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Outline

e constrained linear stochastic control problem

e some heuristic control schemes

— projected linear control
— control-Lyapunov
— certainty-equivalent model predictive control (MPC)

e the linear quadratic case
e performance bound
e performance bound parameter choices for control schemes

e numerical examples
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Linear stochastic system

e linear dynamical system with process noise:
xt+1:A$t—|—But—|—wt, t:O,l,...,
— x; € R" is the state

— uy € U is the control input

— U C R™ is the input constraint set, with 0 € U

— wy € R™ is zero mean 11D process noise, Ew,w! = W

e state feedback control policy:
ut:gb(xt), t:O,l,...,

¢ : R" — U is the state feedback function
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Objective

e objective is average stage cost:

T-1
1
J =limsup = E Co(xy) + 0y (u
msup 7B 3 (o(e) + ()

» : R" — R is state stage cost function

/
— {, : U — R is the input state cost function

e /., Y, U need not be convex
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Stochastic control problem
e stochastic control problem: choose feedback function ¢ to minimize J
e infinite dimensional nonconvex optimization problem

e problem data:

— dynamics and input matrices A, B
— distribution of process noise wy

— state and input cost functions /., £,
— input constraint set U/

e ¢~ denotes an optimal feedback function

e J* denotes optimal objective value
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‘Solution’ via dynamic programming
e find V*: R” — R and « with

V¥ z)+a= melgil (Ly(v) + EV*(Az + Bv 4+ wy))

(expectation is over wy)

e optimal feedback function is then

¢*(z) = argmin (£, (v) + EV*(Az + Bv + wy))
veUu

e optimal value of stochastic control problem is J* = «
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Stochastic control problem

e generally very hard to solve
(even more: how would we represent a general function ¢7?)
e can be effectively solved

— when the problem dimensions are very small, e.g., n=m =1
— when &4 = R™ and ¢, /,, are convex quadratic;
in this case optimal policy is linear: ¢*(z) = Kz

e many suboptimal methods have been proposed

— can evaluate J for a given ¢ via Monte Carlo simulation
— but how suboptimal is it?

e this talk: an effective method for finding a (good) lower bound on J*
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Projected linear state feedback

e a simple suboptimal policy:

Pp1(2) = P(Kp12)

— Ky € R™ ™ is a gain matrix (to be chosen)
— P is projection onto U/

e when U is a box, i.e., U = {u | [|u||coc < U™?*}, reduces to saturated
linear state feedback

dp1(z) = UM sat((1/U™*)K12)

sat is (entrywise) unit saturation
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Control-Lyapunov policy
e control-Lyapunov policy is

¢ct(z) = argmin (£, (v) + EVar(Az + Bv + wy))
vel

— Var : R™ — R (which is to be chosen) is the control-Lyapunov
function
— when Vg = V™, this is optimal policy

e when V¢ is quadratic, the control-Lyapunov policy simplifies to

¢cit(z) = argmin (£, (v) + Ve (Az + Bo))
velU

since Ew; = 0, and term involving E w;w! = W is constant
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Certainty-equivalent model predictive control (MPC)

® Ompc(z) is found by solving (possibly approximately)

minimize 32070 (Lo(Zr) 4 Lu(v7)) + Vinpe(7)
subject to ;11 =Ax,+ Bv,, 7=0,...,T—1
v, €U, T=0,....,T—1
j() = Z

— variables are vg, ..., vr_1, Zg,..., 2T
— Vinpe : R — R is the terminal cost (to be chosen)
— T is the planning horizon (also to be chosen)

e let solution be vj,...,v7 ¢, Z5,..., T

e MPC policy is ¢pmpc(2) = v}
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Parameters in heuristic control policies

e performance of suboptimal policies depends on choice of parameters
(Kp1, Ve, Vinpe and T')

e one choice for V¢, Vinpe: (quadratic) value function for some
unconstrained linear quadratic problem

e one choice for K,: optimal gain matrix for some unconstrained linear
quadratic problem

e we will suggest some parameters later . . .
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The performance bound

our method:

e computes a lower bound J'® < J* using convex optimization
(hence is tractable)

e bound is computed for each specific problem instance

e (at this time) cannot guarantee tightness of bound
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Judging a heuristic policy

e suppose we have a heuristic policy ¢ with objective J
(evaluated by Monte Carlo, say)

e since JP < J* < J, if J— Jy is small, then

— policy ¢ is nearly optimal
— bound J' is nearly tight

o if J— JWis big, then for this problem instance, either

— policy is poor, or,
— bound is poor (or both)

e examples suggest that J — J'® is often small
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Unconstrained linear quadratic control

e can effectively solve stochastic control problem when

— U = R™ (no constraints)
— lx(2) = 210z, lu(v) = vI'Ru, Q>0 R>0

e optimal cost is Jj; = Tr(P W)
e optimal state feedback function is ¢*(2) = K 2z, where
K =—(R+B'"P B)"'B" P A
o P is positive semidefinite solution of ARE
PL=Q+A"PA-A"P.B(R+B"PB)"'B"P;A
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Linear quadratic control via LMI/SDP

e can characterize Jj and P via the semidefinite program (SDP)

maximize Tr(PW)
subjectto P >0

R+ BTPB BTPA 0
ATPB Q+AT"PA—-P | —

— variable is P

— optimal point is P = F; optimal value is Jj

lq

e solution does not depend on W, as long as W > 0

e constraints are convex in (P, Q, R), so Ji (Q, R) is a concave function

of (Q, R)
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Basic bound

e suppose (Q =~ 0, R > 0, s satisfy
7 Qz+ v Ruv4 5 < ly(2) +4,(v) forallzeR™, veld
i.e., quadratic stage costs are everywhere smaller than ¢, + £,
e then J (Q, R) + s is a lower bound on J*
e follows from monotonicity of stochastic control cost w.r.t. stage costs

e lefthand side is optimal value of unconstrained quadratic problem
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Optimizing the bound
e can optimize the lower bound over (), R, s by solving

maximize  Ji (Q, R) + s
subjectto Q@ =0, R >0,
21Qz+vIRv+s</ly(2)+4,(v) forallzeR", vel

e a convex optimization problem

— objective is concave
— constraints are convex
— last constraint is convex in (), R, s for each z and v

e last constraint is semi-infinite, parameterized by the (infinite) set
zeR", uel
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Optimizing the bound

e semi-infinite constraint makes problem difficult in general
e can solve exactly in a few cases

e in other cases, can replace semi-infinite constraint with conservative
approximation, which still gives a lower bound
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Quadratic stage cost and finite input set

e can solve optimization problem exactly when

— l(2) = 21 Qoz, £y(v) =vIRyv, Q=0 R>=0
— U =A{uq,...,ux} (finite input constraint set)

e constraint

7 Qz+vIRv+ s < l,(2) + 4, (v) forall z€R"

becomes

Q = Qo, U?Ruz + 5 < ’UJ;-FRQ’LLZ', 1=1,..
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e to optimize the bound we solve SDP (with variables P, Q, R, s)

maximize Tr(PW) + s
subjectto P >0, @Q@*>=0, R>0, Q=Q

R+ BTPB BTPA
ATPB  Q+ATPA-P

u! Ru; + s <ulRou;, 1=1,...,K

=~ 0

e monotone in (), so we can set () = (Jg w.l.o.g.
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S-procedure relaxation

e suppose stage costs are quadratic
e suppose we can find Ry,..., Ry and sq,..., sy for which

Z/{QZ:I:{U\UTRierSZ-gO, i=1,...,M}

e a sufficient condition for

Qz+ v Ru+ s <l (2) +Lu(v) forall ze R", vel

~

0z +vTRv+s<21Quz+ v Ryv for all z€ R™, veld
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e equivalent to () < )y and

v IRv+s,<0,i=1,....M = o' Rv—+

e which is implied by () < ()9 and the existence of A4, ..
M M

R_ROjZAiRia SSZ)\iSi
i=1 i=1

(by the S-procedure)

e so Ji (Q,R) + s is a still a lower bound on J*
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e to optimize the bound we solve the SDP

maximize Tr(PW) + sq
subjectto P >0, Q>0 R>0, Q=Q

R+ BTPB BTPA
ATPB Q+ATPA-P

R— Ry = sz\il ARy, sp < sz\il AiSi
NS0 i=1,....M

=~ 0

with variables P, Q, R, A\1,..., Am, S0y -+, SM

e can set () = QQp w.l.o.g.
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Suboptimal control policies

e optimizing the lower bound gives Py,

e can interpret Tr(PL,W) as optimal cost of an unconstrained quadratic
problem that approximates (and underestimates) our problem

e suggests that
Vib(z) = 2" Pz,

and
Ky, = —(Rw, + B' Py, B) "' B' R, A
are good choices of parameters for suboptimal control policies

e examples show this is the case
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Numerical examples

e illustrate bounds for 3 examples

— small problem with trilevel inputs
— large problem with box constraints
— discretized mechanical control system

e compare lower bound with various heuristic policies

— projected linear state feedback
— model predictive control
— control-Lyapunov policy
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Small problem with trilevel inputs

enNn=8 m=2

e A, B matrices randomly generated; A scaled so max; [\;(A4)| =1
e quadratic stage costs with Rg =1, Qg =1

o w; ~ N(0,0.25])

e finite input set: U = {—0.2,0,0.2}2
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Large problem with box constraints

e n=230m=10

e A, B matrices randomly generated; A scaled so max; [\;(A4)| =1
e quadratic stage costs with Rg =1, Qg =1

o w; ~ N(0,0.25])

e box input constraints: U = {v € R"" | ||v||occ < 0.1}
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Discretized mechanical control system

- U3 <+——

— U] - > Uy -———

e 6 masses connected by springs; 3 input tensions between masses
e quadratic stage costs with Rg =1, Qo =1
e w; uniform on [—0.5,0.5]

e box input constraints: U = {v € R™ | ||v]|cc < 0.1}
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Heuristic policies

e projected linear state feedback with Ky = Ky
e control-Lyapunov policy with V¢ (2) = 21 P,z

e model predictive control (MPC) with T' = 30, Viupc(2) = 27 P2

(for trilevel example we solve convex relaxation with u(t) € [—0.2,0.2],
then round value to {—0.2,0,0.2})
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small trilevel

Results

large random masses

PLSF 12.9 31.3 269.8
CLF 10.8 25.6 61.1
MPC 10.9 25.7 58.9
Jb 9.1 23.8 43.2

e control-Lyapunov with P, and MPC achieve similar performance

e control-Lyapunov policy can be computed very fast (in tens of
microseconds); MPC policy can be computed in milliseconds

e bound Jy, is reasonably close to J for these examples
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Conclusions

e we've shown how to find lower bounds on optimal performance for
constrained linear stochastic control problems

e requires solution of convex optimization problem, hence is tractable

e provides only provable lower bound on optimal performance that we are
aware of

e as a by-product, provides excellent choice for quadratic
control-Lyapunov function

e in many cases, gives everything you want:

— a provable lower bound on performance
— a relatively simple heuristic policy that comes close
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