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Abstract—In this paper, we address the problem of
finding current waveforms for a switched reluctance motor
that minimize a user-defined combination of torque ripple
and RMS current. The motor model we use is fairly
general, and includes magnetic saturation, voltage and
current limits, and highly coupled magnetics (and therefore,
unconventional geometries and winding patterns). We solve
this problem by approximating it as a mixed-integer
convex program, which we solve globally using branch and
bound. We demonstrate our approach on an experimentally
verified model of a fully pitched switched reluctance motor,
for which we find the globally optimal waveforms, even for
high rotor speeds.

I. INTRODUCTION

We consider the problem of choosing optimal current

waveforms for a switched reluctance motor (SRM).

Traditionally, the shape of the current waveforms is

determined in an ad-hoc manner (e.g., by fixing the

turn-on angles for each phase winding as a function

of rotor position; see [TK12]). Although creating these

waveforms does not require a detailed motor model, and

implementing them is simple, waveforms produced in

this manner rarely produce smooth output torque, and

often decrease motor efficiency and exacerbate mechan-

ical vibration and acoustic noise issues. Also, because

of inverter voltage limits, such waveforms may not even

be realizable at high rotor speeds.

We therefore propose to use optimization to find

current waveforms that achieve a desired average torque,

while minimizing a combination of resistive power loss

and RMS torque ripple. We consider supply voltage lim-

its, as well as current limits in each phase winding. Our

model includes a detailed magnetic circuit, which can

account for magnetic coupling between phases, and can

be used to model motors with unconventional geometries

and winding patterns, such as those with fully pitched

windings.

We propose to solve this optimization problem by

approximating it as a mixed-integer convex program

(MICP). This MICP reformulation approach has several

inherent advantages over more conventional methods,

such as sequential quadratic programming. The most

prominent, for our purposes, is that it can be solved

globally by generic methods such as branch and bound,

often in a reasonable amount of time. This has two

benefits: first, it allows us to achieve the best perfor-

mance possible for a given motor; second, it provides

a metric against which other, suboptimal methods can

be compared. We note that although in general global

optimization methods for solving MICPs can have very

high (exponential) runtime, we find that global solutions

can typically be found in a reasonable amount of time

(1-5 minutes) for the problems we encounter. These

waveforms can be computed and stored in a lookup table,

indexed by desired torque and rotor speed. Such a table

with hundreds or thousands of entries could be computed

overnight on a standard multi-core computer.

Another advantage of an MICP formulation is that, if

suboptimal solutions are acceptable, first-order methods

exist that can produce a good solution very quickly espe-

cially when initialized with a decent initial guess. (see,

i.e., [TMBB15]) This opens the possibility that (nearly)

optimal waveforms can be produced by a smart control

scheme even as motor parameters vary over the life of the

motor. This is especially attractive when combined with

a lookup table containing precomputed, globally optimal

waveforms: the precomputed waveforms can be used

as an initial guess for an online optimization method

when new waveforms (corresponding to updated motor

parameters) are required.

We demonstrate our approach numerically on the ex-

perimentally validated motor model of [MWC01], which

describes an SRM with fully pitched phases.

A. Previous work

Current optimization for SRMs: Several authors

have considered optimization of SRM current wave-

forms. The most similar work to our own is a series

of papers by Lovatt and Stephenson [LS94], [LS97a],

[LS97b], that use local optimization methods to find

minimum RMS current waveforms that achieve a given

(average or pointwise) desired torque, subject to volt-

age and current constraints. Stankovic et al. derive

optimal waveforms for a simple SRM, under several

restrictive assumptions (e.g., sufficient drive voltage,
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no more than two simultaneously conducting phases);

under these assumptions, it is only necessary to dis-

cretize the waveforms during commutation. Kaiserseder

et al. [KSAS03] also seek optimal current waveforms

that produce smooth torque output and can be chosen

to either minimize current RMS values, or minimize

vibration resulting from radial forces. The method of

optimization is not described. A similar optimization

problem is posed by Chapman and Sudhoff [CS02] in

the frequency domain; sequential quadratic programming

is used to (approximately) solve it. Many other works

optimize over current waveforms parametrized by only

a few free variables, such as the firing angle or the corner

locations of a trapezoidal waveform. This of course

requires predetermined current waveform shapes, which

are not optimal in general. For some examples of this

approach, see [MK03], [CMH93], and [CKKP02].

We also note that our approach can be viewed as

an extension of the authors’ previous work on optimal

current waveform design for permanent magnet motors;

see [MB15a].
Hybrid control and MPC for SRMs: Here we list

some other optimization-based techniques applied to

control SRMs. Peyrl et al. propose a finite-set model

predictive control approach, which involves online opti-

mization directly over future inverter switching states.

Due to the computationally demanding nature of this

technique, only very short prediction horizons (i.e., up

to three steps) are considered. The work by Vasak et

al. [VZP+07], uses a piecewise-affine model of the

torque characteristic (as we do) to derive a feedback

controller that guarantees a torque ripple. However, their

proposed model is relatively low fidelity: the dynamics

are modelled as a first-order linear system, and the

proposed torque characteristic (our gk(Fk, θ)) has only

nine regions (For comparison, in §VI we use over one

hundred regions.)
MICP: Convex optimization problems can be

solved efficiently and reliably using standard techniques

[BV04] (and additionally, specialized modelling soft-

ware, such as CVX [GB14], enables rapid develop-

ment of convex optimization applications). An optimiza-

tion problem with some integer variables, but which

is otherwise convex, is called a mixed integer convex

program (MICP). Because of the presence of integer

variables, MICPs are nonconvex optimization problems,

and are difficult to solve (globally) in general (i.e.,

these problems are are NP-hard; see [KT06]). Indeed, all

known global solution techniques for MICPs (such as the

branch-and-bound algorithm), have exponential worst-

case runtime. Nevertheless, many of these algorithms are

effective in practice, and we found them to work well

for the the optimization problem we formulate in this

paper. In addition to global solution algorithms, many

approaches exist to (approximately) solve MICPs more

quickly; see [TMBB15] and references therein.

Our formulation is based on approximating the non-

linear constraint functions (the torque characteristics and

the magnetic flux characteristics) by piecewise affine

functions. These constraints can then be represented as

a combination of integer and linear constraints using

disjunctive programming. For details on disjunctive pro-

gramming consult Balas [Bal79] and Ceria and Soares

[CS99]. Disjunctive programming has found many ap-

plications in the past decade or so, such as process

engineering [GT13], facility location, unit commitment

and portfolio management [GL12], and optimal control

[MB15b].

B. Contribution

Our reformulation of the torque control problem as a

MICP opens the door for two interesting possibilities.

The first is that global solution methods can be used

to find the optimal waveforms, typically in a reasonable

amount of time. This is of course advantageous in its

own right, as it allows provably optimal waveforms to

be implemented. It is also useful to verify the limits

of performance of motors, and as a benchmark for

comparing heuristic methods. The second possibility is

that fast first-order methods, which are simple enough to

run on embedded platforms, can be used as a heuristic

to update the globally optimal waveforms as parameters

vary over the life of the motor. Our proposed model is

also much more general than the optimization models

considered in previous works, and can therefore be used

to capture more of the characteristic features of switched

reluctance motors, such as magnetic coupling. We hope

this generality will be useful for researchers investigating

novel switched reluctance motor topologies, by giving

them a practical method for optimal waveform genera-

tion, and by characterizing the theoretical performance

of their designs.

II. MOTOR MODEL

We consider an abstract, lumped parameter model of

a switched reluctance motor. The rotor, which does not

contain any windings or magnetic elements, has angular

position θ and angular velocity ω; we assume ω is con-

stant. The stator contains n electrical circuit branches,

called windings. The winding currents are i ∈ Rn, the

winding voltages are v ∈ Rn, and the magnetic flux

linkages through the windings are λ ∈ Rn. The stator
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also contains m magnetic elements, with magnetomotive

force (MMF) vector F ∈ Rm, and magnetic flux vector

ψ ∈ Rm.

We will assume that i, v, λ, F , and ψ are 2π-

periodic functions of θ. We use a prime (′) to denote

differentiation of these functions with respect to θ. To

lighten notation, we often drop explicit dependence on

θ.

Electrical dynamics: The electrical circuit dynam-

ics are

v = Ri+ ωλ′, (1)

where R ∈ Sn
++ is the (diagonal) resistance matrix. Note

that ωλ′ is the time derivative of λ.

Magnetic circuit: We assume the magnetic ele-

ments are connected by a (planar) magnetic circuit,

which we describe in terms of mesh analysis (for an

introduction to mesh analysis, see [DK84]). In particular,

we assume that there are l circuit meshes (not including

the outer mesh) each with an associated reference di-

rection. The (reduced) mesh matrix M ∈ Rl×m is such

that

Mjk =



































1 if magnetic element k is in mesh

j, with coinciding reference direc-

tions
−1 if magnetic element k is in mesh j,

with opposite reference directions

0 if magnetic element k is not in

mesh j.

Any flux vector ψ consistent with the magnetic circuit

topology must be a linear combination of the rows of

M , so that

ψ =MTφ, (2)

for some φ(θ) ∈ Rl, which we call the mesh magnetic

flux vector. (Because M has full row rank in general,

there is a unique φ for any such ψ.)

In addition, the total MMF around each mesh is the

sum of the MMFs of the magnetic elements that make

up the mesh (accounting for reference direction), so the

vector of mesh MMFs is given by the vector MF .

Electro-magnetic geometry: We define the electro-

magnetic geometry matrix C ∈ Rl×n such that Cjk gives

the amount of current passing through mesh j per unit of

current in winding k. The total current passing through

each of the l meshes is therefore given by the vector Ci,
which is related to the total MMF around the meshes by

Ampère’s law:

MF = Ci. (3)

Similarly, the flux linkage is related to the mesh magnetic

flux vector by

λ = CTφ. (4)

Magnetic characteristic: The magnetic flux and the

MMF of the k-th magnetic element are related by

ψk(θ) = fk
(

Fk(θ), θ
)

, (5)

where the magnetic characteristic fk is a monotonically

increasing function in its first argument.

As a special case, if the functions fk are affine

in Fk for each θ, with constant linear term (so that

ψ(θ) = AF(θ) + b(θ), with A diagonal and posi-

tive definite), as in the case of a permanent magnet

motor, then we have λ(θ) = Li(θ) + k(θ), where

L = CT (MA−1MT )−1C is the inductance matrix and

k(θ) = CT (MA−1MT )−1A−1Mb(θ) is the back-emf

constant.

Torque: The magnetic co-energy is

E∗(F , θ) =

m
∑

k=1

∫ Fk

0

fk(x, θ) dx.

The electromagnetic torque can be expressed as

τ(θ) = −
∂

∂θ
E∗
(

F(θ), θ
)

= −
m
∑

k=1

∂

∂θ

∫ Fk

0

fk(x, θ) dx.

By introducing a phase torque function gk such that

gk(y, θ) = −
∂

∂θ

∫ y

0

fk(x, θ) dx,

we have

τ(θ) =

m
∑

k=1

gk
(

Fk(θ), θ
)

. (6)

Voltage limits: We assume the winding voltages are

bounded:

|vk(θ)| ≤ vmax, k = 1, . . . , n. (7)

Torque ripple: The average torque over one cycle

is

τ =
1

2π

∫ 2π

0

τ(θ) dθ.

The (quadratic) torque ripple is

r =
1

2π

∫ 2π

0

(

τ(θ)− τ
)2
dθ.
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Power loss: The power loss is the average resistive

loss from the phase currents over one cycle:

Ploss =
1

2π

∫ 2π

0

i(θ)TRi(θ) dθ.

III. OPTIMAL TORQUE CONTROL

The optimal torque control problem is to choose the

phase voltages, phase currents, and eddy currents to

achieve a desired average torque while minimizing the

average power loss and torque ripple:

minimize Ploss + αr
subject to τ = τdes,

equations (1), (2), (3),

(4), (5), (6), and (7).

(8)

The parameters are the trade-off parameter α ≥ 0,

the rotor angular velocity ω, the desired average torque

τdes, the resistance matrix R, the mesh matrix M , the

electro-magnetic geometry matrix C, and the magnetic

characteristic functions fk, for k = 1, . . . ,m. The

problem variables are the 2π-periodic functions i, v, λ,

F , ψ, and φ.

Problem (8) is an infinite-dimensional optimization

problem. The problem is nonconvex due to the mag-

netic characteristic (5) and the torque relation (6), and

therefore is expected to be difficult to solve globally.

One approach is to find a locally optimal solution, us-

ing common local optimization methods such as sequen-

tial quadratic programming Software that implements

these methods is readily available; see [NW06].

In this paper, we pursue a different approach, and

will instead show how to approach (8) by discretizing

the variables, and (approximately) reformulating the

problem as a mixed-integer convex program (MICP), a

problem class for which efficient algorithms are available

to find a good (or even globally optimal) solution.

We note that if the magnetic characteristic is affine,

with only the offset depending on rotor position, the

torque control problem reduces to a version of the

formulation given in [MB15a]. Our current problem can

therefore be interpreted as an extension of that formu-

lation to cover magnetic nonlinearities and reluctance

torque.

IV. CONVERSION TO MICP

In this section we show how to convert (8) to an

(infinite-dimensional) mixed-integer convex program. To

do this, we use piecewise-affine approximations of the

nonlinear equality constraints.

A. Approximation of magnetic characteristic

Here we approximate the equation magnetic charac-

teristic (5) by a set of linear and integer constraints. We

replace the constraint ψk = fk(Fk, θ) with the constraint

ψk = f̃k(Fk, θ), (9)

where f̃k is a piecewise affine approximation of fk. In

particular, we have

f̃k(x, θ) =















a1k(θ)x+ b1k(θ) F̃0
k ≤ x ≤ F̃1

k

...
...

aNk (θ)x+ bNk (θ) F̃N−1
k ≤ x ≤ F̃N

k ,

where a1k(θ), . . . , a
N
k (θ) and b1k(θ), . . . , b

N
k (θ)

parametrize the affine functions, and F̃0
k , . . . , F̃

N
k

are the boundaries of the affine regions, so that we have

fk(x, θ) ≈ ajk(θ)x+ bjk(θ)

if F̃ j−1

k ≤ x ≤ F̃ j
k .

By introducing additional variables zjk(θ) and sjk(θ),
for j = 1, . . . , N , and k = 1, . . . ,m, the approximate

magnetic characteristic constraint (9) can be written as

ψk(θ) =
N
∑

j=1

ajk(θ)z
j
k(θ) + bjk(θ)s

j
k(θ)

Fk(θ) =
N
∑

j=1

zjk(θ)
N
∑

j=1

sjk = 1

F̃ j−1

k sjk(θ) ≤ zjk(θ) ≤ F̃ j
ks

j
k(θ) sjk(θ) ∈ {0, 1}.

(10)

B. Approximation of torque function

In the same way, we can approximate the torque

constraint (6) using a set of linear and integer constraints.

To do this, we first approximate each torque function gk,

for k = 1, . . . ,m, as a piecewise affine function g̃k:

g̃k(x, θ) =















c1k(θ)x+ d1k(θ) F̃0
k ≤ x ≤ F̃1

k

...
...

cNk (θ)x+ dNk (θ) F̃N−1
k ≤ x ≤ F̃N

k ,

where c1k(θ), . . . , c
N
k (θ) and d1k(θ), . . . , d

N
k (θ)

parametrize the affine functions. Then the approximate

torque constraint

τ(θ) =

m
∑

k=1

g̃k(Fk, θ)

can be included by appending

τ(θ) =
m
∑

k=1

N
∑

j=1

cjk(θ)z
j
k(θ) + djk(θ)s

j
k(θ) (11)
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to the constraints (10) above.

C. Improving the MICP formulation

By converting the nonlinear constraints to linear and

integer constraints, we have succeeded in our goal of

making (8) into an MICP. However, the runtime of

a global MICP solver often depends crucially on the

problem formulation. Here we give an additional re-

formulation of the objective of (8) (specifically, of the

the power loss) that may improve the performance of a

MICP solver compared with the basic formulation.

Assuming that C has full column rank, we can use

(3) to express the winding current as i = C†MF , where

C† is the pseudo-inverse of C (or any other left inverse).

Then the power loss can be rewritten as

Ploss =
1

2π

∫ 2π

0

F(θ)TQF(θ) dθ,

where Q =MT (C†)TRC†M .

For any feasible set of variables, and for any diagonal

matrix D, this is equivalent to

1

2π

∫ 2π

0

(

F(θ)T (Q−D)F(θ)+

m
∑

k=1

N
∑

j=1

Dkk

zjk(θ)
2

sjk(θ)

)

dθ.

In particular, if we choose D with nonnegative diagonal

elements, such that Q−D is positive semidefinite, then

the reformulated power loss function is convex in all

its variables. Furthermore, the larger the elements of D
are, the tighter the convex relaxation will be. Finding a

suitable D can be cast as a small convex optimization

problem; for details on this type of reformulation, see

[FG07].

V. SYMMETRY AND DISCRETIZATION

A. Symmetry

Many motors have substantial symmetry, which in

our formulation is encoded in the functions fk, as well

as M , R, C. Although it is not necessarily true that

optimal variables for (8) share this symmetry, it is

reasonable to expect that many good sets of variables are

symmetric. Furthermore, we may explicitly desire that

the waveforms be symmetric (e.g., to simplify implemen-

tation, or to wear components evenly). By introducing

symmetry constraints, we can also reduce the interval

of the variables of (8) thus reducing the complexity of a

discretized version of the problem. For some asymmetric

motors, one or more of these assumptions may not hold;

examples of this include motors intentionally designed

without symmetry, or when a winding in an otherwise

symmetric motor has failed.

Pole symmetry: We assume the rotor has Np pole

pairs i.e., fk is 2π/Np-periodic for all k. Consequently,

we restrict our search to variables i, v, λ, ψ, φ, and F
that are also 2π/Np-periodic.

Phase symmetry: We assume the motor has K
phases, and therefore search for variables that satisfy the

periodicity property

ik(θ) = i1

(

θ +
2π(k − 1)

KNp

)

,

with similar constraints holding for v, λ, F , ψ, and φ.

Equivalent problem: The symmetry assumptions

allow us to form an equivalent problem with the same

constraints and objective as (8) in which the variables

have domain [0, 2π/(KNp)]. We also add periodicity

constraints of the form

ik(0) = i1

(

2π(k − 1)

KNp

)

, for k = 1, . . . K.

with similar constraints for the other variables. The

integrands in the definitions of average torque, torque

ripple, and power loss are each π/(3Np)-periodic; to

get equivalent definitions of these values over the ap-

propriate domain, we can integrate over [0, 2π/(KNp)]
instead of [0, 2π], and scale the result by KNp.

B. Discretization

After reducing the domain of the variables of (8), we

discretize this interval into T +1 grid points, θ0, . . . , θT ,

with θ0 = 0 and θT = 2π/(KNp). All pointwise con-

straints must hold at θ0, . . . , θT−1, and the periodicity

constraints must hold at θ0 and θT . Integration over the

interval is replaced by summation from θ0 to θT−1, with

appropriate scaling. We approximate the derivative in (1)

using a forward difference approximation.

VI. EXAMPLE

A. Motor model

We consider the switched reluctance motor with fully

pitched windings shown in figure 1. Our model is based

the first example of [MWC01]. The motor model has

fully pitched windings, instead of the more usual con-

centrated windings. (This is reflected by the matrix M ,

which would be diagonal for a motor with concentrated

windings).

Symmetry and discretization: We assume that each

stator tooth is magnetically identical, which allows us

to group every third stator tooth into a single magnetic

element. With this assumption, the motor exhibits pole

symmetry, with Np = 2, and phase symmetry, with K =
3 phases. We discretize the interval [0, π/3] with T = 40,

so that θ0 = 0 and θT = π/3.
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A

B′ C

A′

BC′

3′
1

2′

3

1′
2

Fig. 1: A switched reluctance motor with fully pitched

windings. Phase windings are shown in light gray, and

are labeled A, B, and C for current flowing out of the

page (with complementary flow denoted with a prime).

Magnetic elements are shown in dark gray, and are

labeled 1, 2, and 3, with magnetic flow toward the rotor

(with complementary flow denoted with a prime). Note

that every third stator teeth belongs to a single magnetic

element.

Electromagnetic: We have m = 3 magnetic el-

ements, and l = 3 meshes. The mesh matrix of the

magnetic circuit is

M =





0 1 1
1 0 1
1 1 0



 .

The motor has n = 3 windings. The voltage limit is

600 V. The resistance and electro-magnetic geometry

matrices are

R =





0.1 0 0
0 0.1 0
0 0 0.1



 Ω,

C = (1/2)Nturns





1 0 0
0 1 0
0 0 1



 ,

where Nturns = 204 is the number of turns in each

winding.

Flux characteristic and phase torque functions:

The magnetic flux characteristic f1 and the phase torque

function g1 are shown in figures 2 and 3. We only

show these functions for the first magnetic element. (Due

to phase symmetry, the other two functions are shifted

versions of the first.)

For each value of θt, for t = 0, . . . , T , we fit

piecewise-affine functions to fk and gk. The piecewise-

affine region boundaries were chosen as

F̃ = (0, 1000, 2000, 3500, 6000) Ampere-turns.

0
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3
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4

4.5

x 10
−3

θ (rad.)f (T)

f̃ 1
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b
)

Fig. 2: The flux characteristic f1 (left), and its piecewise

affine approximation f̃1 (right).
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−15
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0
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15
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g̃ 1
(N

m
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Fig. 3: The torque characteristic g1 (left), and its

piecewise-affine approximation g̃1 (right).

With the region boundaries fixed, the values of the

coefficient functions ak, bk, ck, and dk were determined

at the relevant (discrete) rotor positions using least-

squares, with the constraint that both piecewise-affine

functions be continuous in F for all values of θ.

B. Results

Low-speed operation: The optimal current, voltage,

and phase torque waveforms for ω = 1000 rpm, τdes =
10 N ·m and α = 3 J/(N ·m)2 are shown in figure 4.

(We restricted our search to waveforms that are phase

symmetric, as discussed in §V-A.)

Note that while the voltage limit is active over the

commutation period for two of the windings, the third

winding current is manipulated to maintain near-constant

torque. Due to the fully pitched winding pattern, and in

contrast to a motor with concentrated windings, it is not

possible to derive a “torque-sharing function” for this

example. This is because torque cannot be decomposed

into components attributable to each winding (indeed,

it is the changing mutual inductance between windings

which generates torque; for a discussion of this, see

[Mec93]).

High-speed operation: Here we show the optimal

symmetric current, voltage, and phase torque waveforms

for ω = 4000 rpm, with all other values kept the same

as for the low-speed example.

We see that when the rotor speed is higher, the

optimal waveforms are much more complicated than the

corresponding low-speed waveforms. Indeed, for high
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Fig. 4: The optimal current, voltage, and torque wave-

forms for ω = 1000 rpm. Red, green, and blue give

correspond to the three phases. The cyan torque wave-

form is the sum of the torque components from the three

phases.
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Fig. 5: The optimal current, voltage, and torque wave-

forms for ω = 4000 rpm. Red, green, and blue give

correspond to the three phases. The cyan torque wave-

form is the sum of the torque components from the three

phases.

rotor speeds, deriving a simple, “closed-form” solution

for the optimal current waveforms seems unlikely. The

optimal current waveforms are strictly positive during

the entire cycle; i.e., there is no “firing angle” at which

a given phase phase should be energized.

C. Computational aspects

To compute the waveforms above, problem (8) was

solved using CVX [GB14], [GB08], with Gurobi as the

backend solver. We used a Linux machine with an Intel

Xeon processor. The (global) solve time for low-speed

operation was 6 seconds, while the solve time for high-

speed operation was 4 minutes.

In order to verify that these solve times were repre-

sentative of the solve time over several motor operating

points, we solved (8), using the same motor parameters

(except for a courser grid of T = 20) for 250 randomly

selected values of ω and τdes. in the intervals [0, 4000]
rpm and [0, 15] N, respectively. The median global solve

times was ten seconds, though we note that for some

areas of operation (in particular, for very-low-torque

operation) the global solve times can be very high,

sometimes exceeding thirty minutes; in these cases, it is

standard to terminate the solver early (after, say, several

minutes) simply use the best point found so far.

VII. CONCLUSION

In this paper we presented a method for generating op-

timal current waveforms for switched reluctance motors.

Our model handles a reasonably complicated magnetic

structure, and respects voltage and current constraints.

Our method finds, to within reasonable accuracy, the

globally optimal waveforms. Although we provide to

runtime guarantees, for our example, optimal waveforms

could be generated in a few minutes, raising the possibil-

ity that optimal waveforms can be generated and stored

as a lookup table indexed by desired torque and rotor

speed.
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