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Abstract

A static (steady-state) robust control design prob-
lem is considered using a nonlinear model of a ther-
mal system. For a given operating point, the control
problem is to determine a feedforward /feedback static
controller that minimiges the worst-case static peak
performance deviation from nominal in the presence
of bounded disturbances and parameter variations. It
is desired to obtain the tradeoff between the size of
the worst-case deviation and the sise of the uncer-
tainty set. A complete solution is derived for the
static linear control design problem obtained from
linearization about selected operating points. Effi-
cient computational tools are developed to rapidly
analyze numerous operating points and control con-
figurations.

1 Introduction

Rapid thermal processing (RTP) systems demand
fast tracking control laws that achieve near uniform
spatial temperature distributions across the target,
e.g., a semiconductor wafer, during both transient
and steady-state phases of the process.

In this paper we only address the static (steady-
state) problem using static feedforward/feedback con-
trol laws. The approach relies on a static nonlinear
heat transfer model which includes parameter uncer-
tainty. The form of the model found to be very conve-
nient for robust control design is obtained by forming
a mesh of branches that model conduction, convec-
tion and radiation between the nodes of the mesh.
A systematic modeling approach based on the analy-
sis of large scale nonlinear resistive networks can then
be applied to obtain the equations that determine the
operating points in terms of input and disturbance bi-
ases. This model structure is generic, since all ther-
mal system models can be put in this form [1, 2] .

For a given operating point, the control problem is
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posed as designing a feedforward/feedback static con-
troller that minimizes the worst-case peak deviation
of the performance variables from a nominal point
when subjected to bounded disturbances and param-
eter variations. Since the solution to this nonlinear
problem is not known, a sequence of approximations
in terms of the small-signal equivalents are used to
pose static linear control problems. We derive a com-
plete solution to the associated static linear control
design problem. Considering problem sizes of inter-
est, (e.g., 20 actuators, 20 sensors, 100 regulated vari-
ables, 100 exogenous disturbances) , efficient compu-
tational solution methods are investigated and pro-
totype tools are developed to simplify comparative
design studies resulting from different choices of op-
erating points, actuators, sensors and control laws
(feedforward and/or feedback).

The paper is organized as follows: in Section 2 we
pose and solve the static linear sensitivity problem,
i.e.,, parameter uncertainties are included as addi-
tional exogenous input perturbations. The tools re-
quired here are also needed for the robustness prob-
lem. An example of the sensitivity tradeoffs using
the thermal mesh model is given in Section 3. Ro-
bustness results for real parametric uncertainties are
given in Section 4. An example, using the developed
tools, is given in Section 5. To conserve space, only
a very brief discussion of the computational issues
and methods is provided. Further details on the op-
timization methods and proofs can be obtained from
the authors.

2 Sensitivity Tradeoff

2.1 Problem Description

Consider the feedback interconnection shown in Fig-
ure 1, where w, 2z, u and y denote the exogenous
inputs, controlled outputs, actuator inputs and mea-
sured outputs, respectively; P € R{"++nv)x(nutny)
denotes a static linear plant, K € IR"**™¥ denotes
a static linear feedback controller, and ux € R™
denotes the static feedforward control.
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Figure 1: Static feedback system

To address the sensitivity to parameter variation, the
exogenous input w includes disturbances as well as
parameter perturbations from nominal. As such it is
convenient to explicitly account for the nominal as
well as deviations. Hence, let the normalized exoge-
nous input be given by

N = AN (w ~ wo)

where wy € IR™ is the nominal value and A, is a
diagonal scaling matrix. A normalized output 7, is
defined accordingly:

=407z - 2) .

Motivated by the temperature uniformity require-
ments of RTP problems, we are naturally led to con-
sider the “infinity” norm as the appropriate measure
of signal size. Thus, for z € IR™ , the infinity norm is
defined as ||zl = maxick<n [zk| . Recall also that
the induced matrix norm is the “max-row-sum”, i.e.,

14l = max || Aaljes = mgx; o] -

We can now state the fundamental design problem:

e Optimal Design Tradeoff: For a given P, wy,
20 , Ay, and A,, find the optimal tradeoff be-
tween disturbance size ||7,||e and performance
tolerance |7, ||co, i.e., determine the graph:

{(w 1 2:) [ A > 0}

(1)

Az max  |[|7:]o

= min
(Kuk) [[wlloe €2

The graph in (1) of A, vs. A, gives the minimum rel-
ative change (},) uniformly in all performance vari-
ables (z) for a relative uniform change (),) in all
exogenous input variables (w). Hence, the graph de-
notes the boundary between feasible and infeasible
designs on the (Ay,A,)— plane. A typical tradeoff
curve — the graph described in (1) - is shown by
the solid line in Figure 2. The shaded region be-
low this tradeoff curve is infeasible, i.e., there exists
no combination of feedforward or feedback which can

achieve the requested performance. Conversely, all
(1,1)—feasible designs correspond to points on the
segment between designs A and B in Figure 2. Note
that A corresponds to a performance design and C
corresponds to a robust design, i.e., design C allows
a much larger uncertainty for the requested specifi-
cation |7l < A; = 1. In general, the graph that
partitions the feasible and infeasible regions is neither
convex nor concave.

A
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Figure 2: Graph in (1) denoting the boundary of the
feasible region in the (A,,),)-plane; shaded region is
infeasible.

Due to the two free design parameters K and ug ,
four possible problems can be posed, namely:

¢ open-loop (u = 0),

o feedforward only (u = ug),

o feedback only (u = Ky),

o feedforward/feedback (u = ux + Ky) .

Typical design specifications involve the following:

o feasibility: determine (if possible) a
(Aw, A;)—feasible design

e robustness: for a fixed A,, maximize ), among
(Aw, A;)—feasible designs

e performance: for a fixed A, minimize ), among
(Aw, A;)—feasible designs.

The feasibility, robustness and performance design
problems stated above can all be expressed in terms
of the tradeoff curve denoted by the graph in (1). In
fact, it can be shown that the four possible choices of
control (u=0,u= Ky, u=ug »t=uxg+Ky)re-
sult in special cases of finding a solution to a problem
of a max-row-sum norm minimization of the form:

H}én“Tl + T XTslli00 - (2)

63




where the T”s and X are defined in accordance with
the four cases.

2.2 Positive Definite Programming

To efficiently solve the above max-row-sum problem
we utilise the primal-dual potential reduction meth-
ods described in [4]. The computational tools we have
developed resolve the following difficulties: 1) Initial-
ization of primal and dual variables ; 2) Efficient ap-
proximate solutions to the (huge) least-squares prob-
lems to determine the analytic center ; 3) Per-
turbation of the updated dual parameters. To fur-
ther explain these very important but esoteric is-
sues is outside the scope for this paper. Interested
readers can request details from the authors. For
the intended applications (n,ny) » (nun,) > 1.
The particular solution approach reduces the orig-
inal (nyny + 1y + nuny + ny + 1)-unknown least-
squares problem to a (nyny + ny,)-unknown least-
squares problem. Hence the computational complex-
ity is determined by the control variables: (n,ny) for
feedback and n, for feedforward.

3 Example: Sensitivity Trade-
off

The mesh in Figure 3 represents a resistive network
consisting of seven nodes and nine branches. The
mesh describes conduction, convection and radiation
effects as non-linear resistive elements. (The authors
have used an Xmath script to automate the mesh gen-
eration and the associated linearized model at the
steady-state.) Following standard node analysis re-
sults for linear resistive networks (see e.g. [1]) , the
steady-state heat-flux conservation equations arising
from application of the Kirchhoff Current Law at each
and every node (except the reference (datum) node)
result in:

0=AGATz+ Ayu+ Ayw, y=Cz . (3)

The node variables z correspond to node temperature
minus the ambient temperature, u denotes the con-
trol input fluxes, and w the disturbance fluxes. The
measured node temperatures are denoted by y . The
matrix [A. Ay Ay] is defined by the incidence ma-
trix that describes the interconnection of branches;
its entries are 0’s, 1's or —1’s . The matrix G is diag-
onal consisting of nominal branch conductances. For
this example, the regulated variables are chosen as
the six node temperatures. Hence, n,, =2 ,n, =2,
n, = 6 and ny, = 2. Thus P € R®** |, K ¢ m?*?
and ux € IR° . We seek at most ny(n, + 1) = 6
control variables and introduce n,(n, + 1)+ 1 =19
slack variables. Following the notation in Section 2 ,
let woi=1,i1=1,2;Au=1;20;=3,i=1,...,6;
A, =1.
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)

Figure 3: Sample mesh

The tradeoff curve in (1) is derived for five cases (see
Figure 4) . One extra design approach is introduced
to illustrate that the feedforward and feedback de-
signs are not decoupled. In other words, minimizing
over ug for K = 0 and then fixing the optimal ug
value and then optimizing over K is not equivalent to
the simultaneous minimization over ux and K .
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Figure 4: Tradeoff curves in (1) for the five cases:

a — open-loop

b - feedforward only

¢ — one at a time optimization: first feedforward and
then feedback

d - feedback only

e - simultaneous optimization: feedforward and
feedback
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4 Robustness Analysis

The control design problem formulated in Section 2 is
based on a nominal plant model P : (w,u) — (z,9) ,
where w includes perturbations in uncertain param-
eters. In this section, we consider the performance
of the nominal control u = ug + Ky subject to per-
turbed plant models as shown in Figure 5, where w
now includes only exogenous disturbances.

j— ———>
u—=> P [—>y
v £
A

Figure 5: Perturbed plant model

Although we still consider linearized plant models,
the uncertainty is maintained in its natural form (Fig-
ure 5) . In the example to follow we take A as a
diagonal matrix whose entries correspond to uncer-
tainties in the branch conductance matrix G . Hence,
the perturbed form of the linear resistive network (3)
becomes:

0=A(CG+M)ATz + Ayu+ Ayw . (4)

In order to define the uncertainty set, let e; denote the
ith standard basis vector. Its dimension is determined
from the context. Now, the uncertainty structure and
vertex set are defined as follows:

D={AcR™ ™ |A<A<SAS , (5)

Vp={AeD | efnejc{elAej,e] Auej},
1<i<ny, 1<j<ng} (6)

Let H,,(A) denote the fractional form obtained for
u = Ky (for u = ug + Ky , w gets augmented by one
entry) . From Figure 5,

H,u(A) = Hi + HpA(I - HaaA) ' Hay

Let det(I — Hp2A) #0forallAeD. Under these
assumptions, it can be shown that:

max | Hou (Al = max [How(B)llico - ()

This result means that the worst-case maximum row
sum of the linear fractional form H,,(A) over D is
achieved at the vertex set Vp . We utilize this re-
sult in the following section, in a design example. It
can also be shown that minaep ||Hzw(A)lli,c0 is not
necessarily achieved at the vertex set.

5 Example: Robustness Anal-
ysis

We consider a mesh consisting of 40 linear conduc-
tance branches and 25 temperature nodes. Asin (3),
[Ac, Au, Au] € R24%(40+5+3) ig the incidence matrix
and consists of 0’s, 1’s and —1’s to denote the di-
rected graph associated with the mesh. u € IR® and
w € IR? denote the control input and exogenous in-
put fluxes, respectively. y € IR® denotes the mea-
sured node temperatures. The node temperatures
satisfy (3) where G = diag(g) . Nominal operating
conditions (denoted by 0 subscripts) are determined
to minimize the deviation from a uniform tempera-
ture profile across the measured nodes. The nominal
operation is determined by

A, diag(go) AT zo + Ayuo + Aywo =0 ,

where go > 0 and wo > 0 . Let the performance vari-
able z be defined as z = [yF uT])T , where 20 > 0.
The design problem is posed as follows: determine
u = ug + Ky such that the performance measure
p(uk, K)= max la7*(z = 2o)lleo

1A5* (w — wo)lleo <1

lag! (g — gollleo <1

is minimized for the feedback perturbed plant model
in Figure 5 ; we choose A, = diag(wo) , A¢ =
0.1diag(go) and A, = diag(z0) . Recall that by (7) ,
the performance measure is achieved at the vertices.
Note that we allow a 10% uncertainty in all 40 con-
ductance branches. Hence, for a given design, the
exact measure could have been obtained by 240 max
row sum evaluations. To make the calculations rea-
sonable, we will rate the designs according to 10% un-
certainty in the first 10 conductance branches; hence
determine a lower bound on ¢ (but this is exact if
only 10 parameters are varied) .

In the first design approach, we take G = Go and

solve

(uk,, K1) = arg min
v (ursKY | AZH (w — wo)l|eo < 1

= Go

Thus, the control law is optimal under perfect plant
modeling.

In the second design approach, the first order approx-
imation to the plant

A, diag(go) AT (z — z0) + Au(u — o) + Au(w — wo) +
A, diag(g — go) ATzo = 0

is used to solve for the optimal sensitivity controller

(uk,, K2) = arg min max
v (ur K| AZ (w = wo)lloo < 1

1A (g — go)llee < 1
65
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In other words, the input to the A block in Figure 5 is
fiacd at § = ATzo , and the exogenous inputs w are
augmented by 40 more entries to account for (g — go)
in (8). The results are summarized in Table 1.

I [9=90]0.9g0<g<1lgo ]
o(uo, 0) 6.99% | > 13.37%
p(ux, K1) [ 3.47% | > 223.45%
> 6.63%

p(ux,, Ka) | 3.67%

Table 1: Performance ratings

Note that the first row in Table 1 corresponds to the
openloop performance. The input is set to ug ; hence
the performance measure reflects the relative change
in y about yo . At the nominal conductance parame-
ters, worst-case deviation is 6.99% and when the first
10 conductances have 10% uncertainty, worst-case de-
viation is 13.37% . Note that the second column of
Table 1 is a lower bound on the performance measure
¢ since the parameter perturbations are restricted to
the first ten branches, only. Recall that the first de-
sign did not take into account any parametric uncer-
tainty. Hence the nominal performance is better than
the open-loop; however, 10% parametric uncertainty
can cause a deviation more than twice the nominal
zo . In the second design, by augmenting the ex-
ogenous inputs w with the first-order effect of the
parametric changes, a more cautious nominal design
is achieved. With uncertainty in the first ten param-
eters, the worst-case deviation is now half of open-
loop deviation, although the nominal performance is
slightly worse than the first nominal design.

6 Further Robustness Analysis

A little more notation is needed for this section. For
A € R™™" , pp(A) denotes the maximum absolute
value of the real eigenvalues of A . For a real matrix
A, | A| denotes the absolute value of 4 , i.e.,

e | Ale; =|ef des |. I(A) = pp (| A ) = p{| A )
also referred to as the Perron eigenvalue of A . Let
1 € IR" denote a vector of all 1’s .

Let H,W(A) = Hj + HuA(I - HnA)—IHn :

_ | Hu1 Hia (na+ns)x(nutns)
where H = Hy Hp € R
and A is diagonal. Under these assumptions,
min
1 Haw (A0 <7
”A”i,m < :,1'

det(I - Hz:A) #0

= eem m([m w6 8 )
w€ {-1,1}"~
S € diag{-1,1}™

< max 1 ([ cTHuw CTHH ])
- ec {eh e ’eﬂ.} H)],w sz
we {-1,1}™
CT l Hn_ [ 1 CTHH
< 3 3
= 15i5n,n ([ | Hzp |1 Hjy,
<

Hy, 512]
H;; Ha

A cheap lower bound to the optimal v value above can
be obtained by evaluating g of a smaller number of
matrices rather than the huge number (n,2("wtns)) |
Note that typically, n; 3> n, . Using the Perron
eigenvalues, coarser upper bounds on the optimal v
can be obtained by n,2"+ and n, eigenvalue evalua-
tions, respectively.

1,00

Note also that if the entries of H are all positive, then
the optimal v is given by
min 4 = max H([ E?Hul e"THu ])
IHrw(A)lso <7 iSi<me AL Hal
"A“i,m < #
det(I - Hz:A) #0

7 Conclusion

The sensitivity and robustness to parameter uncer-
tainty of operating points of thermal processes has
been investigated using static feedforward/feedback
control. The problem is motivated using a large-scale
linear resistive network. Efficient computational tools
are developed to handle a large number of nodes and
branches. Successive design studies involving differ-
ent operating points, actuator/sensor selections can
be easily performed.
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