Parameter Selection and Pre-Conditioning
for a Graph Form Solver

Chris Fougner and Stephen Boyd

Springer Lectures, UC Berkeley, 4/6/15

Outline

Graph form problem

Graph form problem

Graph form problem

minimize f(y) + g(z)
subject to y = Az

v

z € R" and y € R™ are variables

v

f:R™ =5 RU{}, g:R™ = RU {00} are convex closed proper

v

infinite values of f, g encode constraints
» constraint is (z,y) € G = {(z,y) | y = Az}, the graph of z — Az

» graph form includes many common convex problems

Graph form problem

Example: Cone programming

minimize ¢’z
subject to Az <k b
> g(z)=c"z
» f(y) =Ix(b—1y) (I is indicator function)

» includes LP, SOCP, SDP, ...
(so via CVX*, most convex problems in practice)

Graph form problem

Example: Generalized linear model fitting

minimize L(Az, z) + r(z)

v

variable z is parameter in statistical model

» 2 is observed data; A contains associated regressors

v

L is loss function, convex in first argument

» 7 is convex regularizer

v

includes LASSO, SVM, logistic regression, ...

v

in graph form, #(y) = L(y, 2), 9(z) = r(z)

Graph form problem

Radiation treatment planning

minimize f(y)
subjectto y= Az, z>0

v

z gives n beam intensities; y is radiation dose to m voxels

v

A depends on beam/voxel geometry/physics; A; > 0
objective is f(y) = >, fi(y:), with

v

Fily) = w; (di — yi)+ + ’wf(yz' —d;i)+ voxel ¢ in tumor
W= 0wty voxel i not in tumor

» d; is prescribed dosage; wf, w, are positive weights

v

in graph form, g(z) = I+ (z) encodes z > 0

Graph form problem

Portfolio optimization

maximize pTz —yzT(FFT 4+ D)z
subjectto z >0, 17z =1

» z € R” gives portfolio weights (allocation)

> u is expected asset return vector

» & = FFT 4 D is asset return covariance (‘factor model’)

> F € R™** is factor loading, D is diagonal (‘idiosyncratic risk’)

» objective is risk-adjusted return; -y > 0 is risk aversion parameter
T

F
17

v

in graph form: y = [] z € R¥1

g(z) =p"z+v2" Dz + Li(z), f(y)=vy"y+ Ly=1(y)

Graph form problem

Outline

Dual and optimality conditions

Dual and optimality conditions

Dual problem

Lagrange function: L(z,y,v) = f(y) + g(z) + vT(Az — y)

v

» dual function:
inf L(x) Y, V) = _f*(’/) - g*(_ATV)
z,Y

dual problem, with new variable uy = —ATv

v

maximize —f*(v) — g* ()
subject to pu=—-ATv

...also a graph form problem

v

duality gap n = f(y) + f*(v) + g(z) + g* ()

v

for (z,y, u, v) feasible, n > 0 (and gives bound on suboptimality)

Dual and optimality conditions

Optimality conditions

1. primal feasibility: y = Az

2. dual feasibility: u=—ATv

3. zero gap: f(y)+f*(v) +9(z) +g*(k) =0
» for any z, y, u, v (by definition),

FW+r @) >vly, g@)+g'(w)>p’z
so can replace zero gap with Fenchel feasibility:
FW+rw)=vTy, g@)+g' W =u"z

> same as: y minimizes f(y) — vTy, minimizes g(z) — "z

Dual and optimality conditions

Outline

Algorithm

Algorithm

11

ADMM for constrained minimization
> convex constrained problem

minimize ¢(z)
subjectto z €C
» ADMM (alternating directions method of multipliers):
fork=1,2,...
htl/2 .= prox(i,(m’c — F)
gHHL = TI(2F /2 4 5Y)

§k+1 = :%k + (Ek+l/2 _ k1

z
until converged

> prox, is proximal operator of ¢,

prox,(v) = argmin (¢(z) + (p/2)l|z — v]3)

> convergence theory: z¥ — z¥%%/2 — 0, ¢(z"7'/?) = infiec ¢(z)

Algorithm

12

Graph projection ADMM [Parikh 2014]

» apply ADMM for constrained minimization to graph form problem
» yields graph projection ADMM:
fork=1,2,...
(zh+1/2, yF+1/2y .= (proxg(mk — 5, proxf(yk _ @k))
(Ik+1’ yk+1) — H(:z:k+1/2 + ik7 yk+1/2 + @k)
(B9 R L) o= (80 4 gFT/2 gl g g R /2 ket

until converged

> projection onto G is

1|+ ATd AT
(¢, d) = K [0 }, K_{A ;

Algorithm 13

Efficient graph projection

» direct method:

» factorize K (which is quasidefinite)
» cache factorization so each subsequent iteration is a back-solve

» indirect/iterative method:

> use CG/LSQR to approximately compute projection
> warm start subsequent projections from last iterate

Algorithm

14

Iterate properties

> iterates (z¥, y*, u*, ") are primal and dual feasible,

Aghti? = i1/ AT RHZ /2
and Fenchel feasible in limit (when f and g are smooth)

> with #k+1/2 — _p($k+1/2 — k4 ik) URL/2 _p(yk+1/2 _ yk +

k+1/2 | k+1/2 | k+1/2 | k+1/2
(:z:+/,y+/, +/,1/+/)

n
is Fenchel feasible, and primal and dual feasible in limit:
Aghti/2 _ yk+1/2 0, AT Fr1/2 + l‘k+1/2 50

(with no assumptions on f and g)

Algorithm

@k

),

15

Outline

Pre-conditioning

Pre-conditioning

16

Pre-conditioning

» with D, E invertible, define § = Dy, % =E 'z
» solve (graph form) problem with variables Z, ¥

minimize f(D7'%) + g(E%)
subject to § = (DAE)Z

» called pre-conditioned graph form problem

» scaling D and E has same effect as changing p

» goal: choose D, E so

» graph projection ADMM is not (much) harder to carry out
» practical convergence is faster

» first condition holds when f, g are separable and D, E are diagonal

Pre-conditioning 17

Diagonal pre-conditioning

» heuristic: choose diagonal D, E so that 0;(DAE) ~ 1
» supported by (some) theory, numerical experiments

» heuristic for heuristic: equilibrate DAE
i.e., choose D and E so that rows (and columns) have same norm:

> (DiAyBy)? =na, Y (DadyEy)’ =ma
j=1 =1

» find D and E by minimizing convex function
m n
Z Z Aty — n1Tu —m1Tv
=1 j=1

by (simple) coordinate minimization; take D;; = e%/2, Ej; = e%/?
(recovers Sinkhorn-Knopp algorithm)

Pre-conditioning

18

Outline

POGS

POGS

19

Proximal Graph Solver (POGS)

» developed by Chris Fougner

» open source C++ implementation, on github

» targets CPUs and GPUs, with various wrappers

» handles sparse and dense A, direct and indirect solvers
» for now, only fully separable f and g

» includes proximal operator library; easy to extend

» algorithm only slightly more complicated than description above
(e.g., adaptive p-update, regularized equilibration)

POGS

20

Testing

POGS

POGS was tested on many problem instances

> from many application areas
> of varying dimensions
> of varying difficulty

results verified against (high accuracy) interior-point method (where
possible)

since we want a general solver, no tuning of any POGS algorithm
parameters

timing includes transfer to/from GPU, factorization, ...

21

POGS-GPU versus SDPT3
results for 3GHz Core i7, Nvidia K40

POGS

10°

Time [sec]

POGS vs. SDPT3 time

POGS-GPU
< SDPT3 L
% 3
X
X R H
X
X
><><
X . X
x .
b:s
ngAx%X
1] : 4
10° 10* 10° 10°

Non-zero entries

22

Performance summary

POGS-GPU versus SDPT3
» POGS solves problems 1000x larger in same time
» POGS solves same problems 100x (or more) faster

» limitation is GPU memory

POGS

23

Rad

POGS

iation treatment planning

» 0.4 GB problem, m = 360000 voxels, n = 360 beams

» checked against interior-point method and actual treatment plan used

» solve times

> conventional method: 8 hours

» ECOS (interior-point method): 1 hour
> POGS (cold start): 5 seconds

» POGS (warm start): 2 seconds

» enables real-time treatment planning

24

	Graph form problem
	Dual and optimality conditions
	Algorithm
	Pre-conditioning
	POGS

