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The presence of abrupt changes, such as impulsive and load disturbances, commonly occur in applications,
but make the state estimation problem considerably more difficult than in the standard setting with
Gaussian process disturbance. Abrupt changes often introduce a jump in the state, and the problem is
therefore readily and often treated by change detection techniques. In this paper, we take a different
approach. The state smoothing problem for linear state space models is here formulated as a constrained

least-squares problem with sum-of-norms regularization, a generalization of £-regularization. This novel
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formulation can be seen as a convex relaxation of the well known generalized likelihood ratio method
by Willsky and Jones. Another nice property of the suggested formulation is that it only has one tuning
parameter, the regularization constant which is used to trade off fit and the number of jumps. Good
practical choices of this parameter along with an extension to nonlinear state space models are given.
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1. Introduction

We consider the problem of state estimation in linear state
space models, where impulsive disturbances occur in the pro-
cess model. The case of impulsive process disturbances occurs fre-
quently in at least three different application areas.

e In automatic control, impulsive disturbance is often used to
model load disturbances.

e In target tracking, impulsive disturbances are used to model
force disturbances, corresponding to maneuvers for the tracked
object.

e In the Fault Detection and Isolation (FDI) literature impulsive
disturbance is used to model additive faults. Usually, this is
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done in a deterministic setting (Patton, Frank, & Clark, 1989),
but a stochastic framework is also common (Basseville &
Nikiforov, 1993; Gustafsson, 2001).

There are several conceptually different ways to handle distur-
bances in state estimation. We shall review and discuss both de-
terministic and stochastic models.

The standard linear state space model with disturbances is

x(t + 1) = Ax(t) + Bu(t) + Gv(t) (1a)
y(t) = Cx(t) + e(t),

where x(t) is the state, u(t) the input, and y(t) the output at time
t. Here e is the measurement noise and v is the process disturbance.
It is natural in many applications to model the measurement noise
as white noise (a sequence of independent random vectors):

Ele(t)e' ()] =0 ift #s
Ele(t)e’ (t)] = R..

The process disturbance v, on the other hand, can both be of
noise character, affecting the state at every time instant, or
occasionally occurring impulses. Any particularly common shape
of the disturbance, like a step, a ramp or a sinusoid, can via the
state equation (matrices G and A) be constructed as the response
of a driving impulse.

Our interest lies in obtaining reliable state estimates X under
impulsive process disturbance, but we do not require the estimates

(1b)
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in real time. That is, the estimate of the state at time t, X(t), can be
obtained at a later time N. This is known as the smoothing problem
in filtering theory.

In the next section we describe a deterministic framework for
handling the detection and estimation of such disturbances. In
Section 3 we describe how to formulate the case of impulsive
process disturbances in a stochastic framework, and what methods
and algorithms for detection and state estimation this leads to.

The approach we suggest in the present article is somewhere
between these approaches. It is described in Section 4 and is
based on convex optimization of a criterion that can be seen
as a modification of either the deterministic or the stochastic
formulation. It is inspired by the recent progress of sum-of-norms
regularization in the statistical literature, Kim, Koh, Boyd, and
Gorinevsky (2009), and is also related to contributions in the
control community, Ohlsson, Ljung, and Boyd (2010).

2. A deterministic framework for state estimation under
impulsive process disturbances

The assumption of an impulsive process disturbance implies
that v(t) is a vector that is zero for most t and takes unknown,
nonzero values at a few unknown time instances. At this point,
consider a certain time interval [1, N] where v(t) is nonzero for
precisely one time instant. The linear state space model with an
impulsive disturbance occurring in the process model is then:

x(t + 1) = Ax(t) + Bu(t) + Gv(t)

y(t) = Cx(t) + e(t), (2a)
v(t) = {8 i ; i* (2b)

Assume e(t) ~ N(0, R.) and x(1) = 0 for simplicity and assume
that the model parameters A, B, G, C, are known.

2.1. The approach by Willsky and Jones

The state estimation problem then boils down to estimating
t* and v* from input-output data y(t), u(t),t = 1,...,N. This
can be solved as a least squares problem as follows: suppose that
v(t) #0O0andv(t) = 0,t = 1,...,t' = 1,t'+1,...,N— 1.
The data fort € [t + 1, ..., N] can then be used to compute the
least-squares estimate

b(t) = ("R '@) '@'R Y, (3)

with

[/
y(t'+1)—C > A" Bu(r)

t=1

t'+1 , G
y(t' +2) = C > AT Bu(r) CAG
y & — ., D2 : ,
CAN—.l—t’G

N—-1
Y(N) = C Y AV"""Bu(t)

- t=t/ -

and its covariance matrix

P(t) = (@R, '®)”". (4)
The significance of the least squares estimate can be formed as
Lt = 0T ()P D(L). (5a)

This variable has a x2(d) (d = dim v) distribution if the true value
of v(t") = 0. Pick as estimate of the jump time t* that value of t’
that maximizes this significance £(t).

If we do not know for sure that there is a jump in the interval
[1,N — 1], we can decide if the indicated jump is a significant
indication by the test

() > T, (5b)

where T is a suitably chosen significance level, according to the
x2(d) distribution.

This is the well known Willsky—-Jones (W]) Generalized Likelihood
Ratio (GLR) approach, Willsky and Jones (1976). See also Section 9.3
in Gustafsson (2001) and the related approach (Gustafsson, 1996).

Remark 1. In Willsky and Jones (1976) also a stochastic process
disturbance and a stochastic initial value x(1) are allowed. Then
a Kalman filter for the nominal case (discarding the impulsive
disturbance component in v) is constructed, and the contribution
of a deterministic v to the innovations (residuals) e from this filter
is analyzed. That is, e(t) plays the role of y(t) in the calculations
above.

Another description of the WJ-approach is as follows: let

2
20

N
w(v()) = Z”R;W(y(t) — Cx(1))
t=2
where x(t + 1) = Ax(t) 4+ Bu(t) + Gv(t), x(1) = 0. Solve
n - W)
= N-1

V=[llvllz, ..., [lv(N = DI|2].

Here ||V ||o is the £ norm, i.e., the cardinality (number of nonzero
elements) of the vector V. Due to the constraint |V | = 1, (6) will
result in an estimate for v(t) which is nonzero for precisely one
time instant. Hence, to solve the non-convex problem (6),

(6)
st.[[Vle=1;

(7)

stv()=0, t=1,....,t' =1,t'+1,...,N—1,

can be solved fort’ = 1,...,N — 1. The v-estimate giving the
smallest objective value clearly also solves (6). It can further be
shown that this estimate is equivalent to that of the W]-approach.
The equivalence follows from the following lemma.

Lemma 2. For any t' € [1,...,N — 1], the criterion (7) has the
objective value

N 1
Z RV (y(t) —-C ZAS’lBu(t - s))
t=2 s=1

at the optimum. Hence, the t’ that gives the smallest objective value
of (7) also maximizes £ in (5a).

2

—L(t)) (8)
2

Proof. This is a well known property of least squares estimation:
first rewrite (7) as a least squares problem by substituting the
constraint into the objective. Then, using the same definitions for
Y and @ as used in (3), (7) takes the form

min(Y — dv(t))'R; (Y — du(t))

v(t))
t—1
R 12 (y(t) —CY A Bu(t - s))
s=1

2

v
2
=2

RV (@R @) '@TRY — ()|

2

= min
v(t")

—Y'R '@ (@R '0) '@ R Y

N t—1
+ Y R (y(t) —CY A Bu(t - s))
t=2

s=1

2

2
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min|[RV2((@7R, @) @TR.TY o) |
t

N t—1
+ Y IR (y(t) —CY A Bu(t - s))
t=2 s=1

The objective is now trivially minimized by

2

— L.

2

v(t') = (@"R;'@) '@ R Y (9)
and then takes the value (8). O

If n jumps are allowed, the only difference in the formulation (6) is
that ||V|lo = n instead (which for larger n will be combinatorially
forbidding). If the number of jumps is not known, a trade-off can
be formulated as

1/2
iR ZHR (v(0) — () |2 + 1Vllo o

s.t.x(t + 1) = Ax(t) 4+ Bu(t) + Gu(t); x(1) =0.

The parameter A > O sets the trade-off between the number
of jumps and the fit to the measurements y. (10) is a combi-
natorial non-convex optimization problem and in general, 2¥~!
constrained least squares problems have to be solved to find the
minimizing v.

Remark 3. The case with several jumps is handled in Willsky
and Jones (1976) by performing the above search for one jump,
recursively over sliding windows of length F. Once a jump has been
indicated, its influence on y is removed (i.e., the residuals ¢ are
calculated) before the search for the next jump is continued.

2.2. The CUSUM test

The key element in the Willsky-Jones GLR approach is to find
a deterministic component v in a stochastic signal y(t + 1) —
C 25:1 A'~SBu(s) (or the Kalman filter residual £). The W] approach
can be seen as an optimal matched filter for this deterministic
signal. A more simplistic approach would be to try to detect
nonzero deterministic components in the theoretically zero-mean
sequence y using a change detection method. This is the approach
taken in the CUSUM test (Cumulative Sum (Page, 1954), see also
Algorithm 1).

Algorithm 1 (CUSUM). Set g(1) = 0. For a chosen y, and h, the
time of a change in the signal r(t) is estimated by observing when

g(t + 1) = max(g(t) + r(t) — ., 0) (11)

exceeds the threshold h. After a change has been detected, g is reset
to zero and the last t for which g(t) = O taken as an estimate of
the change time.

The CUSUM algorithm detects a change in the mean of the signal by
checking when the test statistic g (see Algorithm 1) exceeds some
threshold h. Since g is built up by summing consecutive signal
values, alarge g is an indication that the mean has changed and has
been considerably larger than zero for some time. To also detect
that the mean has changed to something smaller than zero, r(t) in
(11) should be replaced by —r(t).

Note that the CUSUM algorithm is a change detection algorithm
and seeks the time of a change while Willsky-Jones GLR approach
directly estimates v(t*). Of course, having estimated the time of
the change, say t’, an estimate for v(t") can be found through

min _ W(v())
v(k),k=1,....N—1 (12)

stov()=0, t=1,...,t' =1,t'+1,...,N—1.

3. Astochastic framework for state estimation under impulsive
process disturbances

The standard linear state space model with stochastic distur-
bances is well known to be

x(t + 1) = Ax(t) + Bu(t) + Guv(t)

y(t) = Cx(t) + e(t). (13a)

Here, v and e are white noises: sequences of independent random
vectors

E[v(6)] =0,
E[v(t)e’ ()] =0,
E[u()v'(s)] =0,  E[e(t)e' (s)] =0,
E[u()v ()] =Ry,  Ele(t)e’ (t)] = Re.

The independence of the noise sequences is required in order to
make x a state or a Markov process.

The model (13) with the process disturbance v being Gaussian
is a standard model for control applications. v then represents the
combined effect of all those non-measurable inputs that in addition
to u affect the states. This is the common model used both for state
estimation and in Linear-Quadratic-Gaussian (LQG) control.

The state smoothing problem is well known in this Gaussian
case as the classical Kalman smoothing problem, e.g., Kailath,
Sayed, and Hassibi (2000). Viewing x(t) as a function of u and v,
the smoothed state is the solution to the quadratic minimization
problem

E[e(t)] =0, Vt
Vt,s
ts (13b)

N

. —1/2 i 2
LD D L G Q)] B

Nt (14)
+ >IR3,
t=1

s.t.x(t + 1) = Ax(t) + Bu(t) + Gu(t).

This is also the maximum likelihood estimate and gives the
conditional mean of x(t) given the observations. It is a pure least
squares problem, and the solution is usually given in various
recursive filter forms, see e.g., Ljung and Kailath (1976).

Since x(t) is a given function of x(1), v(t) and the known
sequence u(t), it may seem natural to do the minimization directly
over x(t), i.e., to write

min E ]
x(t),1<t<N

N—-1
+ YIRS V2G! (xt + 1) — Ax(t) — Bu(o))

t=1

Sy — ) |

(15a)

where G' is the pseudo inverse of G. However, if G is not full rank,
nothing constrains the state evolution in the null space of G, so
(15a) must be complemented with the constraint

G (x(t + 1) — Ax(t) — Bu(t)) =0 (15b)
where G is the projection onto the null-space of G,
Gt 21 -GG (16)

However, since several approaches can be interpreted as explicit
methods to estimate v(t), we shall adhere to the (equivalent)
formulation (14).
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3.1. Sparse process disturbance

The situation of current interest is that the process disturbance
is zero most of the time, and assumes unknown nonzero values
at unknown time instants. It is convenient to capture this by the
distribution (cf. Egs. (2.10)-(2.11) in Ljung, 1999)

v(t) = 8(H)n(t) (17a)
where

__J0 with probability 1 — p
8(t) = {1 with probability sz (17b)
n(t) ~ N(0, Q). (17¢)

This makes R, = Q.
3.2. State estimates based on a stochastic framework

The best linear solution: Even with the non-Gaussian noise (17),
the process disturbance is still white, which means the Kalman-
smoother (14) still gives the best linear estimate. This implies that
among all estimates X that are linear functions of x(1), y and u, the
Kalman-smoother residual has the smallest variance.

The clairvoyant estimator : If the jump times, the times when §(t) =
1in (17a), are known, the random variable v(t) is Gaussian (with
time-varying covariance matrix R,(t) = §(t)Q). This means that
the Kalman smoother (14) is not only the best linear estimator, but
also gives the conditional mean and the estimate with the smallest
variance among all possible ones.

Filter banks: If §(t) is not known, we could hypothesize in each time
step that it is either O or 1. This leads to a large bank (2V~') of
Kalman filters, which constitute the optimal solution. The posterior
probability of each filter estimate can be determined, and the
optimal estimate is a weighted sum of the state estimates from
each filter. In practice, the number of filters in the bank must
be limited, and there are two main options (see Chapter 10 in
Gustafsson, 2010):

e Merging trajectories of different §(t) sequences. This includes
the well-known IMM (Interactive Multiple Model) filter, see
Blom and Bar-Shalom (1988) and e.g, Koch (2000) for a
smoothing formulation.

e Pruning, where unlikely sequences are deleted from the filter
bank.

Remark 4. The Willsky-Jones GLR approach can also be given an
interpretation as a filter bank, see e.g., Willsky (1976) and Willsky
and Jones (1976).

Particle filters: Since (13) and (17) form a linear model with non-
Gaussian noise, nonlinear filtering/smoothing techniques based
on particle filtering (Gordon, Salmond, & Smith, 1993, see also
Andrieu, Doucet, Singh, & Tadic, 2004 for a relevant contribution)
can also be applied. This solution means that a set of new particles
are created at each time instant, corresponding to the possibility
that §(t) is nonzero, and these will then survive if supported
by future measurement. This is in spirit very much like Kalman
filter banks. Experience shows that the Kalman filter bank is
quite efficient to explore multiple hypotheses. The standard SIR
(Sequential Importance Resampling) particle filter works well
for low and moderate SNRs (Signal-to-Noise Ratio), but starts
to degenerate due to depletion for very large SNRs. This can
be mitigated with other proposal distributions and resampling
schemes, but still the particle filter/smoother cannot compete with
a good implementation of a Kalman filter/smoother bank.

4. The proposed method: state smoothing by sum-of-norms
regularization

We may regard (10) or the filter banks as ideal methods for
state estimation in linear state space models where impulsive
disturbances occur in the process model. The catch is that
these are both computationally forbidding. One way to obtain
a computationally feasible method is to follow the idea from
compressed sensing (Candes, Romberg, & Tao, 2006; Donoho,
2006), and replace the £y-norm in (10) by the ¢; norm. That makes
the optimization problem convex, at the same time as several
of the good features of the £y-norm are retained, (Candes et al.,
2006; Donoho, 2006), e.g., sparsity (see e.g. Hastie, Tibshirani, and
Friedman (2001, pp. 70-71)).

4.1. Sum-of-norms regularization

Consider

N
. _ 2
o7 2RO = GO) 21V

s.t.x(t + 1) = Ax(t) + Bu(t) + Gu(t), x(1) =0,
V=[IIa"*v(MDllp. ... 1Q7Pv(N — D),]

which is the same as (10) up to a scaling of V. Since the £;-norm is
invariant to scalings, it is easily verified that (10) and (18) give the
same v-estimates. Now, using the ¢, instead of the £y-norm on V
in (18) and relaxing the constraint x(1) = 0 gives the optimization
problem

(18)

x(1),v(t),1<t<N-1

N
min " [R2(0) — ) |
t=1

N—1
+2) e, (19a)
t=1

s.t.x(t + 1) = Ax(t) + Bu(t) + Gu(t). (19b)

The parameter A, as in (10), is a positive constant that is used to
control the trade-off between the fit to the observations y(t) (the
first term) and the number of nonzero v(t) (the second term). The
weighted p-norm could be any £,-norm, like £; or £5. It is however
crucial for sparse solutions that the second term in (19a) is a sum
of norms, and not a sum of squared norms.

While this criterion is grown from the deterministic approach,
it is interesting to see its connection with the stochastic criterion
(15a). The expression (15a) can be seen as the criterion of fit

N
. —1/2 _ 2
ol 2R 00 — GO)], (20)

regularized by the quadratic term

N—1
D IR o) (21)
t=1

in order to curb the flexibility of v. Our criterion (19) just replaces
this quadratic regularization with the sum-of-norms

N—-1
I vl (22)
t=1

When the p-norm of v(t) is taken to be the ¢; norm, i.e, ||z||; =
ZZ] |z;|, the regularization in (19a) is a standard ¢, regularization
of the least-squares criterion. Such regularization has been very
popular recently, e.g., in the much used Lasso method, (Tibsharani,
1996) or compressed sensing (Candes et al., 2006; Donoho, 2006).
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There are two key reasons why the criterion (19) is attractive:

e It is a convex optimization problem, so the global solution can
be computed efficiently. In fact, its special structure allows it to
be solved in O(N) operations, so it is quite practical to solve it
for a range of values of A, even for large values of N.

e The sum-of-norms form of the regularization favors sparse
solutions where many (depending on A) of the regularized
variables come out as exactly zero in the solution. In this case,
this implies that many of the estimates of v(t) become zero
(with the number of v(t)’s becoming zero controlled roughly
by 1).

A third advantage is that

e It is easy to include realistic state constraints without destroy-
ing convexity.

The downside of using an £;-norm instead of the ¢y-norm is that
the £;-norm penalizes the size of the regularized variable and
not only if it is nonzero or not, like the £y-norm. The regularized
variable (]|Q ~2v(¢)]|, in (19a)) will therefore be biased toward
zero. We return to this issue in Section 5.3.

We should comment on the difference between using p = 1
in (19a), giving an £, regularization on Q ~'/?v(t), and some other
type of sum-of-norms regularization, such as sum-of-Euclidean
norms (which gives an ¢; regularization on [|Q ™2 v(1)]l2, ...,

IQ"72v(N — 1)||2]). With ¢, regularization, we obtain an estimate

of Q ~'/2y(t) having many of its components equal to zero. When
we use sum-of-norms regularization with p > 1, the whole
estimated vector Q ~/2u(t) often becomes zero; but when it is
nonzero, typically all its components are nonzero. Note however
that both p = 1 and p > 1 give an ¢;-regularization on
the vector [[|Q ~2v(D)[p. ..., IQ "/?v(N — 1)||,]. In a statistical
linear regression framework, sum-of-norms regularization with
p > 1is called group-lasso (Yuan & Lin, 2006), since it results in
estimates in which many groups of variables are zero.

Remark 5. A criterion (19) handles the process disturbance as
described in (17) well. In some situations it may however be more
accurate to assume a Gaussian noise component in the process
disturbance as well, i.e.,

x(t + 1) = Ax(t) + Bu(t) + Gu(t) + Hw(t)
y(t) = Cx(t) + e(t)

with w ~ N(0, S) and v as defined in (17). It is then motivated to
use a criterion

(23)

Z”R 2(y(t) — Cx(0) Hz

x(l) u(t) w(t)

N—-1
+ ) AT 2ol + IS Pw )13

t=1
s.t.x(t + 1) = Ax(t) + Bu(t) + Gu(t) + Hw(t)
rather than (19).

(24a)

(24b)

5. Choice of regularization parameter A

5.1. Regularization path and critical parameter value

The estimated sequence v(t) as a function of the regularization
parameter X is called the regularization path for the problem.
Roughly, larger values of A correspond to estimated x(t) with
worse fit, but an estimate of v(t) with many zero elements. A basic
result from convex analysis (see Remark 2 in Osborne, Presnell, &
Turlach, 2000, also cf. pp. 277-278 in Boyd & Vandenberghe, 2004)

tells us that there is a value A™® for which the estimated v(t)
is identically zero if and only if A > A™#, In other words, A™#
gives the threshold above which the estimated v(t) = 0,t =
1,...,N — 1. The critical parameter value A™* is very useful
in practice, since it gives a very good starting point in finding a
suitable value of A.

Proposition 6 (The Critical Value A™%).
(process) noise free scaled residual

t—1
e 2R;V? (y(t) —-C <ZAf—r—1Bu(r) +Af—‘x(1)>) (25)

r=1

Introduce &; for the

and take &; to be &; evaluated at

N
x(1) = argmin ) _ lec13 (26)
XM o

We can then express A™* as

N T
9 Z (R;uzCAtfquQl/z) ,

t=k+1

A™* = max
k

q

with || - |4 the dual norm (1/p 4+ 1/q = 1) associated with || - ||, used
in (19a).

The proof is given in the Appendix.

5.2. Signal-to-noise ratio and the choice of A

The regularization parameter XA controls the trade-off between
the fit of x to observations and the amount of process disturbance
v that can be used for that fit. This reflects the signal-to-noise ratio
of the data: The more signal influence (process disturbances v), the
more important the second term of (19a) and vice versa.

The criterion (19a) is not homogeneous. Since the second term
is a norm and the first one is a squared norm, the solution will
change if we rescale the problem by multiplying all signals by a
scalar.

A criterion with A based on a fraction of A™#,

min Y[R (v — Cx(©)]2 + BAM X Qv . (27)

will handle this, giving a criterion that is invariant to scaling: If R,
and Q are multiplied by the same scalar, the minimization problem
is not affected. Letting the choice of A be based on A™* is thus a
sound principle. But note that (27) is also invariant to all scaling in
the scalar case (y, v, R, Q being scalars): R, and Q can be changed
to any positive numbers, without affecting the solution if g is a
given constant. To allow the second term to have more influence at
high signal-to-noise ratios, we propose the following basic choice
of regularization parameter:

[IRe
el

The choice of the scaling 1/10 is admittedly ad hoc, but governed by
the fact that if the amplitude signal-to-noise ratio is less that 0.1,
no jumps v will be indicated by criterion (19). This is a reasonable
choice, since at such a low signal-to-noise ratio the risk of false
jump detections is very high.

Such signal-to-noise tuning is present in all state estimation
algorithms. For example the Willsky-Jones method (5) requires the
noise level R, to determine the covariance matrix P and knowledge
of typical jump sizes to design a proper significance level T to
minimize the risk of false detections. The Kalman filter, the particle
filter, the IMM, all require such knowledge to be properly tuned.

Amax, (28)



600 H. Ohlsson et al. / Automatica 48 (2012) 595-605

5.3. Iterative refinement

To (possibly) get even more zeros in the estimate of v(t), with
no or small increase in the fitting term, iterative re-weighting
can be used (Candés, Wakin, & Boyd, 2008). We modify the
regularization term in (19a) and consider

N
min Y[Ry - o)

x(1),v(0),1<t<N-1 =

N—1

+2. ) a®llQ o @], (29)
t=1

where (1), ...,a(N — 1) are positive weights used to vary the

regularization over time. Iterative refinement proceeds as follows.
We start with all weights equal to one i.e., @ (t) = 1. Then for
i=0,1,...wecarryout the following iteration until convergence
(which is typically in just a few steps).

(1) Find the state estimate.
Compute the optimal v?(t) using (29) with the weighted
regularization using weights o ®.

(2) Update the weights.
Fort =1,...,N—1,seta™V(t) = 1/(e + Q20D () [).
In this situation the value of A can be reduced, to obtain better
estimates of the jump size at the jump instances.

Here € is a positive parameter that sets the maximum weight that
can occur.

As already stated, several of the good features of the £,-
norm are retained when replaced by the £;-norm. However, the
downside is that the £;-norm penalizes the size of the regularized
variable and not only if it is nonzero or not, like the ¢o-norm. The
regularized variable will therefore be biased toward zero. To get
rid of this bias, one final step is useful. From our final estimate of
v(t), we simply define the set of times 7 at which an estimated
load disturbance occurs (i.e, & = {t|v(t) # 0}) and carry out a
final optimization over just v(t),t € T

~172(
x(1), v(r) 1<t<N 1 Z”R (t) CX(t)) ||2

stx(t+1) = Ax(t) + Bu(t) + Gu(t)
v(t) =0 iftgT

6. Summary of the algorithm—STATESON
The algorithm is summarized in Algorithm 2.

Algorithm 2 (State Estimation by Sum-of-Norms Regularization
(STATESON)). Given A, B, C, G, R, @ and | (y(t), u(t))},_,.Lete bea

positive parameter, set @ (t) = 1fort = 1,...,N—1andi = 0.
Then, for a given A (e.g., determined as (28))

(1) Compute the optimal v (t) using (29) with o = .

(2) Seta ™V (t) = 1/(e +1Q 20 (¢)||,). Possibly also reduce A
at this step.

(3) If convergence, go to the next step, otherwise seti =i+ 1and
return to step 1.

(4) Compute a final estimate of v(t) using (30).

Remark 7. If the jump covariance Q in (17) is known or can
be given a good value, the final optimization step (step (4) in
Algorithm 2) could be replaced by a Kalman smoother with the
time-varying process disturbance

R, (f) = 0 fort’ssuchthatv(t) =0
o(f) = Q otherwise.

It should be noticed that if the correct jump-times and Q have
been found, this is actually optimal in the sense that no other
smoother (linear or nonlinear) can achieve an unbiased estimate
with a lower error covariance. Since everything is Gaussian (time
varying covariance), this follows from the optimality of the Kalman
smoother.

7. Solution algorithms and software

Many standard methods of convex optimization can be used to
solve the problem (19). Systems such as CVX (Grant & Boyd, 2008,
2010) or YALMIP (Lofberg, 2004) can readily handle the sum-of-
norms regularization, by converting the problem to a cone problem
and calling a standard interior-point method. For the special case
when the £; norm is used as the regularization norm, more efficient
special purpose algorithms and software can be used, such as
11_1s (Kim, Koh, Lustig, Boyd, & Gorinevsky, 2007). Recently
many authors have developed fast first order methods for solving
¢, regularized problems, and these methods can be extended
to handle the sum-of-norms regularization used here; see, for
example, Roll (2008, Section 2.2). Methods such as Alternating
Direction Method of Multipliers (ADMM, Gabay and Mercier (1976)
and Glowinski and Marrocco (1975), see also Boyd, Parikh, Chu,
Peleato, & Eckstein, 2011), which are equivalent to other methods
(such as Douglas-Rachford splitting) can also handle the sum-of-
norms regularization and should be an attractive choice for large-
scale problems. All of these methods have a complexity that scales
linearly with N, and so can be applied to long data samples.

A CVX implementation of STATESON can be downloaded from
http://www.rt.isy.liu.se/~ohlsson/code.html.

8. Numerical illustration

We will use a DC motor to illustrate how the disturbances can
be handled. This is the same system as used in e.g., Ljung (1999,
pp. 95-97), (T, = 0.1 s, 7 = 0.286, 8 = 40). The input is
the applied torque and the output is the angle of the motor shaft.
With states being angular velocity and angle, and a sampling time
Ts = 0.1 s, we obtain the discrete time model

X(t+1) = [0%78%;7 ﬂ x(t) + [01.23'285]0} (u(®) +v(0)
sty =[0 1]x(t) (31)

y(t) = s(t) +e(t).

The transfer function from load disturbance v to angle y contains
an integration, so a unit impulse in v causes a change of level in s
of 4 units.

Example 8 (Estimating Jump Times Using STATESON and WJ). Let
us first study how well the STATESON algorithm can estimate the
time of a single jump in v. We may think of the Willsky-Jones
GLR approach (6) as a reference method, being the Maximum-
Likelihood (ML) solution. We simulate (31) fromt = 1tot = 100
with u = 0 (with no loss of generality, since the effect of the input
is known anyway), x(1) = 0 and

o2 122

with 10 different values of w from 0.01 to 10. The measurement
noise is chosen as e(t) ~ N(0, 1). For each value of w we generate
500 realizations of the measurement noise and estimate the jump

time as
twy = arg mgaxﬂ(t), £(t) defined by (5a),

tsTATESON = aIg max v(t).
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Fig. 1. Histogram over the errors in jump time for w = 0.1 (left) and w = 1 (right). Top: the Willsky-Jones method. Bottom: the STATESON method.

RMSE

SNR

Fig. 2. Log-log diagram of the RMS error of the jump time estimate as a function
of the SNR. Dashed line: Willsky-Jones. Solid line: STATESON. For the two highest
SNRs the Willsky-Jones error is zero.

Here v(t) is defined as the solution to (19) withR, = 1,Q = 1,
p = 2 and A chosen as in (28). We then study the ensemble values
of these estimates over the 500 measurement noise realizations.
Histogram plots over the errors in estimated time are given in
Fig. 1. To illustrate how the accuracy of the jump time estimates
depend on the jump size (i.e., the SNR) we plot in Fig. 2 the square
Root of the Mean Square Error (RMSE) of the estimate.

This example favors the Willsky-Jones approach, since it is
devised to find one jump in the chosen interval. STATESON has
no such information. For high SNR (jumps larger than 1) the
W] approach also outperforms STATESON. This is expected due
to the asymptotic (errors tending to zero) optimality of the ML
method. What is surprising is that STATESON does so well, and
even outperforms W] for small (jumps less than 1) SNRs.

If there is a possibility of several jumps in the signal, the
situation is a bit more complex for the W] approach. Then a sliding
window must be applied as described in Remark 3. The resulting

algorithm then has two important design variables: the threshold
T in (5b) and the window length F. Experimentation shows that
the performance could be quite sensitive to these two variables.

We now turn to the problem of not primarily estimating jump
times, but finding good smoothed state estimates.

Example 9 (State Estimates by W] and STATESON). We return to the
system (31) in Example 8. Two jumps occur:

v(49) =1
{v(SS) =-1
v(t) = 0 otherwise.

The initial condition is fixed to x(1) = 0, the measurement noise is
e(t) ~ N(0, 1) and the system simulated for t = 1-100. A typical
realization of y is shown in Fig. 3. The state is estimated by the
Willsky-Jones method using a sliding window of length 5 and a
threshold of 20. (See Remark 3 and (5b)). These design variables
were optimized to give the best MSE over a Monte-Carlo study.
The state was also estimated by STATESON, Algorithm 2, with
one iterative refinement. The parameter A was chosen as in (28)
withR, = Q = 1,ie, A = A™*/10 and it was further reduced by
another factor 10 at the refinement iteration. The chosen norm was
the Euclidean norm, i.e., p = 2. The squared errors |x3(t) — X, (t)|?
as a function of t averaged over 500 realizations of e are shown
in Fig. 4. A histogram plot over the 500 realizations of the norm

V>, [%2(t) — 22(6)|2 is shown in Fig. 5.

The example shows that the suggested STATESON method has
a clear edge over the Willsky—Jones approach. This can probably
be traced back to the fact that STATESON is a global method, while
Willsky-Jones is a sliding, local method, in this application with
possibly multiple jumps.

Let us also study the dependence of the signal-to-noise ratio and
compare with the methods described in Sections 2 and 3.

Example 10 (State Estimates Under Varying SNR and Multiple
Jumps). Consider again the system given in (31). Let v(t),t =
1, ..., 100, be generated by (17) with ©# = 0.015, Q = 10, set
x(1) = 0, u = 0 and vary R, to obtain different SNRs. For each
SNR-value, 500 Monte-Carlo runs (different v and e realizations in
each run) were carried out. State estimates were computed using:
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Fig. 3. A typical realization of y in Example 9.
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Fig. 4. The squared error of the second state estimate as a function of time,
averaged over 500 measurement noise realizations. Dashed line: Willsky-Jones.
Thick solid line: STATESON.

300

250 - b

200 b

150 b

100 b

50 b

0
0 5 10 15

Fig. 5. Histogram plot for the error norms over 500 noise realizations. Light gray:
STATESON. Black: Willsky-Jones. The x-axis is the error norm, and the y-axis shows
the number of occurrences of the corresponding segment of error norm.

(1) The lower bound according to the Clairvoyant smoother.

(2) Kalman smoother with the true R, and the change detection
algorithm CUSUM (Cumulative Sum (Page, 1954), see also
Algorithm 1) to detect when to change between R, = 0 and
R, = 10.CUSUM was applied to both the whitened innovations
and the negative whitened innovations of a Kalman filter. A
Kalman smoother was then applied with R, = 10 at the time

MSE

—— Clairvoyant
CUSUM

— STATESON

-==WJ

10 | —e—PF ]

—=— Kalman

—>— MM

1/2
(QR)

Fig. 6. A comparison between various methods for state estimation under
impulsive process disturbances, as explained in Example 10. The x-axis is the
varying SNRs obtained by varying measurement disturbance variance R, and a
constant jump size variance Q = 10. The y-axis is the mean square error of
the second state variable over all the 100 time samples. 7 different methods are
tested, as indicated: (1) Clairvoyant smoother, (2) CUSUM, (3) STATESON, (4) WJ:
Willsky-Jones, (5) PF (particle smoother), (6) conventional Kalman smoother and
(7) IMM.

instances of detected changes and R, = 0 otherwise. Several
values for h and y. = 1 were tried outand h = 10and y, = 1
gave the best performance and were used here.

(3) The proposed method STATESON according to Algorithm 2
with € = 1074, two iterations, A as in (28) in the first iteration
and a tenth of the that value in the second iteration.

(4) The Willsky and Jones GLR test, as described in Remark 3, with
T = 25and F = 40 for R, > 1 and otherwise T = 85 and
F = 40. Several T and F-values were tested and these T and
F-values gave the best performance.

(5) A particle smoother with the true R, and a process disturbance
distribution as in (17) with © = 0.015 and Q = 10. 1000
particles were used.

(6) Conventional Kalman smoother withR, = ©Q = 0.15 and the
true R..

(7) An IMM smoother with two modes, the true R, for both and
R, = 0 and 10, respectively, with probabilities 0.985 and
0.015. The IMM smoothing implementation of Sdrkkd and
Hartikainen (2007) was used.

The mean MSE (1/N Y, |x,(t) —X»(t)|?) taken over the 500 Monte-
Carlo runs is shown for a number of ,/Q /R.-values in Fig. 6.

Remark 11. The state estimates approach that of the clairvoyant
algorithm as the SNR increases. To understand the discrepancy in
the plot, one must keep in mind the logarithmic scale, and that
even for high SNR there will be occasional small jumps, that remain
undetected by the algorithms that do not have access to the correct
jump instances.

STATESON is in some sense the closest convex relaxation of (10).
It is therefore not very surprising that it is doing so well. That
STATESON is doing very well over the various /Q /R.-values also
motivates the suggested A-choice in (28).

8.1. Computational complexity

In the numerical illustrations, we used our own implementation
of all algorithms except the IMM smoother, for which we used
the implementation of Sdrkkd and Hartikainen (2007). A CVX
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Table 1
Computation times (in seconds) for one run in Example 10.

Clairvoyant CUSUM STATESON wj PF Kalman IMM
0.1 0.1 24 0.1 54 0.1 0.4

implementation of STATESON was used, see also Section 7. The
computational times (in seconds) for one run in Example 10 are
given in Table 1. None of the algorithms have been optimized for
computational speed.

Remark 12. With unknown jump-times, (10) (with the cor-
rect A-choice) or the filter banks would be unbeatable. Their
combinatorial-complexity make them computationally infeasible
though. In Example 10, 2%° =~ 10%° constrained least squares prob-
lems would have to be solved for each Monte-Carlo run.

9. Extension to nonlinear models

An extension to nonlinear systems is of interest since many
systems are poorly described by linear approximations. We do this
in an extended-Kalman-filter-like fashion and approximate the
nonlinear system by a time-varying linear model. To get an initial
state trajectory estimate, we use an Extended Kalman Filter (EKF).
The algorithm is summarized in Algorithm 3.

Algorithm 3 (State Estimation by Sum-of-Norms Regularization
Using Nonlinear Models). Given a nonlinear state space model and
{y (), u(t))}’t"zl. Let € be a positive parameter. Then, for a chosen
A

(1) Find an initial state trajectory estimate by applying an
extended Kalman filter.

(2) Create a time-varying approximation of the nonlinear system
by linearizing around the computed state trajectory.

(3) Apply Algorithm 2 to obtain a new state estimate.

(4) Return to step (2) if necessary.

Example 13 (A Nonlinear Example—A Pendulum). Consider the
pendulum shown in Fig. 7. Its dynamical behavior using a mass
m = 1 and a pole length L = 1 is described by the nonlinear
relation

d 0 de/dt 0
i [de/dt] = [—gsine tF| (32)
g is the gravitational constant (g = 9.81 was used in the

simulations). Using Euler integration with a time step of 0.005, we
obtain the time-discrete representation (x; = 6, x, = d6/dt)

x(t) | x1(t — 1) +0.005x,(t — 1) 0
X(6) | = | %ot — 1) — 0.005g sinx; (t — 1) | T |Fo) |-

Let us assume that we can measure the quantity
y(t) = sinxq(t) +e(t), e(t) ~N(0,0.5) (33)

and that the system is driven by the process disturbance

F(t) = w(t) +v(t), w(t) ~ N(0,0.0005) (34)
and

1 fort =500,
v(t) = {O otherwise. (35)

x1(1) = m/3 and x,(1) = 0 were used to initialize the system
and y(t),t = 1, ..., 1000, observed, see the top plot of Fig. 8. The
estimate obtained by applying the EKF, step (1) of Algorithm 3,
is given in the middle plot of Fig. 8 (sinX,(t) plotted). A linear

Fig. 7. Notation for the pendulum in Example 13.

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000
t

Fig. 8. Top plot shows the measured output y(t). The middle plot shows sin x,(t),
with x,(t) obtained by applying an EKF to the data of the top plot (step (1) of
Algorithm 3). Bottom plot gives the final estimate for v.

time-varying representation of the pendulum was next computed
around the x-estimate from the EKF (step (2) of Algorithm 3).
Finally, using A as in (28), ¢ = 1074, and two iterations in
Algorithm 3 (the criterion (24) was used, see Remark 5, due to the
Gaussian component in the process disturbance), the estimate of v
given in the bottom plot of Fig. 8 was obtained. As seen, the impulse
att ~ 500 was correctly detected.

10. Conclusion

A new formulation of the state estimation problem in the
presence of abrupt changes has been presented. The proposed
approach treats the state smoothing problem as a constrained
least-squares problem with a sum-of-norms regularization, a
convex formulation. A nice property of the proposed formulation is
that it can be seen as an ¢ relaxation of the well known generalized
likelihood ratio method by Willsky and Jones. Many other methods
for state estimation in the presence of abrupt changes have been
suggested in the literature. We have found in numerical examples
that the suggested method shows very good performance in
comparison with six other algorithms. Given that the proposed
method is in some sense the closest convex relaxation of the
optimal, but combinatorially forbidding, generalized likelihood
ratio method by Willsky and Jones, this may not be that strange.
Also, given that the method results in a convex optimization
problem, the computational burden is reasonable. The extension
to nonlinear models was also discussed and exemplified.
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Appendix. Proof of Proposition 6

To verify our formula for A™* we use convex analysis (Bert-
sekas, Nedic, & Ozdaglar, 2003; Borwein & Lewis, 2000; Rockafellar,
1996). First note that

Xx(t) = Gu(t — 1) +Ax(t — 1) + Bu(t — 1)

t—1
= Y ATT(Gu(r) + Bu(n) + A x(1). (A1)
r=1
Introduce
t—1
e 2RV (y(t) — C [ D AT Bu(r) + AT 'x(1) (A2)
r=1
and let & be &, evaluated at the x(1) minimizing
N
min > " flecll3 . (A3)
x(M) t=1
(19) can then be written as
N t—1 2
: 5 _R12c AT160 125
x(l),l_z(t)r,ltlg},...,N—l ; & € ; Qv .
N—-1
+2) 15Ol (A4)
t=1

with 9(t) 2 Q~"2u(t) and using (A.2). The subdifferential of
lv(®)|l, evaluated at v(t) = O is the unit ball in the dual norm
Il - llg» 1/p + 1/q = 1. A™ must therefore be give by

kmax
N -1 2
= max Vit Y [ — RZV2C Y ATTTIGQ ()
t=1 r=1 2 i=ollq
N T
=max |2 ) | (R, 2cA™F6Q ) &
t=k+1
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