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Abstract

Gene regulatory networks capture the interactions between genes and other cell substances, resulting from the fundamental
biological process of transcription and translation. In some applications, the topology of the regulatory network is not known,
and has to be inferred from experimental data. The experimental data consist of expression levels of the genes, which are
typically measured as mRNA concentrations in micro-array experiments. In a so called genetic perturbation experiment, small
perturbations are applied to equilibrium states and the resulting changes in expression activity are measured. This paper
develops novel algorithms that identify a sparse and stable genetic network that explains data obtained from noisy genetic
perturbation experiments. Our identification algorithm is based on convex relaxations of the sparsity and stability constraints
and can also incorporate a variety of prior knowledge of the network structure. Such knowledge can be either qualitative,
specifying positive, negative or no interactions between genes, or quantitative, specifying a range of interaction strengths. Our
approach is applied to both synthetic and experimental data, obtained for the SOS pathway in Escherichia coli, and the results
show that the stability specification not only ensures consistency with the steady-state assumptions, but also significantly
increases the identification performance. Since the method is based on convex optimization, it can be efficiently applied to
large scale networks.
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1 Introduction

Recent advances in systems biology have given rise to
the need for a more systemic understanding of large scale
quantitative experimental data. In particular, the use
of RNA micro-arrays that enables gene expression mea-
surements for large scale biological networks, has pro-
vided researchers with valuable data that can be used to
identify gene interactions in large genetic networks. Be-
sides promoting biological knowledge, identification of
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such networks is also important in drug discovery, where
a systems-wide understanding of regulatory networks is
crucial for identifying the targeted pathways [1].

Due to the significance of its potential applications, ge-
netic network identification has recently received con-
siderable attention. Depending on whether identification
aims at relating the expression of a gene to the sequence
motifs found in its promoter or to the expression of
other genes in the cell, approaches can be characterized
as gene-to-sequence or gene-to-gene, respectively [2, 3].
The ensemble of both classes form the so called genetic
network identification problem; solution techniques can
either ignore or explicitly consider the underlying gene
dynamics.
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Members of the former class are clustering algo-
rithms [4, 5] that group genes with similar expressions,
due to the high probability that they are function-
ally, but not necessarily directly, related to each other.
Alternatively, grouping of co-expressed genes may be
achieved using information-theoretic methods [6]. Both
approaches, however, are restricted to identifying undi-
rected networks and hence, lack causality. Causality
may be recovered using Bayesian networks [7], which
can handle directed graphs. But Bayesian networks typ-
ically do not accommodate cycles and hence, can not
handle feedback motifs that are common in genetic reg-
ulatory networks. Both causality and feedback motifs
are no longer an issue when the network is modeled as
a set of differential equations [8–18]. Identification is
then typically optimization based, while approaches de-
pend on whether the data is obtained from steady-state
measurements [8–10] or dynamic time-series [11–18].
Although time-series data includes more information
about the system dynamics, identification in this case is
more difficult due to the high computational effort that
is typically required.

The approach proposed in this paper falls under the lat-
ter class of networks modeled as differential equations
and aims at obtaining a minimal model that explains
given genetic perturbation data at steady-state. The
minimality specification is due to the observation that
biological networks exhibit loose connectivity [19, 20]
and in the present framework, it was first addressed
in [8] in the form of a priori combinations of constraints
on the connectivity of the network. On the other hand,
the steady-state nature of the data implies stability of
the underlying genetic networks, and to the best of our
knowledge, this is a first attempt to formally address
this specification.

To avoid the combinatorially hard nature of the prob-
lem, we employ a weighted `1 relaxation of the mini-
mality constraint [10,21–25], which leads to much more
scalable linear constraints. The convex optimization for-
mulation in our approach is also preserved by the sta-
bility specification, which we capture by either linear or
semidefinite constraints that arise from to Geršgorin’s
and Lyapunov’s theorems, respectively. Finally, we em-
ploy additional linear constraints so that our model best
fits the given genetic perturbation data as well as sat-
isfies a priori knowledge on the network structure. We
show that in the absence of the stability specification,
our approach performs well for sufficiently large data
sets with low noise, while smaller and noisy data sets
hinder its performance, partly due to identification of
unstable networks. However, introducing the stability
specification greatly improves the identification perfor-
mance, and not only justifies our model but also makes
it promising for future research.

The rest of this paper is organized as follows. In Section
2 we describe the genetic network identification prob-

lem, while in Section 3 we develop the proposed `1 re-
laxation and discuss the aforementioned stability issues
that could hinder its identification performance. In Sec-
tion 4 we extend our algorithm to account for stability
of the identified solutions. Finally, in Sections 5 and 6,
we illustrate efficiency of our approach on artificial noisy
data sets as well as on experimental data for the SOS
pathway in Escherichia coli.

2 Genetic Network Identification

Genetic regulatory networks consisting of n genes can
be modeled as n-dimensional dynamical systems [8]. In
general, such models assume the form

˙̂x = f(x̂, u), (1)

where x̂(t) ∈ Rn and u(t) ∈ Rp. Here x̂i(t) ∈ R denotes
the transcription activity (typically measured as mRNA
concentration) of gene i in the network, and ui is the
so called transcription perturbation. 1 Nonlinear genetic
networks as in (1) can have multiple stable equilibria,
each one typically corresponding to a phenotypical state
of the system. Then, the dynamics in a neighborhood of
any given equilibrium xeq can be approximated by the
set of linear differential equations

˙̃x = Ax̃+Bu, (2)

where x̃ , x̂ − xeq [11]. The matrix A ∈ Rn×n encodes
pairwise interactions between the individual genes in the
network at the given equilibrium or phenotypical state,
while the matrix B ∈ Rn×p indicates which genes are
affected by the transcriptional perturbations. Assuming
the equilibrium x̃ = 0 is stable and the perturbation
u is sufficiently small and constant, the system (2) will
restabilize at a new equilibrium x̃, at which

Ax̃+Bu = 0. (3)

Letm be the number of available transcription perturba-
tions 2 and define the matrices U = [u1 · · ·um] ∈ Rp×m
and X̃ = [x̃1 · · · x̃m] ∈ Rn×m containing the transcrip-
tion perturbations of all m experiments and their asso-
ciated steady-state mRNA concentrations, respectively.

1 In a transcription perturbation experiment, individual
genes are over-expressed using an episomal expression plas-
mid. Then U can be quantified using a second strain with
a reporter gene in place of the over-expressed gene on the
plasmid. After the perturbation, cells grow under constant
physiological conditions to the steady-state and the change
in mRNA concentration, compared to cells in the same phys-
iological conditions but unperturbed, is measured [26]. For
large scale networks, we may assume that not all genes are
affected by a given perturbation, resulting in p ≤ n.
2 Typically, each transcription perturbation corresponds to
a specific experiment.
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Then, collecting all m experiments at steady-state, sys-
tem (3) can be written as 3

AX̃ +BU = 0. (4)

Because of nonlinearity and measurement noise, the
measured deviation of the mRNA concentrations can be
different from the ones predicted by the linear model. If
we denote these measured quantities as X, we can then
write X = X̃+∆X. We then have the following relation

AX +BU = (AX̃ +BU) +A∆X. (5)

Here, η , A∆X is the residual of the linear model.
Finding the linear model that best fits the experimental
data amounts to making η as small as possible (in some
norm). Then, the network identification problem can be
stated as follows.

Problem 1 (Genetic Network Identification)
Given steady-state transcription perturbation and
mRNA concentration data U and X, determine the
sparsest stable matrix A that results in sufficiently small
residual η, while incorporating any a priori biological
knowledge regarding the presence, absence, or nature of
specific gene interactions.

The requirement that A is sparse is due to biological
networks being sparse in nature [19, 20], while the sta-
bility condition is necessary for the steady-state to be
observed. Finally, accordance with a priori biological
knowledge is both desired and naturally expected to re-
sult in improved identification performance.

3 Linear Programming Formulation

Given any genetic network described by (2), the prob-
lem of identifying the sparsest matrix A that approxi-
mately satisfies constraints (4), can be formulated as the
following optimization problem

minimize t card(A) + (1− t)ε
subject to ‖AX +BU‖1 ≤ ε, ε > 0

(6)

where card(A) denotes the number of nonzero entries
in matrix A, and ‖A‖1 =

∑n
i,j=1 |aij | denotes the (ele-

mentwise) `1 norm of a matrix A. Variables in problem
(6) are the matrix A and fitting error ε, while the prob-
lem data are the matrices X, B, U and the parameter
0 ≤ t ≤ 1, which is used to control the trade-off between

3 The matrices B and U are typically unknown. However,
if we assume controllable networks, i.e., networks where we
can perturb each individual gene, then U can be chosen so
that BU is a diagonal matrix, subject to scaling.
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Fig. 1. Plot of the weights wij as a function of the entries
|aij |, for different values of the parameter δ > 0.

sparsity, i.e., card(A), and best fit, i.e., ε. Note that any
other norm could be used in the constraints here; we use
the `1 norm since it handles outliers well.

When a priori knowledge about the network is also avail-
able, it is typically in the form of a partial sign pattern
S = (sij) ∈ {0,+,−, ?}n×n, which encodes known pos-
itive interactions (+), negative interactions (−), no in-
teractions (0), or no a priori knowledge regarding inter-
actions (?) between any two genes in the network. Such
knowledge can be included in (6) by means of the set of
linear constraints

A ∈ S ⇔


aij ≥ 0, if sij = +

aij ≤ 0, if sij = −
aij = 0, if sij = 0

aij ∈ R, if sij = ?

(7)

resulting in the problem

minimize t card(A) + (1− t)ε
subject to ‖AX +BU‖1 ≤ ε, A ∈ S, ε > 0.

(8)

From a computational point of view, formulation (8)
poses a significant challenge. Although both constraints
are convex in the matrixA [27], the cost function card(A)
is not convex. Solving this problem globally can be done,
for instance by branch-and-bound methods or directly

by considering all possible 2n
2

sparsity patterns for A.
Nevertheless, these methods are typically very slow, and
cannot scale to networks with more than a handful of
genes.

To obtain a method that can scale to large networks,
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Algorithm 1 Network ID (Ignoring Stability)

Require: Sign pattern S, experimental data X and U ,
and control parameter 0 ≤ t ≤ 1,

1: Initialize weights wij = 1 for all i, j = 1, . . . , n,
2: for it = 1 to J do
3: Solve the linear program (9) for A and ε,
4: Update the weights wij using (10),
5: end for

we propose a convex relaxation of the cardinality cost
function. In particular, we replace the card(A) objective
with the weighted `1-norm

∑n
i,j=1 wij |aij |, resulting in

the following convex program

minimize t
∑n
i,j=1 wij |aij |+ (1− t)ε

subject to ‖AX +BU‖1 ≤ ε, A ∈ S, ε > 0,
(9)

where the weights wij are chosen such that (Fig. 1)

wij =
δ

δ + |aij |
, for all i, j = 1, . . . , n (10)

for sufficiently small δ > 0 [21]. The main idea be-
hind the proposed heuristic is to uniformly initialize all
weights by wij = 1 (this corresponds to the standard
`1 relaxation of the cost function) and repeatedly solve
problem (9), each time updating the weights using (10)
(Algorithm 1). Then, large weights are always assigned
to small matrix entries |aij | and small weights to large
entries |aij |, which can eliminate any weak genetic in-
teractions in the final identified matrix A. In practice,
Algorithm 1 requires no more than J = 10 iterations,
regardless of the problem size. We refer the reader to
our earlier publication on this subject [10]. Furthermore,
recent theoretical results [28] show that, in some cases
(not including the present application), minimizing the
weighted `1 norm of a matrix A, in fact does minimizes
card(A) with high probability.

4 Incorporating Stability

In Section 3 we developed an iterative procedure, based
on the solution of linear programs, able to identify a
sparse matrix that best fits possibly noisy network data,
while satisfying a priori knowledge about the network.
In this section, we propose two different ways of incorpo-
rating stability in Algorithm 1, both preserving its con-
vex nature and hence, having the associated scalability
and global optimality properties. Furthermore, we show
that these modified approaches significantly increase the
performance of our identification algorithm.

4.1 Linear Approximation

Incorporating stability of the identified matrix A as a
linear constraint in Algorithm 1 relies on the following
theorem by Geršgorin.

Algorithm 2 Network ID (Geršgorin Stability)

Require: Sign pattern S, experimental data X and U ,
and control parameter 0 ≤ t ≤ 1,

1: Initialize weights wij = 1 for all i, j = 1, . . . , n,
2: for it = 1 to J do
3: Solve the linear program (13) for A and ε,
4: Update the weights wij using (10),
5: Update the weights vi using (14),
6: end for

Theorem 2 ([29]) Let A = (aij) ∈ Rn×n and for all
i = 1, . . . , n define the deleted absolute row sums of A
by Ri(A) ,

∑
j 6=i |aij |. Then, all eigenvalues of A are

located in the union of n discs

G(A) , ∪ni=1{z ∈ C | |z − aii| ≤ Ri(A)}.

Furthermore, if a union of k of these n discs forms a
connected region that is disjoint from all the remaining
n− k discs, then there are exactly k eigenvalues of A in
this region.

The regionG(A) is often called the Geršgorin region (for
the rows) of A, the individual discs in G(A) are called
the Geršgorin discs, while the boundaries of these discs
are called the Geršgorin circles. SinceA andAT have the
same eigenvalues, one can also obtain a similar Geršgorin
disc theorem for the columns of A. Clearly, if

aii ≤ −
∑
j 6=i

|aij |, for all i = 1, . . . , n (11)

then all discs {z ∈ C | |z − aii| ≤ Ri(A)} are in the left
half plane C− and Theorem 2 ensures that all eigenval-
ues of A are also in C−, which implies that A is stable.
What is appealing about constraints (11) is that they
are convex in the entries of A, and can be expressed as
a set of linear inequalities; hence, they can be directly
incorporated in the linear program (9) in Algorithm 1,
rendering a stable matrix. However, constraints (11) also
impose strict structural constraints on the entries of A.
In particular, they restrict all diagonal entries of A to be
non-positive and matrix A to be diagonally dominant,
namely

|aii| ≥
∑
j 6=i

|aij |, for all i = 1, . . . , n.

This later constraint can be relaxed by applying a simi-
larity transformation on A. In particular, since V −1AV
and A share the same eigenvalues for any invertible ma-
trix V , we can apply Geršgorin’s theorem to V −1AV and
for a smart choice of V we can obtain sharper bounds
on the eigenvalues. A particularly convenient choice is
V , diag(v1, . . . , vn), with vi > 0 for all i = 1, . . . , n.
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Fig. 2. Plot of the weights vi as a function of the entries
|aii| − Ri(A), for average β = 0 and different values of the
parameter δ > 0.

Then, V −1AV = (vjaij/vi) and Geršgorin’s theorem
states that all eigenvalues of A lie in the region

G(V −1AV ) , ∪ni=1

{
z ∈ C | |z − aii| ≤

1

vi

∑
j 6=i

vj |aij |
}
.

Clearly, if we require that

aii ≤ −
1

vi

∑
j 6=i

vj |aij |, i = 1, . . . , n, (12)

then G(V −1AV ) ⊂ C−, which implies that matrix A
is stable, but not necessarily diagonally dominant. Con-
straints (12) are still linear in the entries of A and hence,
can be directly incorporated in (9) resulting in the linear
program

minimize t
∑n
i,j=1 wij |aij |+ (1− t)ε

subject to ‖AX +BU‖1 ≤ ε, A ∈ S, ε > 0

aii ≤ − 1
vi

∑
j 6=i vj |aij |, i = 1, . . . , n.

(13)

The identification procedure is then described in Al-
gorithm 2. Intuitively, the weights vi, should penalize
Geršgorin discs far in the left half plane and assign
the remaining slack to discs close to (or intersecting)
the imaginary axis, breaking in this way the diagonal
dominance in the associated row. In particular, for
β , 1

n

∑n
i=1 (|aii| −Ri(A)) we choose the weights vi by

Algorithm 3 Network ID (Lyapunov Stability)

Require: Sign pattern S, experimental data X and U ,
and control parameter 0 ≤ t ≤ 1,

1: Apply Algorithm 1 for matrix A,
2: if matrix A is unstable then
3: Solve (17) for a Lyapunov matrix P ,
4: Initialize weights wij = 1 for all i, j = 1, . . . , n,
5: for it = 1 to J do
6: Solve the semidefinite program (18) forA and ε,
7: Update the weights wij using (10),
8: end for
9: end if

(Fig. 2)

vi ,

 1 + |aii|−Ri(A)−β
δ+(|aii|−Ri(A)−β) , if |aii| −Ri(A) > β

δ
δ−(|aii|−Ri(A)−β) , if |aii| −Ri(A) ≤ β

,

(14)
where Ri(A) denotes the deleted absolute sum for row
i, as in Theorem 2, and the quantity |aii| − Ri(A) > 0
indicates how far in the left half plane the associated
Geršgorin disc is located. Convergence of Algorithm 2
is slower than that of Algorithm 1 and for certain ill-
conditioned problem instances it may result in periodic
solutions.

4.2 Semidefinite Approximation

Let A be the matrix identified by Algorithm 1 which can
possibly be unstable. The goal in this section is to char-
acterize “small” perturbations to A that render it sta-
ble, while satisfying the desired sign pattern and main-
taining its sparsity structure. For this, let D ∈ Rn×n be
the sought perturbation matrix and define the matrix
A′ , A + D. A necessary and sufficient condition for
stability of A′ is the existence of a symmetric positive
definite Lyapunov matrix P such that

(A+D)TP + P (A+D) ≺ 0. (15)

Letting L , PD, equation (15) becomes

ATP + LT + PA+ L ≺ 0, (16)

which is a linear matrix inequality in both P and L
and can be efficiently solved using semidefinite program-
ming [27]. In particular, solving the following semidefi-
nite program

minimize ‖LX‖2
subject to ATP + LT + PA+ L ≺ 0, P � I,

(17)

gives D = P−1L and the desired stable matrix A′ be-
comes A′ = A + P−1L. This program formulation can
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be motivated by noticing that

‖(A′X +BU)− (AX +BU)‖2 = ‖P−1LX‖2,

≤ ‖LX‖2‖P‖2
≤ ‖LX‖2,

since ‖P‖2 ≥ 1. Therefore, minimizing the objective
‖LX‖2 means minimizing an upper bound of the differ-
ence between AX + BU and A′X + BU . Clearly, the
matrix A′ may no longer satisfy the desired sign pattern
or sparsity specifications. Therefore, we need to further
perturb A′ to obtain a new matrix A (in a neighborhood
of A′) that is also stable. For this, we use the Lyapunov
matrix P associated with A′ and compute A by modify-
ing problem (9) as

minimize t
∑n
i,j=1 wij |aij |+ (1− t)ε

subject to ‖AX +BU‖1 ≤ ε, ε > 0

ATP + PA ≺ 0, A ∈ S.
(18)

We iterate until convergence, as in Algorithm 1. This
procedure is described in Algorithm 3.

Remark 3 (Connection to linear systems theory)
Assume that the left kernel C of the data matrix X is
nontrivial, i.e., c , dim(C) > 0, and define a basis
matrix C ∈ Rc×n of C, such that rank(C) = c and

v ∈ C ⇔ ∃k ∈ R1×c s.t. v = kC.

Then, for any matrix K ∈ Rn×c, let A′ , A + KC,
where K ∈ Rn×c. Notice that (A + KC)X + BU =
AX + BU , due to the fact that CX = 0. The matrix
C parameterizes all models A′ that result in the same
residual as A. Obtaining a matrix K that renders A′

stable is equivalent to the observer design problem in
linear systems theory [30]. A well known condition for
the existence of such a K is the detectability of the pair
(A,C). In particular, the pair (A,C) is called detectable
if

rank

[
λI −A
C

]
= n,

for all λ ∈ C+ (the closed right half plane). Then, K
can be obtained by the solution of the Lyapunov equation
(A+KC)TP +P (A+KC) ≺ 0, where P is a symmetric

positive definite Lyapunov matrix. Setting L , PK we
get a linear matrix inequality in P and L, similar to the
one in (16).
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Fig. 3. ROC plots of algorithms 1 (Unstable), 2 (Geršgorin)
and 3 (SDP) for network size n = 20 and connectivity
c = 20%. Shown are the curves (mean and standard devia-
tion) for σ = 30%, ν = 10% and m = n (full data). This is
an ideal case for identification, with many high quality data.
It is expected that predictions should be good and trusted.
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3
e (partial data).

This is challenging case for identification, with few low qual-
ity data. It is expected that predictions are not so good and
possibly should not be trusted much.

5 Synthetic Data and Discussion

5.1 Sensitivity to Parameter Selection

In this section we study how the parameter 0 ≤ t ≤ 1
that regulates the tradeoff between sparsity and best fit
in problems (9), (13) and (18) affects the performance
of our identification methods. As the measure of per-
formance, we use the Receiver Operating Characteristic
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Fig. 5. ROC plots of algorithms 1 (Unstable), 2 (Geršgorin)
and 3 (SDP) for network size n = 20 and connectivity
c = 20%. Shown are the curves (mean and standard devi-
ation) for σ = 0%, ν = 50% and m = n (full data). The
identification performance depends on the parameter t.

(ROC) curve. The ROC curve, plots the sensitivity of the
prediction results against (1-specificity). These quanti-
ties are given by the formula [31]

Sensitivity =
TP

TP + FN
and Specificity =

TN

TN + FP
,

where T=True, F=False, P=Positives, and N=Negatives.
Since, the parameter t regulates the weight put on
sparsity, i.e., number of zeros, vs. best fit, the terms
“Positives” and “Negatives” here refer to non-zero and
zero interactions between genes, respectively. 4 The best
possible prediction, will give a point in the upper left
corner of the plot, representing 100% sensitivity, i.e.,
no false zero identifications, and 100% specificity, i.e.,
no false non-zero identifications. A completely random
guess will give a point along the diagonal line (line of
no discrimination).

To evaluate the performance of our algorithms, we cre-
ated ROC plots for networks of size n = 20 genes with
c = 20% connectivity, and for different values of sign
knowledge σ, data size m, and noise levels ν. We ap-
plied our algorithms to a set of 20 stable, random and
well-conditioned (otherwise, preconditioning would be
required) interconnection matrices A that were gener-
ated to be identified. The sample matrices A were ob-

4 “Precision” and “Recall” are metrics that are often also
used to measure performance. “Recall” is defined by the ratio
TP/(TP+FN) and is, therefore, the same as “Sensitivity”.
Nevertheless, “Precision” is defined by TP/(TP+FP) and
is a different metric, that is sometimes also referred to as
Positive Predictive Value (PPV).

tained as the solution of the following program:

minimize ‖D‖2
subject to γI � 1

2

(
(Ã+D) + (Ã+D)T

)
� εI,

Γ < γ < ε < E < 0,

Dij = 0 if Aij = 0, ∀ i, j = 1, . . . , n,

where Ã is a random, not necessarily stable, intercon-
nection matrix that satisfies a 20% sparsity specifica-
tion, and D is a perturbation added to Ã to obtain a
stable matrix A = Ã + D. If the (i, j)th entry of Ã
is zero, so is the (i, j)th entry of D, by construction.
The constants Γ, E < 0 regulate the condition num-
ber of A = Ã + D (more accurately, its eigenvalues).
The above optimization problem is based in the obser-
vation that an asymmetric matrix A is negative definite
if and only if its symmetric part 1

2

(
A+AT

)
is nega-

tive definite. Then, A will be stable with Lyapunov ma-
trix I. The data sets associated with matrix A are ob-
tained by X = −A−1BU + νN , where BU ∈ Rn×m
and N ∈ Rn×m are zero mean and unit variance nor-
mally distributed random matrices (entry-wise). All al-
gorithms were implemented in MATLAB using the cvx
toolbox for convex optimization problems [32] and run
on an Intel Core 2 Duo 3.06GHz processor with 8GB
RAM. For problems of size n = 20, each iteration of al-
gorithms 1, 2 and 3 took approximately 2, 5 and 8 sec-
onds, respectively, while no more than 15 iterations are
in general required for algorithms 1 and 2, and 25 itera-
tions for algorithm 3.

Figs. 3 and 4 contain the ROC plots for parameters
σ = 30%, ν = 10%, m = n (full data), and σ = 0%,
ν = 50%, m = dn3 e (partial data), respectively. These
cases correspond to the two “extremes” in terms of pos-
sible identification performance, i.e., many high quality
vs. few low quality available data. Every point in the
plots corresponds to a different value of t. As expected,
high quality data gives better identifications, i.e., many
points are clustered close to the upper left corner of the
plot (Fig. 3). This also means that the value of t does
not affect much the quality of identification. This is not
the case with few low quality data, as shown in Fig. 4.
Although the parameter t still does not affect much the
quality of identification, now most points are clustered
in the bottom left corner of the plot close to the line of no
discrimination, which implies much worse identification.
In particular, algorithm 1 (Unstable) does not perform
any better than a random prediction. For data quality
in-between these two extremes, the identification perfor-
mance depends on the parameter t, as shown in Fig. 5.

We observe that algorithms 2 (Geršgorin) and 3 (SDP)
always perform better than algorithm 1 (Unstable). 5

5 Due to space limitations, ROC plots for other parameter
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This observation is an indication that stability is impor-
tant, not only for consistency with the problem assump-
tions, but also for identification performance. Addition-
ally, from Figs. 3, 4, and 5, we see that algorithm 3 (SDP)
performs slightly better than algorithm 2 (Geršgorin).
This is reasonable, since it does not impose any hard
constraints on the edge weights of the network. Never-
theless, algorithm 2 (Geršgorin) has a simple linear for-
mulation and scales better with the problem size.

5.2 Identification Performance
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Fig. 6. Identification performance (y-axis) as a function of
the parameter 0 ≤ t ≤ 1 (x-axis), for networks of size
n = 20, connectivity c = 20%, sign knowledge σ = 30%,
noise ν = 10% and m = n (full data). Fig. 6(a): Algorithm 1
(Unstable), Fig. 6(b): Algorithm 2 (Geršgorin), Fig. 6(c):
Algorithm 3 (SDP).

combinations (σ,m, ν) are not contained in this paper.

Table 1
Algorithm 1 (Unstable): Selection of the parameter 0 ≤ t ≤ 1
for networks with n = 20 genes and c = 20% connectivity.

σ = 0% σ = 30%

ν = 10% ν = 50% ν = 10% ν = 50%

m = 20

t=0.0962 t=0.0854 t=0.1407 t=0.1362

32% FIDs 33% FIDs 17% FIDs 20% FIDs

58% FZs
FIDs

59% FZs
FIDs

64% FZs
FIDs

63% FZs
FIDs

180% ER
ER*

36% ER
ER*

185% ER
ER*

39% ER
ER*

100% StIDs 92% StIDs 59% StIDs 48% StIDs

m = 7

t=0.0808 t=0.0834 t=0.1303 t=0.1460

34% FIDs 35% FIDs 22% FIDs 23% FIDs

55% FZs
FIDs

55% FZs
FIDs

59% FZs
FIDs

59% FZs
FIDs

145% ER
ER*

27% ER
ER*

220% ER
ER*

40% ER
ER*

93% StIDs 85% StIDs 5% StIDs 2% StIDs

Table 2
Algorithm 2 (Geršgorin): Selection of the parameter 0 ≤ t ≤
1 for networks with n = 20 genes and c = 20% connectivity.

σ = 0% σ = 30%

ν = 10% ν = 50% ν = 10% ν = 50%

m = 20

t=0.0933 t=0.0777 t=0.1373 t=0.1215

26% FIDs 28% FIDs 16% FIDs 17% FIDs

61% FZs
FIDs

61% FZs
FIDs

67% FZs
FIDs

65% FZs
FIDs

190% ER
ER*

38% ER
ER*

201% ER
ER*

41% ER
ER*

m = 7

t=0.0809 t=0.0820 t=0.1341 t=0.1544

27% F.IDs 29% F.IDs 18% F.IDs 19% F.IDs

57% FZs
FIDs

57% FZs
FIDs

62% FZs
FIDs

62% FZs
FIDs

175% ER
ER*

33% ER
ER*

234% ER
ER*

45% ER
ER*

In this section, we study the performance of our algo-
rithms in terms of the total false identifications. The per-
formance metrics of interest are the total number of false
identifications (FIDs), the fitting error (ER) compared
to the best fit (ER*) obtained if the identified network
was the sought one, and the number of false zero identi-
fications (FZs) as a function of the total false identifica-
tions. The ratio FZs/FIDs captures sparsity of the net-
work and ER/ER* indicates how close the identification
is to the sought one. Too high or low FZs/FIDs are un-
desirable, since they correspond to very dense or sparse
networks that do not capture reality. Similarly, ER/ER*
that is far away from 1, possibly indicates low quality
identification, either qualitatively (signs) or quantita-
tively (edge weights’ values). The ratio FZs/FIDs is also
related to the connectivity (Connect) of the identified
networks.

As in Section 5.1, we focus on networks of size n = 20
with connectivity c = 20%, generated as before.
Figs. 6(a), 6(b) and 6(c) show the performance of al-
gorithms 1 (Unstable), 2 (Geršgorin) and 3 (SDP),
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Table 3
Algorithm 3 (SDP): Selection of the parameter 0 ≤ t ≤ 1 for
networks with n = 20 genes and c = 20% connectivity.

σ = 0% σ = 30%

ν = 10% ν = 50% ν = 10% ν = 50%

m = 20

t=0.1485 t=0.2575 t=0.3334 t=0.3126

25% FIDs 24% FIDs 13% FIDs 16% FIDs

65% FZs
FIDs

62% FZs
FIDs

65% FZs
FIDs

66% FZs
FIDs

183% ER
ER*

42% ER
ER*

185% ER
ER*

42% ER
ER*

m = 7

t=0.1394 t=0.1546 t=0.2562 t=0.3086

27% F.IDs 28% F.IDs 17% F.IDs 19% F.IDs

58% FZs
FIDs

57% FZs
FIDs

63% FZs
FIDs

65% FZs
FIDs

164% ER
ER*

34% ER
ER*

203% ER
ER*

43% ER
ER*

respectively, for parameters σ = 30%, ν = 10% and
m = n (full data). We observe that as t increases,
FIDs and connectivity decrease, while FZs/FIDs and
ER/ER* increase. In fact, very large values of t result
in the lowest FIDs that are also the worst in quality,
since then FZs/FIDs=1. To address this tradeoff, we
select t so that it results in a network with equal/similar
connectivity to the desired one (c = 20%). This, results
in identification performances as shown in Tables 1, 2
and 3 for algorithms 1, 2 and 3, respectively. Table 1
also shows the percent of stable identifications (StIDs)
returned by algorithm 1. Note that this decreases sig-
nificantly as the noise increases or the size of data set
and sign knowledge decreases. In all cases, the ratio
FZs/FIDs is approximately 60%, while the error ER
ranges from a fraction to a multiple of the best one ER*.
What is noteworthy is that algorithms 2 (Geršgorin)
and 3 (SDP) have comparable performance in terms of
FIDs, which can get as low as 16% for high quality data
(low noise, high sign knowledge and full data). In all
cases, algorithms 2 (Geršgorin) and 3 (SDP) perform
better than algorithm 1 in terms of FIDs.

5.3 Discussion

In Sections 5.1 and 5.2 we discussed two ways of choosing
the parameter t. The first depending on proximity to the
upper left corner of the ROC plot and the second depend-
ing on the desired connectivity of the identified network.
In this section we show consistency of these two meth-
ods. In other words, we show that a parameter t that
gives an identification with desired connectivity, lies as
close as possible to the upper left corner of the ROC plot.
For this, we check the locations in the ROC plot of the
identifications contained in Tables 1, 2 and 3. For illus-
tration purposes, we focus on the parameters (m,σ, ν) =
{(20, 30%, 10%), (7, 0%, 50%), (20, 0%, 50%)} in order to
compare with Figs. 3, 4 and 5, respectively. For these
data sets, we get sensitivity and (1-specificity) values,
as shown in Table 4. Locating these values in Figs. 3, 4
and 5 we see that they lie at least as close to the upper

Table 4
Sensitivity and (1-specificity) values for selected identifica-
tions in Tables 1, 2 and 3.

(m,σ, ν) and Alg. 1-Specificity Sensitivity

(20, 30%, 10%)

Alg. 1 0.13± 0.04 0.61± 0.07

Alg. 2 0.11± 0.05 0.61± 0.06

Alg. 3 0.08± 0.03 0.63± 0.07

(7, 0%, 50%)

Alg. 1 0.19± 0.03 0.19± 0.04

Alg. 2 0.16± 0.03 0.33± 0.03

Alg. 3 0.18± 0.02 0.36± 0.03

(20, 0%, 50%)

Alg. 1 0.21± 0.06 0.25± 0.07

Alg. 2 0.18± 0.07 0.36± 0.08

Alg. 3 0.33± 0.07 0.57± 0.04

Table 5
A summary of a priori knowledge for the SOS pathway in
Escherichia coli. A “+” sign indicates known activation, a “-
” sign indicates known inhibition, “0” indicates the absence
of connection, and “?” indicates an unknown connection.
In brackets are known gene interactions that are considered
unknown for the purposes of identification.

Genes recA lexA ssb recF dinI umuDC rpoD rpoH rpoS

recA ? − ?(-) ?(+) ?(+) ?(-) + ?(0) ?(0)

lexA + − ?(-) ?(+) ?(+) ?(-) + ?(0) ?(0)

ssb + − ?(-) ?(+) ?(+) ?(-) + ?(0) ?(0)

recF ?(0) ?(0) ?(0) ?(-) ?(0) ?(0) + ?(0) +

dinI + − ?(-) ?(+) ? ?(-) + ?(0) ?(0)

umuDC + − ?(-) ?(+) ?(+) ?(-) + ?(0) ?(0)

rpoD + − ?(-) ?(+) ?(+) ?(-) ? + ?(0)

rpoH ?(0) ?(0) ?(0) ?(0) ?(0) ?(0) + ? ?(0)

rpoS ?(0) ?(0) ?(0) ?(0) ?(0) ?(0) + ?(0) ?

left corner compared to other points in these ROC plots
and, therefore, they correspond to better identification
performance. Although network connectivity is typically
unknown, its is easier to get an estimate of it from bi-
ological knowledge, than construct ROC plots that de-
pend on identification performance.

6 SOS pathway in Escherichia coli

We further applied the proposed identification algo-
rithms to a subnetwork of the SOS pathway in Es-
cherichia coli, using the genetic perturbation experi-
mental data set

X = 10−3


906 −132 −139 187 291 −61 −77 −17 −25
212 383 −117 64 169 −87 39 125 84
18 −107 10524 61 80 13 64 89 −70
104 −50 −273 139 180 146 69 −4 275
119 −97 56 315 2147 142 −68 135 113
76 −189 −214 250 347 2017 −67 −172 −22
−122 −47 −102 −107 −11 104 3068 365 217
178 −183 36 −70 −34 −155 8 26633 87
72 −128 73 81 305 51 −61 274 672


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Fig. 7. (Taken from [8]) Diagram of interactions in the SOS
network. DNA lesions caused by mitomycin C (MMC) (blue
hexagon) are converted to single-stranded DNA during chro-
mosomal replication. Upon binding to ssDNA, the RecA pro-
tein is activated (RecA*) and serves as a coprotease for the
LexA protein. The LexA protein is cleaved, thereby dimin-
ishing the repression of genes that mediate multiple protec-
tive responses. Boxes denote genes, ellipses denote proteins,
hexagons indicate metabolites, arrows denote positive regu-
lation, filled circles denote negative regulation. Red empha-
sis denotes the primary pathway by which the network is
activated after DNA damage.

provided in [8]. Since there was no explicit mention to
U , we assumed that U = I9. 6 The a priori knowledge
we used is depicted in Table 5 and has been obtained
based on the diagram of Fig. 7.

The subnetwork that we considered consists of nine
genes and several transcription factors and metabolites
(Fig. 7). The main pathway featured in this network is
the pathway between the single-stranded DNA (ssDNA)
and the protein LexA that acts as a repressor to several
other genes (recA, ssb, dinI, umuDC, and rpoD). The
protein RecA, which is activated by the single-stranded
DNA, cleaves LexA and thus upregulates the above
mentioned genes. Other key regulators in the network
are the sigma factors σ70, σ32, and σ38. These sigma
factors play an important role in initiating transcription
in heat shock and starvation responses.

We applied Algorithms 1, 2 and 3 on the data set X for
different values of the parameter t. The corresponding
ROC plots are shown in Fig. 8. As discussed in Section 5,
the best identifications will correspond to values of the
parameter t that give points in the ellipse in Fig. 8. For
algorithm 1 these points correspond to t ∈ [0.01, 0.1],

6 Note that this is a reasonable assumption, since different
values of U would only result in scaling of the model.

for algorithm 2 they correspond to t ∈ [0, 0.1], and for
algorithm 3 they correspond to t ∈ [0.05, 0.5]. In partic-
ular, we choose t = 0.01 for algorithm 1, t = 0.01 for
algorithm 2 and t = 0.1 for algorithm 3. These param-
eters result in 37%, 31% and 31% false identifications,
respectively. Therefore, algorithms 2 and 3 still perform
better than algorithm 1, demonstrating the importance
of the stability specification.

All identifications obtained from algorithm 1 are unsta-
ble, while the obtained networks have connectivity ap-
proximately equal to 50%. Note that this identification
performance is worse than the one shown in Tables 1, 2
and 3 for full data and 30% sign knowledge. This is ex-
pected since the SOS pathway is much denser (its con-
nectivity is approximately 60%), which conflicts with the
sparsity objective. 7 Following we present the intercon-
nection matrix for the SOS pathway in Escherichia coli
returned by Algorithm 2 for t = 0.01:

A = 10−3


−33 −2 0 0 5 0 2 0 0
9 −21 −1 −44 1 2 2 0 20
2 −2 −29 0 0 0 2 0 0
10 0 −2 −123 2 8 4 0 37
2 −2 0 0 −30 0 2 0 0
2 −2 0 0 0 −31 2 0 0
2 −2 0 0 0 0 −38 2 0
0 0 0 0 0 0 2 −2 0
2 −2 0 0 2 0 2 0 −15

 .

Matrix A has 7 false positives, 3 false negatives, 16 false
zeros, and 26 false identifications in total, while it is
also stable and satisfies the desired sparsity pattern. The
matrix A returned by Algorithm 3 for t = 0.1 is:

A = 10−3


−10 −3 0 −1 2 0 2 0 0
5 −23 0 0 0 −1 2 0 2
2 −2 −1 −4 0 0 3 0 0
0 0 0 −4 0 0 2 0 2
2 −2 0 0 −5 0 2 0 0
2 −2 0 −1 0 −5 2 0 0
2 −2 0 −4 0 0 −3 2 0
0 0 0 −5 0 0 2 0 0
2 −4 0 0 2 0 2 0 −15

 .

Matrix A has 3 false positives, 6 false negatives, 16 false
zeros, and 25 false identifications in total, while it is also
stable and satisfies the desired sparsity pattern.

7 Conclusions

In this paper, we considered the problem of identifying a
minimal model that best explains genetic perturbation
data obtained at the network’s equilibrium state. We re-
laxed the combinatorially hard cardinality optimization

7 Note that we are analyzing a part of the SOS response
mechanism in E. coli in which central role plays the protein
LexA. This protein regulates the expression activity of a large
number of other genes, which explains the particularly high
connectivity observed here. In fact, it is known that LexA
directly regulates, i.e., binds to the promoters, of 31 other
genes [33]. The connectivity of genes like LexA is atypical.
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Fig. 8. ROC plots of algorithms 1 (Unstable), 2 (Geršgorin)
and 3 (SDP) for the SOS pathway shown in Fig. 7 and
different values of the parameter t. The best identifications
are contained in the ellipse close to the upper left corner.

specification by employing its weighted `1 approxima-
tion and extended our formulation to account for a pri-
ori knowledge on the network structure, as well as sta-
bility of the derived solutions. We tested performance
and sensitivity of our algorithms to parameter selection,
for various sizes of data sets, sign knowledge and noise
levels. We concluded that stability is not only neces-
sary for consistency with the problem assumptions, but
also for better identification performance. The strength
of our approach lies in its convex nature that can han-
dle large scale identification problems. Its efficiency was
also demonstrated on real experimental data obtained
for the SOS pathway in Escherichia coli.

References

[1] S. L. Schreiber. Target-oriented and diversity-oriented
organic synthesis in drug discovery, Science, vol. 287, no.
5460, pp. 1964-1969, 2000.

[2] M. Bansal, V. Belcastro, A. Ambesi-Impiombato and
D. di Bernardo. How to Infer Gene Networks from
Expression Profiles, Molecular Systems Biology, vol. 3, 2007.
(10.1038/msb4100120).

[3] T. Gardner and J. Faith. Reverse-Engineering Transcription
Control Networks, Physics of Life Reviews, vol. 2, pp. 65-88,
2005.

[4] M. Eisen, P. Spellman, P. Brown, D. Botstein. Cluster
Analysis and Display of Genome-Wide Expression Patterns,
Proc. National Academy of Science, vol. 95, pp. 14863-14868,
1998.

[5] R. Amato, A. Ciaramella, N. Deniskina, C. Del Mondo,
D. di Bernardo, C. Donalek, G. Longo, G. Mangano, G.
Miele, G. Raiconi, A. Staiano and R. Tagliaferri. A Multi-
Step Approach to Time Series Analysis and Gene Expression
Clustering, Bioinformatics, vol. 22, pp. 589-596, 2006.

[6] R. Steuer, J. Kurths, C.O. Daub, J. Weise and J. Selbig. The
Mutual Information: Detecting and Evaluating Dependencies

between Variables, Bioinformatics, vol. 182, pp. 231-240,
2002.

[7] D. Pe’er, I. Nachman, M. Linial and N. Friedman. Using
Bayesian Networks to Analize Expression Data, Journal of
Computational Biology, vol. 7, pp. 601-620, 2000.

[8] T. Gardner, D. di Bernardo, D. Lorenz and J. Collins.
Inferring Genetic Networks and Identifying Compound Mode
of Action via Expression Profiling, Science, vol. 301, pp. 102-
105, 2003.

[9] J. Tegner, M. Yeung, J. Hasty and J. Collins.
Reverse Engineering Gene Networks: Integrating Genetic
Perturbations with Dynamical Modeling, Proc. of the
National Academy of Science, vol. 100(10), pp. 59445949,
2003.

[10] A. A. Julius, M. M. Zavlanos, S. P. Boyd and G. J. Pappas.
Genetic Network Identification using Convex Programming,
IET Systems Biology, vol. 3(3), pp. 155-166, 2009.

[11] E. Sontag, A. Kiyatkin and B. Kholodenko. Inferring
Dynamic Architecture of Cellular Networks using Time
Series of Gene Expression, Protein and Metabolite Data,
Bioinformatics, vol. 20(12), pp. 1877-1886, 2004.

[12] M. Bansal, G. Della Gatta and D. di Bernardo. Inference of
Gene Regulatory Networks and Compound Mode of Action
from Time Course Gene Expression Profiles, Bioinformatics,
vol. 22(7), pp. 815822, 2006.

[13] F. Amato, C. Cosentino, W. Curatola and D. di Bernardo.
LMI-based Algorithm for the Reconstruction of Biological
Networks, Proc. American Control Conference, pp. 2720-
2725, New York, NY, 2007.

[14] A. Papachristodoulou and B. Recht. Determining
Interconnections in Chemical Reaction Networks, Proc.
American Control Conference, pp. 4872-4877, New York, NY,
2007.

[15] E. August and A. Papachristodoulou. Efficient, Sparse
Biological Network Determination, BMC Systems Biology,
vol. 3(25), 2009.

[16] J. Srividhy, E. J. Crampin, P. E. McSharry, S. Schnell.
Reconstructing Biochemical Pathways from Time Course

Data, Proteomics, vol. 7, pp. 828-838, 2007.

[17] R. Porreca, S. Drulhe, H. de Jong, G. Ferrari-Trecate.
Structural Identification of Piecewise-Linear Models of

Genetic Regulatory Networks, Journal of Computational
Biology, vol. 15(10), pp. 1365-1380, 2008.

[18] E. Cinquemani and R. Porreca and J. Lygeros and G. Ferrari-
Trecate. Canalizing Structure of Genetic Network Dynamics:
Modelling and Identification via Mixed-Integer Programming,
Proc. IEEE Conference on Decision and Control, Shangai,
China, 2009.

[19] M. Arnone and E. Davidson. The Hardwiring of
Development: Organization and Function of Genomic
Regulatory Systems, Development, vol. 124.

[20] D. Thieffry, A. Huerta, E. Pérez-Rueda and J. Collado-Vides.
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