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1. Introduction
A Volterra Series Qperator is one of the form

and is a generalization of the convolution description of
linear time-invariant (LTI) operators to time-invariant (T1)
nonlinear operators. The usefulness of Volterra series
hinges on their ability to model a very wide class of non-
linear operators. Two general approaches can be taken to
establish this.

First, one can demonstrate that many explicitly
described systems have input/output (I/0) operators given
by Volterra series. Sandberg[1] has established that a wide
class of systems have 1/0 operators which are given by Vol-
terra series, the requirement being, roughly speaking, that
the nonlinearities are analytic. Thus an op-amp (with
transistors modeled by the Ebers-Moll equations, which are
analytic) has an I/0 operator expressable, at least for small
inputs, as a Volterra series.

But many common nonlinear systems are modeled with
non-analytic nonlinearities. For example the 1/0 operator
of a control system containing an ideal saturator, that is, a
memoryless nonlinearity with characteristic
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(which of course is not analytic) can easily be shown not to
have a Volterra series representation valid for any inputs for
which the saturator threshold is exceeded. One could rea-
sonably argue that even though the 1/0 operator of such a
control system does not have an ezact representation as a
Volterra series operator, it could be approrimated by one,
for example by replacing the saturator with a polynomial
approximation. But exactly what do we mean by approzi-
mate here? This is one of the questions addressed in this
paper.

The second approach to establishing the generality of
Volterra series is ariomatic in style, and conceptually more
satisfying. Here one demonstrates that under only a few
physically reasonable assumptions about an operator N

(such as causality, time-invariance, and some form of con-
tinuity) there is a Volterra series operator ¥ which approxi-
mates, in some sense, N. No assumption whatever is made
concerning the internal structure or realization of N.

The idea of such an approximation is not new, and in
fact is discussed in the original work of Volterra[2], who
cites Frechet[3]. Even in this early work one can find the
basic idea (clouded by archaic mathematics): there is an
analogy between ordinary polynomials and flnite Volterra
series, and hence some analog of the Weierstrass approxi-
mation theorem should apply to approximating general non-
linear operators with finite Volterra series.

Wiener rekirdled interest in chis p-oblem at MIT in the
forties and fifties, 3.8 and since then various researchers
have considered the problem.?.8,8.10 A clear discussion of a
typical approximation result can be found on pages 34-37 of
Rugh's book[11]. Roughly speaking, all of this work has the
following problems:

(1) The input space is usually L?[0,T],

(2) The approximation is always on a compact subset of the
input space,

(3) The approximation only holds over a finite time interval
[0.7).

While demonstrating that Volterra series operators can,
at least in a very weak sense, approximate a general causal
time-invariant continuous operator, these results are not
really satisfying. The choice of L% as input space seems
more a mathematical convenience than a realistic engineer-
ing idealization of actual input signals. (1), (2) and (3) are
severe restrictions: we would really like an approximation
which allows input signals defined on inflnite time intervals
and which approximate the general operator over an
infinite time interval. (1)-(3) preclude, for example,
periodic forcing signals. Rugh concludes his discussion with
the following comments concerning (2): "...I should point out
that the main drawback is in the restrictive input space U.
The compactness requirement rules out many of the more
natural choices for U."

We will demonstrate that all of these drawbacks can be
overcome if the usual continuity assumption on N is
strengthened slightly to ensure that N has fading memaory.
The proof is very simple.

2. Fading Memory
The concept of fading memory has a history at least as
long as Volterra series themselves. Indeed we find it in Vol-
terraf2, p188]:
A first extremely natural postulate is to suppose
that the influance of tha (input) a long time before
the given moment gradually fades out.
and in Wiener{4, p89]:

We are assuming (the output) of the network does
not depend on the infinite past. If the response of
this apparatus depends on the remote past, then
the Brownian motion is not a good approrimation
because we shall always have to consider the
remote past. So we are considering networks in
which the output is asymptotically independent of
the remote past input...

and in various other work over the years.!2.53 The fading
memory assumption, then, is by no means a new stronger
restriction on the operators to be approximated. It is sim-
ply an old assumption whose full power has not, until now,
been used.

First some notation: C(R) will denote the space of
bounded continuous functions on R, with the usual norm
[l A?gglu(t)]. U, will denote the T-second delay aperator

defined by

(Uau)(t) Bu(t-7)
Definition: N has Fading Memory (FM) on a subset K of
C(R) if there is a weighting function w:R, -+ R,, %ifxzw(t) =0,
such that for each u € X and £> 0 there is a § >0 such that
forallv €KX

suptu(t) —v(t)hw(-t) <6 > |[Nu(0)-M(0)| <&
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For example if w(t)=e™™ then we might say N has a A-
exponentially fading memory on K.

3. Approximation Theorem
Approximation Theorem: Let £ >0 and

é[u [Iell by, 11U -ullsﬂz‘r}

Suppose that N is eny TI operator with fading memory on
K. Then there is a finite Volterra series operator N such
that for alluw € K

INu — Ru|l < £

Remark 1: The assumption on N is extremely weak. As
mentioned earlier, it does not in any way concern the inter-
nal structure or realization of N. For example N could arise
from a nonlinear PDE, but even this is not necessary.

Remark 2: K can be described as those signals bounded by
M, and having Lipschitz constant Mp, that is, slewlimited

Remark 5: The signals in K are not "time-limited” (i.e. zero
outside of some interval such as [0,T]), and the approxima-
tion |Nu(t)=Nu(t)| <& holds for all t €R, not just in some
interval [0, T].

Remark 4: K is not a compact subset of C(R)!

Remark 5: In the discrete time case, we can remove the
slew limit, that is, X can simply be any ball in I®.

4. AFinal Comment

The approximating Volterra series N can be realized as
a finite-dimensional linear dynamical system with a non-
linear readout map, that is, by a Wiener structure. This has
implications for macro-modeling complicated or large-scale
nonlinear systems with such a structure (cf. deFigueiredo
and Dwyer[13]). Full details, proofs, and discussion can be
found in a forthcoming paper{14].
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