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Abstract

In wireless networks, the optimal routing and resource
allocation problems are coupled together through link
capacities, which influence data routing and are deter-
mined by resource (e.g., power and bandwidth) alloca-
tion. We formulate the problem of simultaneous rout-
ing and resource allocation for wireless data networks
as a convex optimization problem and exploit the sep-
arable structure of the problem via dual decomposition
to develop efficient solution methods.

1 Introduction

Many relevant routing problems for data networks can
be formulated as convex multicommodity network flow
problems (e.g., [1]), for which many efficient solution
methods have been developed (e.g., [2, 3]). The op-
timal routing tables are highly dependent on the ca-
pacities of the communication links, which usually are
assumed fixed in the routing literature. The emergence
of wireless networks gives new perspectives on optimal
routing problems, in particular, when they are coupled
with resource allocation problems (e.g., [4, 5]). The
capacities of wireless channels are determined by the
channel characteristics and communications resources,
such as transmit powers, bandwidths, or time-slot frac-
tions allocated to the channels. Adjusting the resource
allocation within the network can change the capaci-
ties of individual links, influence the optimal routing
of data flows and alter the total utility of the network.

In this paper, we consider the simultaneous routing
and resource allocation (SRRA) problem for wireless
networks. We use a capacitated multicommodity flow
model to describe the data flows in the network. Ig-
noring the detailed transmission protocols and mecha-
nisms, the network flow variables should be interpreted
as average flows in bits per second. We assume that the
capacity of a wireless link is a concave and increasing
function of the communications resources allocated to

the link, and the communications resources for groups
of links are limited. These assumptions allow us to
formulate the SRRA problem as a convex optimization
problem over the network flow variables and the com-
munications variables. We exploit the special structure
of the SRRA problem via dual decomposition and de-
rive efficient algorithms for solving the dual problem.

2 Network flow model

We use the standard directed-graph model for network
topology and a multicommodity flow model for the av-
erage behavior of data transmission.

2.1 Network topology
We model the topology of a communication network by
a directed graph. In this model, a collection of nodes,
labeled by n = 1, . . . , N , can send, receive and relay
data through communication links. A communication
link is an ordered pair (i, j) of distinct nodes. The
presence of a link (i, j) means that the network can
support data flow from the start node i to the end
node j. We label all the links with integers l = 1, . . . , L.
We define O(n) as the set of links that are outgoing
from node n, and I(n) as the set of links that are
incoming to node n.

The network topology can be represented by its node-
link incidence matrix. Assume that the network has N
nodes and L links, then the entries anl of the incidence
matrix A ∈ RN×L is associated with node n and link l
via

anl =




1, if l ∈ O(n)
−1, if l ∈ I(n)

0, otherwise.

Hence, each column of A describes a link, and it has
exactly two nonzero entries: one equal to 1 and the
other equal to −1, indicating the start and end nodes
of the link. Each row of A describes all links incident
to a node: the +1 entries indicate outgoing links, and
the −1 entries indicate incoming links.



2.2 Multicommodity network flows
In the multicommodity flow model, each node can send
(different) data to many destinations and receive data
from many sources (but we don’t consider multicast).

We identify the flows in the network by their destina-
tions, i.e., flows with the same destination are consid-
ered as one single commodity regardless of their ori-
gins. We label the destination nodes as d = 1, . . . , D,
where D ≤ N (we can always label the destinations as
the first D nodes). For each destination d, we define
a source vector s(d) ∈ RN , whose entry s

(d)
n (n 6= d)

denotes the nonnegative flow injected into the network
at node n and destined for node d. By the flow conser-
vation law, we define the sink flow at the destination

s
(d)
d = −

∑
n,n 6=d

s(d)
n , (1)

where the summation is over all n except for n = d.

At each intermediate node, flows with the same desti-
nation are aggregated and transmitted according to the
routing table, which possibly splits the flow among out-
going links. On each link l, we let x

(d)
l be the amount

of flow destined for node d and call x(d) ∈ RL
+ the flow

vector with destination d. At each node n, components
of the flow vector and the source vector with the same
destination satisfy the following flow conservation law:∑

l∈O(n)

x
(d)
l −

∑
l∈I(n)

x
(d)
l = s(d)

n , d = 1, . . . , D.

They can be compactly written as

Ax(d) = s(d), d = 1, . . . , D, (2)

where A is the incidence matrix. Note that (2) im-
plies (1) since 1T A = 0, where 1 is the vector of ones.

Finally, we impose the link capacity constraints. Let cl

be the capacity of link l and tl =
∑

d x
(d)
l be the total

amount of traffic on link l. We must have tl ≤ cl.

In summary, our network flow model imposes the fol-
lowing group of constraints on the network flow vari-
ables x(d), s(d) and t:

Ax(d) = s(d), d = 1, . . . , D
x(d) º 0, d = 1, . . . , D

tl =
∑

d x
(d)
l , l = 1, . . . , L

tl ≤ cl, l = 1, . . . , L

(3)

where º means component-wise inequalities. We will
use x to denote the collection of flow vectors x(d) and
use s to denote the collection of source vectors s(d).

In convex multicommodity network flow problems, the
capacities cl are fixed and one is to minimize a convex
cost function of the network variables subject to the
constraints (3); see, e.g., [2, 3]. In a wireless network,
however, the link capacities cl are typically functions
of the communications resources allocated to the links.
These capacity constraints will be described next.

3 Communications model

Now we consider the wireless communication system
that supports the data network. In such a system,
the capacities of the individual links (channels) depend
on the media access scheme and the selection of cer-
tain critical parameters, such as transmit powers and
bandwidths or time-slot fractions allocated to individ-
ual or groups of channels. We refer to these critical
communications parameters collectively as communi-
cations variables, and denote the vector of communi-
cations variables by r. We assume that the medium
access methods and coding and modulation schemes of
the communication system are fixed, but that we can
optimize over the communications variables r.

Let rl be a vector of communications variables associ-
ated with link l. In general, the capacity cl depends not
only on rl, but also on communications variables allo-
cated to other links (due to interferences). However, in
this paper we will focus on the case where the link ca-
pacity is only a function of local resource allocation rl,
i.e., cl = φl(θl). For example, communication systems
with time-division and frequency-division multiple ac-
cess (FDMA) fit into this model. We use the following
generic model to relate the vector of total traffic t and
the vector of communications variables r:

tl ≤ cl = φl(rl), l = 1, . . . , L
Fr ¹ g, r º 0 (4)

We make the following assumptions about this model:

• The functions φl are concave and monotone in-
creasing in rl. This implies that the first set of
constraints are jointly convex in t and r.

• The second set of constraints describe resource
limits, such as the total available transmitting
power for the links outgoing from the same node.

Capacity formulas of many important communication
channel models satisfy the convexity and monotonic-
ity assumptions of the generic model (see, e.g., [6, 7]).
Here we will only illustrate how the Gaussian broad-
cast channel with FDMA fits into this framework.

3.1 Gaussian broadcast channel with FDMA
In this channel model, the transmitters at node n send
data to receivers at the end nodes of its outgoing links.
The outgoing links l ∈ O(n) are assigned disjoint fre-
quency bands with bandwidths Wl ≥ 0 and powers
Pl ≥ 0. The receivers at the end of the links are
subject to independent additive white Gaussian noises
with power spectral densities σl. The classical Shan-
non capacity formula (see, e.g., [6]) relates the capacity
cl and the communications variables rl = (Pl,Wl) by

cl = φl(Pl,Wl) = Wl log2

(
1 +

Pl

σlWl

)
(5)

It can be easily verified that φl is concave and mono-
tone increasing in the variables (Pl,Wl). So (5) is in
the generic form of the first set of constraints in (4).



The communications resource limits are∑
l∈O(i)

Pl ≤ P
(n)
tot ,

∑
l∈O(n)

Wl ≤ W
(n)
tot ,

which have the generic form of total resource limits
(the second set of constraints) in (4).

3.2 The resource allocation problem
In wireless communication systems, many resource al-
location problems can be written in the form of max-
imizing a weighted sum of communication rates (as-
sume that they are concave functions of resources), i.e.,

maximize
∑

l wlcl =
∑

l wlφl(rl)
subject to Fr ¹ g, r º 0 (6)

where wl are nonnegative weights. For example, with
the Gaussian broadcast channel in section 3.1, we can
allocate both the power and bandwidth to maximize
the total communication rate.

Many specialized algorithms have been developed for
problem (6) by exploiting its structure. For example,
if there is only one total resource limit, then it can be
solved by the classical water-filling algorithm (e.g., [6]).
Actually, water-filling is the one-dimensional version of
the dual decomposition method in section 6.

4 The SRRA problem

Combining the network flow model and communica-
tions model described in the previous two sections,
we now formulate the SRRA problem. We will first
present the maximum-utility version of the problem
and then discuss many variations of it.

4.1 Maximum-utility SRRA
Consider the operation of a wireless network described
by the network flow model (3) and communications
model (4). We assume that the utility of each source
rate s

(d)
n (n 6= d) is a concave and increasing function

U
(d)
n (·). Then the maximum-utility SRRA problem is

maximize
∑

d

∑
n,n 6=d

U (d)
n (s(d)

n )

subject to Ax(d) = s(d), d = 1, . . . , D
x(d) º 0, d = 1, . . . , D

tl =
∑

d x
(d)
l , l = 1, . . . , L

tl ≤ φl(rl), l = 1, . . . , L
Fr ¹ g, r º 0.

(7)

Here the optimization variables are the network flow
variables x, s, t and the communications variables r.

This is a convex optimization problem and it can be
solved efficiently by, for example, general interior point
methods (see, e.g., [8, 9]). Moreover, in the above
model, the matrices A and F are sparse and highly
structured, and far more efficient algorithms can be
developed by exploiting the problem structure.

4.2 Variations of the SRRA problem
Minimum power SRRA. Given the source vectors
s(d) to be supported by the network, it is desirable to
find the joint routing and resource allocation that min-
imizes the total transmit power used by the network:

minimize wT r
subject to the constraints in (7)

where wi = 1 if ri is a power variable and wi = 0
otherwise. Many variations, such as minimizing the
maximum power used by any node, or minimizing the
total bandwidth required to support the desired traffic,
can be handled similarly.

Accounting for delays. One of the most common
cost functions in communication network literature is
the total delay function fdelay(x, t) =

∑
l

tl

cl−tl
, which

is convex if the capacities cl are fixed. The goal is to
minimize this function by selecting the routing vari-
ables x, when the source vectors s (the throughput of
the network) are given. But this function is not jointly
convex in t and r when cl is substituted by φl(rl). An-
other cost function with similar qualitative delay prop-
erties is the maximum link utilization (see, e.g., [1])

f(t, r) = max
l

tl
φl(rl)

.

This function is quasi-convex, and we can use it as the
cost function to be minimized in the SRRA problem.

5 Numerical example

Now we consider a randomly generated wireless net-
work with 50 nodes (see figure 1). The nodes are uni-
formly distributed in the unit square [0, 1]× [0, 1]. Two
nodes can communicate to each other if their distance
is smaller than 0.25 (the graph is strongly connected).
The network has 340 links (170 double direction links
shown in the figure). We randomly choose five source
and destination nodes, labeled S1, . . . , S5 in figure 1.

S1

S2

S3

S4

S5

Figure 1: Topology of a randomly generated network.

In this example, we assume that the bandwidth al-
location is fixed and there is no interference among
links (using FDMA). We consider the joint routing and
power allocation problem. Let Pl be the power allo-
cated to link l. Each node has a total power constraint
for all its outgoing links, i.e.,

∑
l∈O(n) Pl ≤ Pn

tot = 100
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(a) Routes to node S1
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(b) Routes to node S2
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(c) Routes to node S3
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(d) Routes to node S4
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(e) Routes to node S5
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S5

(f) Power allocation

Figure 2: Optimal routing and power allocation

for n = 1, . . . , N . Let yl be the distance between the
two end nodes of link l. We use an inverse-square path-
loss model: power at the receiver is given by Pl(y0/yl)2,
where y0 = minl yl is the reference distance. The noise
power σl at each receiver is uniformly distributed on
[0.01, 0.1]. We use the following link capacity function
and source utility function for problem (7):

φl(Pl) = log
(
1 +

(y0

yl

)2 Pl

σl

)
, U (d)

n (s(d)
n ) = log s(d)

n .

We solved the SRRA problem (7) using the dual
decomposition method described in section 6. Fig-
ure 2(a)–2(e) show the optimal routing tables for the
five destinations S1, . . . , S5 respectively, and figure 2(f)
shows the optimal power allocation. In all these fig-
ures, the thickness of each link is roughly proportional
to the associated flow variable or the power allocation.

Table 1 shows the source and sink flows which achieve
the maximum total utility 17.27. To compare with
the SRRA approach, we also solved a maximum utility
routing problem with uniform power allocation, where
all nodes distribute its total power evenly to its outgo-
ing links, and the results are shown in table 2, which

i d = 1 d = 2 d = 3 d = 4 d = 5
1 -3.88 1.11 0.92 1.12 1.13
2 1.03 -16.05 2.93 6.98 6.97
3 0.84 2.69 -9.43 2.69 2.77
4 0.96 4.80 2.46 -18.23 4.80
5 1.05 7.45 3.12 7.44 -15.67

Table 1: Source vectors s
(d)
i with SRRA

i d = 1 d = 2 d = 3 d = 4 d = 5
1 -2.26 1.03 0.88 1.01 1.37
2 0.56 -13.95 1.73 9.59 5.92
3 0.54 2.07 -6.61 1.97 4.14
4 0.54 6.70 1.55 -16.34 4.20
5 0.62 4.15 2.45 3.77 -15.63

Table 2: s
(d)
i with uniform power allocation

give the maximum total utility 12.77. We see that
SRRA gives a 35% improvement of performance.

6 The dual decomposition method

In the SRRA problem (7) (the primal problem), the
network flow variables x, s, t and the communications
variables r are coupled only through the capacity con-
straints tl ≤ φl(rl). We exploit this almost separable
structure via dual decomposition (see, e.g., [10, 9]).

6.1 Formulation of the dual problem
We first form the partial Lagrangian, by introducing
Lagrange multipliers p ∈ RL

+ only for the L coupling
constraints tl ≤ φl(rl). This results in

L(x, s, t, r, p) =
∑

d

∑
n,n 6=d

U (d)
n (s(d)

n )−
∑

l

pl(tl − φl(rl))

=
∑

d

( ∑
n,n 6=d

U (d)
n (s(d)

n ) −
∑

l

plx
(d)
l

)
+

∑
l

plφl(rl).

We have eliminated the variables tl using tl =
∑

d x
(d)
l

in the above expression and will write the Lagrangian
as L(x, s, r, p) henceforth. The dual function, i.e., the
objective function of the dual problem, is defined as

V (p) = sup
x,s,r


L(x, s, r, p)

∣∣∣∣∣
Ax(d) = s(d), x(d) º 0
d = 1, . . . , D
Fr ¹ g, r º 0


 .

One immediate observation is that the dual function
can be evaluated separately in the network flow vari-
ables x, s, t and the communications variables r, i.e.,

V (p) = Vnet(p) + Vcomm(p),

where Vnet(p) can be computed by solving the problem

maximize
∑

d

( ∑
n,n 6=d

U (d)
n (s(d)

n ) −
∑

l

plx
(d)
l

)

subject to Ax(d) = s(d), x(d) º 0, (8)
d = 1, . . . , D



and Vcomm(p) can be computed by solving the problem

maximize
∑

l plφl(rl)
subject to F ¹ g, r º 0.

(9)

We call (8) the network flow subproblem and (9) the
resource allocation subproblem (same as (6)). Both
are convex problems. Actually (8) can be completely
decomposed into D single-commodity flow problems.

The dual problem associated with the primal (7) is

minimize V (p) = Vnet(p) + Vcomm(p)
subject to p º 0.

(10)

This is a convex optimization problem since V is a con-
vex function. Assuming that Slater’s condition for con-
straint qualification holds, strong duality holds (see,
e.g., [9, 10]), i.e., the optimal values of the dual prob-
lem (10) and the primal problem (7) are equal. More-
over, we can solve the primal problem via the dual.

6.2 Solve SRRA problem via the dual
Notice that the objective function of the primal prob-
lem (7) is not strictly convex. So the dual function
V (p) is usually non-differentiable (see, e.g., [10]). Ef-
fective methods for solving non-differentiable optimiza-
tion problems include the subgradient methods and
cutting plane methods, both of which need to compute
V (p) and a subgradient of it at a given p º 0.

Compute a subgradient. A subgradient of the con-
vex function V at p is a vector h ∈ RL such that

V (q) ≥ V (p) + hT (q − p) (11)

for all q. It is a generalization of derivative of differen-
tiable functions (see, e.g., [11]). Given a dual variable
p º 0, let x?(p), s?(p), t?(p) be one optimal solution to
the network flow subproblem (8) and r?(p) be one opti-
mal solution to the resource allocation subproblem (9)
(they may not be unique). Then a subgradient h of V
at p is readily given by (may not be unique either)

hl = φl(r?
l (p)) − t?l (p), l = 1, . . . , L. (12)

One can verify this directly from the definition of V (p).

Recover the primal optimal solution. Now sup-
pose that we have numerically solved the dual prob-
lem (10), and obtained an optimal dual variable p?

(see section 6.3 and 6.4). The corresponding solutions
x?(p?), s?(p?), t?(p?) and r?(p?) to the two subprob-
lems (8) and (9), however, may not be primal feasi-
ble. In particular, they usually don’t not satisfy the
capacity constraint t ¹ ∑

d x(d), which was relaxed
when forming the dual problem. This is a typical phe-
nomenon for problems with non-strictly convex primal
objective functions, where the primal optimal solution
is usually a nontrival convex combination of the ex-
treme subproblem solutions (see, e.g., [10] chapter 6).
One way to overcome this difficulty is to add a small

strictly-convex regularization term to the primal objec-
tive function. For example, we added a small quadratic
term of x to the utility function in the example of sec-
tion 5. This approach is closely related to augmented
Lagrangian and proximal point methods (e.g., [12]).

Next we discuss two algorithms for solving the dual
problem (10): the subgradient methods and the ana-
lytic center cutting-plane method (ACCPM).

6.3 The subgradient methods
In subgradient methods, we start with an initial point
p(1). At each iteration k = 1, 2, 3, . . ., we compute
the dual function V (p(k)) and a supergradient h(k) (see
Equation (12)), then update the dual variable by

p(k+1) =
[
p(k) − αkh(k)

]
+

(13)

where [·]+ denotes projection onto the nonnegative or-
thant, and αk is a positive scalar stepsize. There are
many ways to select the stepsizes in subgradient meth-
ods. One simple condition for convergence is (e.g.,[11])

lim
k→0

αk = 0, and
∞∑

k=1

αk = ∞.

In the example of section 5, we used the stepsize rule
αk = β/k. Figure 3 shows the dual objective function
versus the iteration number for β = 0.1 and β = 0.2.

Notice that the subgradient component hl can be ob-
tained locally at link l based on its own traffic tl and
available capacity φl(rl). So the subgradient methods
can be implemented distributedly at each link, without
a central coordinator. Distributed algorithms based on
the subgradient methods have been developed for rate
control problems in data networks (e.g., [13, 14]).

For extensive accounts of the subgradient methods, as
well as many variations, see, e.g., [11, 10].

0 100 200 300 400 500
−100

−50

0

50

100

150
subgradient method β=0.1
subgradient method β=0.2
ACCPM: dual objective
ACCPM: lower bound

iteration number

Figure 3: Dual function value versus iteration number

6.4 The analytic center cutting-plane method
ACCPM can be viewed as a localization method where
we refine the localization polyhedron at each iteration
based on a subgradient computed at its analytic center.

Here we will describe ACCPM in the epigraph space
z = (p, v) ∈ RL+1. Let P = {z | Az ¹ b} be a bounded



polyhedron, where A ∈ Rm×(L+1) and b ∈ Rm, then
its analytic center is defined as

acent(P) = arg max
z∈P

m∑
i=1

log
(
bi − aT

i z
)

where aT
i is the ith the row of the matrix A.

We start with a polyhedron P(0) = {z | A(0)z ¹ b(0)}
which is bounded and contains the optimal solution
z? = (p?, V ?). For example, it can be a box in RL+1

P(0) = {z = (p, v) | 0 ¹ p ¹ p, v ≤ v ≤ v}

where v and v are known lower and upper bounds for
the optimal value V ?, and p is a (component-wise) up-
per bound for p?. Then ACCPM can be outlined as

given P(0) and a required tolerance ε > 0.
k := 0.
repeat

1. Compute the analytic center z(k) = acent(P(k)),
and obtain a lower bound v from duality.

2. Let p(k) be the vector of the first L components
of z(k), and compute V (p(k)) and a supergradient
h(k). Then (p?, V ?) must lie in the halfspace

H(k) = {(p, v) | v ≥ V (p(k)) + h(k)T (p − p(k))}.

3. Form the polyhedron P(k+1) = P(k) ∩ H(k), and
update the upper bound v := min{v, V (p(k))}.

4. If v − v ≤ ε, quit; else, let k := k + 1.

For computational details and convergence analysis of
ACCPM, see [15, 9] and references therein.

We applied ACCPM to solve the dual of the SRRA
problem in section 5. The dual objective function and
the lower bound are also ploted in figure 3. Com-
pared to the subgradient methods, ACCPM usually
converges faster. However, in ACCPM, all previous
computed subgradients are needed to form the local-
ization set at each iteration, and we need a central
coordinator to compute the analytic center.

7 Conclusions

We considered the problem of simultaneous optimal
routing and resource allocation for wireless data net-
works. The network routing problem and the resource
allocation problem interact through the capacity con-
straints of communication links. Using a multicom-
modity network flow model and assuming that the link
capacities are concave functions of the associated re-
source variables, we formulated the SRRA problem as
a convex optimization problem. We exploited the sep-
arable structure of the SRRA problem via dual decom-
position, and solved the dual problem by the subgradi-
ent methods and analytic center cutting-plane method.
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