every element of Dl,n diverges to -oc with i, while every element of D2,n is
bounded below. (In fact, at least one of the elements of D2,n must diverge to cx), but
we will not use this fact.)

Thus the maximum singular value of

[ eDI,- Mlle-DI,n eDI,’ M12e-D2,- ]M eD2 ’ M21e-DI’n eD " M22e-D’r
remains bounded with every element of Dl,n diverging to -oe while the elements of
D2,, are bounded below. This immediately means that M21 0, which shows that
M must be reducible.

COROLLARY 2.3. )opt i8 nonempty and bounded if M is irreducible.
Proof. If M is irreducible, the sublevel set T) is bounded for every - > fmin(M);

since IleDMe-DII is a continuous function of D over/), the infimum in (2)is achieved.
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Thus )opt is nonempty if M is irreducible. Boundedness of )opt follows from an
argument similar to the one in the proof of Theorem 2.1. El

We note that this sufficient condition for the existence of optimal scalings can
also be found in [3, Prop. 4].

Remark. Thus, irreducibility of M is a sufficient condition for the existence of
optimal matrix scalings. If M is reducible, two cases are possible: :/)opt may be empty
or it may be nonempty and unbounded. The following examples illustrate this.

Example 1 (/:)opt empty).

1 1 1 11 1 1
0 0 1

It is shown in the Appendix that )opt is empty. The optimally scaled singular
value is the limit of the sequence of scaled singular values corresponding to scalings
D(d) with d $ -oo:

D(d)
d 0 0 ]0 d 0
0 0 -2d

Example 2 ()opt nonempty and unbounded).

1 1 1]1 1 -1
0 0 1

It is shown in the Appendix that

D 0 d 0 d e (-oo, log(3/2)/61
0 0

3. :)opt for irreducible matrices. We next derive a sufficient condition for
)opt to be a singleton.

We first state without proof a condition for optimality of a scaling D.
THEOREM 3.1. Suppose the maximum singular value of eDMe-D is isolated,

i.e., of unit multiplicity. Then D is an optimal scaling for Problem 2 if and only if
there exist vectors u and v, with Ilull Ilvll 1, such that

eDMe-D v-- fmin(M) u and Ilu(i)l=lv(i) i=12.., n,-DM*eD u= fmin(M) v,

where u() and v(), 1, 2,..., n are the components of u and v, respectively.
Theorem 3.1, which is a "magnitude-matching" condition on the components of

the left and right singular vectors of the scaled matrix, follows immediately from
simple gradient calculations (see, for example, [9]).

We also need the following theorem about the analyticity properties of the singular
values of a complex matrix that depends on a real parameter (see [2], [10], [8]).
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THEOREM 3.2. Let A(x) be a (complex) m n matrix, the entries of which are
analytic functions of a real parameter x. There are real analytic functions fi R --,

R, 1,..., min(m, n) such that, for all x E R,
(4) {ai(A(x)),i 1,...,min(m,n)} {Ifi(x)l,i 1,...,min(m,n)},
where ai(A(x)) stands for the ith singular value of A(x). (Thus, the f ’s are the
unordered and unsigned singular value functions of A(x).)

For convenience, we let ’7 fmin(M). With D being an optimal scaling, suppose
that (i) "7 is the isolated maximum singular value of eDMe-D and (ii) the left and
right singular vectors of eDMe-D (i.e., u and v in Theorem 3.1) belong to the same
coordinate subspace, i.e., a subspace of the form JieI span{ei}, where I is a proper
subset of the set of indices {1,... ,n} and {ei, i- 1,... ,n} are coordinate vectors
(i.e., unit vectors of an in the standard basis). We will show that this means that
)opt is not a singleton.

First note that to within a permutation, we have

where Ul, vl E Cr with 1 _< r < n; we then partition eDMe-D as

eDMe_D._[ MIM21 M22M12]
where Mll G Crxr. Of course, u v 1,...,r, and "7 is the optimally
scaled maximum singular value of Mll. Now, with

D(,) [ A(n- r)I1 0 ]0 -ArI2 + D,

where I is the r r identity matrix, consider

eD(A)Me_D(,X) Mll
e-AnM21

einM12
M22 I

For every A R, "7 is a singular value of eD()Me-D(), with u and v in (5) being the
corresponding left and right singular vectors. Moreover, every entry of eD()OMe-D()O

is an analytic function of/k. Then, using Theorem 3.2 and the assumption that the
maximum singular value of eDMe-D is isolated, we conclude that the maximum
singular value of eD(A)Me-D(A) is isolated, and hence a real analytic function of A for

[-, ], where e > 0 is sufficiently small. It follows immediately that for
’7 is the maximum singular value of eD(A)Me-D(A). In other words, D(A) is also an
optimal scaling for M, for A E I-e., ].

Conversely, let us assume that )opt is not a singleton, so that there exist D1, D2
:Dopt, with D # D2. Then, from the convexity of :Popt, D(A) AD1 + (1 A)D2
:Dopt for every A [0, 1]. Moreover, let us assume that ’7 is the isolated maximum
singular value of eD()Me-D() for A [0, 1].

Since D1 =/= D2, to within a permutation,

dlI1 0 0
0 d212 0

D1 -D2 ..
0 0 dpIp
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where p > 1, dl > d2 > > dp, and Ii,I2,...,Ip are identity matrices of sizes
P and iP__l ndi 0. Note thatnl, n2,..., np respectively. Of course, =1 n n,

every entry of eD(’X)Me-D()) is an analytic function of A, more specifically equal to
a ratio of polynomials of (the components of) z [edl c)’d2... e)’dP]. Then, using
Theorem 3.2, we conclude that since 9/is the maximum singular value of eD()Me-D(’)

for A E [0, 1], it must be a singular value of eD()Me-D() for all R.
Next, let u(A) and v(A) be the left and right singular vectors of eD(’)Me-D()’)

corresponding to the singular value 9/, so that

(6)
eD()M e-D() v(A)=9/ u(A),

e-D()M eD() u(A)=9/v(A),
with I1 ( )11 IIv( )ll . Then, by a direct calculation, u(A) and v(A) can be
chosen as analytic functions of A whose every entry can be expressed as a ratio of a
polynomial of z and the square root of a polynomial of z. Therefore, the limits, as
A --. +(x, of u(A) and v(A)exist. Next, from Theorem 3.1 we have
for i= 1,2,...,n and A e [0, 1], and therefore lu()(A)l Iv(i)(A)l for i= 1,2,...,n
and for all R.

Partitioning eDMe-D, u(A) and v(A) as

eDMe-D

where M Cnin, and u(A) and v(A) CTM for 1, 2,...,p, we now show that
9/is the optimally scaled maximum singular value of Mll or M22 or Mpp.

Consider the following equation, taken from (6).
e-)dl MllVl (,) --e-XdM12v2(A)+’" + e-dpMlpvp(A) 9/e-)dltl (,))

Letting -- -oc in the above equation, we get

MllVl (-(:x:)) 9/t (-(:x:)).
Since Vl(--(X))*Vl(--(X)) tl(--(X))*ltl(--(X) (this follows from
for 1, 2,..., n and for E R), we conclude that either 9/is the optimally scaled
maximum singular value of Mll or t (--(::X:)) V (--(:X3) 0. Continuing similarly,
it follows that 9/ is the optimally scaled maximum singular value of Mii, for some

1,..., p. (Recall our assumption that 9/is the isolated maximum singular value of
eD()Me-D() for [0, 1], so that only one of Mll,..., Mpp can have a maximum
singular value of 9/.)

Remark. Suppose ul (-c) 0 - vl (-oc). Then, by replacing by + /(where
/ R is fixed) in the preceding argument, we may show that [ul (-c)* 0... 0]* and
[vl(-oc)* 0... 0]* are left and right singular vectors of eD(V)Me-D(v) corresponding
to a singular value 9/for every r/ R, where D(r/) r/D1 + (1 r/)D2.

Remark. If the entries of D1 D2 are distinct, then there exist left and right
singular vectors of eD2Me-D corresponding to the maximum singular value that
both equal the same coordinate vector.

We thank Reviewer for drawing our attention to this remark.
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In summary, we have shown that there exist two different optimal scalings D1
and D2, with the optimally scaled maximum singular value being isolated for all
D() D2 + )(D1 D2), E [0, 1], if and only if there exist left and right singular
vectors of eD2Me-D. (indeed, of eD()Me-D(), , [0, 1]) corresponding to the
isolated maximum singular value, belonging to the same coordinate subspace.

We thus arrive at the following sufficient condition for the optimal scaling to be
unique.

THEOREM 3.3. For an irreducible matrix M, let D be an optimal scaling, and let
the maximum singular value of eDMe-D be isolated. Then D is the unique optimal
scaling if and only if there exists no pair of vectors u and v, with Ilull Ilvll 1
satisfying

eDMe-D v- u(7) e-DM*eD u--9/ V

that belong to the same coordinate subspace.
Remark. With D being an optimal scaling, if the maximum singular value of

eDMe-D is not isolated, then there always exist v and u with Ilull Ilvll 1,
satisfying (7) and belonging to the same coordinate subspace. In this case, the optimal
scaling may or may not be unique as the following two examples illustrate.

Example 3 (:/:)opt is a singleton).

[ 1 1 -1 1M= 1 1 1
-1 1 1

It is shown in the Appendix that the unique optimal scaling is zero, i.e., the "identity"
scaling, though [1/x/ 1/x/ 0]T is both a left and right singular vector corresponding
to the maximum singular value of two. Note that the maximum singular value at the
optimal scaling is not isolated.

Example 4 (:Dopt is not a singleton).
1 1 -1 11 1 1

1
-1 1

It is shown in the Appendix that )opt is given by

Dopt= D D= 0 d 0 d[-d,,d,]
0 0 -2d

where

For every D e Vopt [1/x/ 1/x/ 0]T is both a left and right singular vector of
eDMe-D corresponding to the maximum singular value of two. Note that the maxi-
mum singular value at the optimal scaling

d, 0 0
0 d, 0
0 0 -2d,

is not isolated, as with Example 3.



36 V. BALAKRISHNAN AND S. BOYD

4. Conclusion. We have derived sufficient conditions for existence and unique-
ness of optimal diagonal similarity scalings for scaled singular value minimization.
These conditions can be extended to the other structured scaling problems such as
block diagonal similarity scaling.

Appendix. More on the examples. Example 1. Let dl, d2, and d3 be the
diagonal entries of D, with dl q- d2 + d3-- 0. Then,

M 1 1 1 and eDMe-D ed2-dx 1 ed2-d3

0 0 1 0 0 1

We observe that if dl d2, then IleDMe-DII > 2, since the maximum singular
value of the principal 2 x 2 block exceeds 2. With dl d2 d, IleDMe-D II > 2 once

(eD[e-D) eDMe-D

again, since

2 2 2e3d ]2 2 2e3d

2e3d 2e3d 1 + 2e6d

is a matrix with positive entries, and therefore its spectral radius (the maximum mag-
nitude of its eigenvalues) is strictly greater than four, which is the spectral radius of its
principal 2 2 block (see, for example, [1]). Therefore, it follows that IleDMe-DII > 2
for every scaling D.

Finally, we note that with dl d2 d, as d --, -, IleDMe-DIl--- 2.
A plot of the singular values of of eDMe-D as a function of d is shown in Fig. 1.
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3.5

3-

2.5-

2

1.5

0.5

0
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

FIG. 1. Example 1.

Example 2. We have

1 1 1 11 1 -1
0 0 1

and eDMe-D
1

ed2-dx
0

edl --d2

1
0

ed -d3

_ed2 -d3
1

with d + d2 q- d3 0.
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Once again, if dl #- d2, then ]leDMe-DII > 2. However, in contrast with Exam-
ple 1, with dl- d2- d, [[eDMe-D[[ is only greater than or equal to two. Since

(eDMe-D)*eDMe-D
2 2 0
2 2 0
0 0 1 + 2e6d

the singular values of eDMe-D are V/1-4-2e6d, 2, and 0. Therefore if d < d.
log(3/2)/6, II  M - II 2.

A plot of the singular values of of eDMe- as a function of d is shown in Fig. 2.
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2.5

0.5

FIG. 2. Example 2.

Example 3. We have

M 1 1 1 and eDMe-D ed2-dl 1 ed-d3
-1 1 1 -ed3-dl ed3-d2 1

with d + d2 + d3 0.
Once again, if d d2, then [leDMe-D[[ > 2. With dl d2 d, consider

(eDMe-D)*eDMe- 2 + e-6d 2 e-6d -eTM

2 e-6d 2 -- e-6d eTM J--e-3d eTM 1 + 2e6d

The eigenvalues of this matrix are

1( 2e6d i(’4, (1 + + 2e-6d) =t= 1 + 2e6d + 2e-6d)2 16

Therefore the maximum singular value of eDMe-D exceeds two if d # 0, and equals
two if d 0. In other words, the unique optimal scaling is zero, i.e., the "identity"
scaling. Note that the maximum singular value at the optimal scaling is not isolated.

A plot of the singular values of of eDMe-D as a function of d is shown in Fig. 3.
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FIG. 3. Example 3.

0.5

Example 4. We have

1 -1 11 1 1
1

-1 1
and

1 edl -d2 _e_,dl -d3
e_,d2 -d 1 ed2 -d3eDMe-D 1_ed3-dz ed3-d

with dl + d2 q- d3 0.
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FIG. 4. Example 4.

0.5

Once again, if dl = d2, then II DM -DII > 2. With d d2 d, consider

(eDMe-D)*eDMe-D
2 + e-6d 2 e-6d -(1/v)e-3d "]
2 e-6d 2 + e-6d (1/x/)eTM J-(1/v/-)eTM (1//)e-3d 1/2 + 2e6d
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The eigenvalues of this matrix are

11(1/2 + 2e6d )4, + 2e-6d) +/- V/(1/2 + 2e6d + 2e-6d)2 16

From this, it follows that the maximum singular value of eDMe-D equals two if
d E I-d,, d,], where

d, (1/6)log

Note that the maximum singular value of eDMe-D is isolated for d E (-d, d,).
A plot of the singular values of of eDMe-D as a function of d is shown in Fig. 4.
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