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ABSTRACT. The problem of emission tomography, inverting the attenuated
Radon transform, is moderately ill-posed if the unknown emission source is
static. Here we consider the case where the emission source is dynamic due to
the movement of molecules after metabolism. Inversion now requires a model
of the underlying dynamics and presents a seriously ill-posed inverse problem.
‘We present a regularization approach and a numerical experiment to validate
our method.

1. Problem Setting

Single Photon Emission Computed Tomography (SPECT) is a non-invasive
diagnostic technology which is used to show blood flow in the heart muscle, extent
of damage in stroke patients, presence and degree of malignancy of tumors, and
much else. SPECT images the function of the body through a tracer, a biochemical
molecule labelled with radioactivity. The radioactive material is incorporated by
the patient and metabolized by the organ under investigation. The emissions are
recorded by a SPECT camera rotating around the patient, and a 3D visualization
is created from the 2D projection data via an inverse mathematical method.

The traditional inverse method in tomography, filtered back-projection (FBP),
may no longer be used if the unknown radiating source is dynamic, i.e., changes
significantly during the scan. However, representing dynamic phenomena is the
truly interesting case, since it allows to assess the movements of molecules during
biodistribution, metabolism and washout, and consequently gives a much deeper
insight into the function of the body. Recently, a first step towards dynamic SPECT
reconstruction has been achieved through a mathematical approach replacing FBP
[22, 19, 23, 13, 1]. This approach will be further developed here.

Key words and phrases. Dynamic emission tomography, dynamic attenuated Radon trans-
form, compartment model, exponential fit, augmented Lagrangian SQP method, photon transport
equation.
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Figure 1. Photons radiating from the region of interest. a) misses the camera, Figure 2. The coefficient ¢;j; is the relative volume of voxel i lying within the
b) is absorbed by the collimator, ¢) passes the collimator and hits the camera. beam Bji connecting 7 and the receptor bin j during the camera position 6.

Similar to the static case, the reconstruction of the unknown 3D dynamic source
may be decoupled into a series of 2D slices if Compton scatter is ignored in the
transport model. The details of this process are recalled in Appendix 1. In each
slice, the unknown dynamic source f(z, t), representing the radio activity at position
x and time t, is then related to the projection data d(t, s,w) through the dynamic
attenuated Radon transform

oo
oo —/ p(sw® + 7'w) dr’
(1) R, f,0)](s,w) = / flswt +1w,t)e Jr dr =d(t,s,w).
— 00

Here w = (cosf,sinf) and wt = (—sinf,cosh), and the integrals in (1) are line
integrals along the lines L(s,w) = {sw®+7w : 7 € R}. The term d(t, s,w) represents
the number of counts recorded at time ¢ by a sensor positioned on the line L(s,w).
Figure 1 illustrates the situation in the case of a parallel hole collimator which at a
given angular position admits only photons traveling perpendicular to the camera
surface. It is the effect of collimation which allows attributing a direction w of
propagation to a count detected at time ¢ and position s on the camera.

Notice that u(x), the unknown attenuation map, which essentially represents
the density of the tissue at position x, is not the primordial goal of the SPECT
reconstruction. Knowledge of u(x) is required, however, in order to reconstruct the
unknown emission source, f(z,t), and the basic problem in SPECT, therefore, is
to solve (1) for the unknown source and attenuation map. In practice, two types
of approaches are employed, leading to different mathematical problems.

A first possibility is to do a transmission scan (CT) in parallel with the SPECT
acquisition, which allows to calculate p beforehand. This reduces the complexity
of the problem, but requires technology not always available.

The second line of attack is to estimate p entirely by mathematical means, using
the emission data d(¢, s,w) only. This may be done either by simultaneously solving
(1) for both unknowns, [12], a difficult task even in the static case, or by estimating
u beforehand via Helgason’s consistency formula, an approach followed in [26, 28],
and more recently in [37]. More elementary methods assume for instance a constant
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attenuation over the contour of the body if the latter can be recovered, as is often
the case, from the emission data. This is usually satisfactory in brain or renal
SPECT, but less satisfactory in myocardiac imaging.

We will eventually assume that the attenuation map p is known, estimated
e.g. by any of the above techniques. This renders the integral equation (1) linear
in f. In the static case, inverting (1) is a well-studied moderately ill-posed linear
inverse problem. The state of the art is to attack it by iterative techniques based
on versions of the EM-algorithm [36, 6].

In the dynamic case, the problem remains intrinsically more difficult even with
known u, as we proceed to indicate. Considering exemplarily the case of a rotating
single head camera, schematically displayed in Figure 1, it is crucial to observe
that the camera head, rotating e.g. over 180°, will acquire inconsistent projection
data. By that we mean that since a considerable time (usually of the order of 20
minutes) will have elapsed between the initial and final positions of the camera,
the unknown source will have changed significantly. The acquired projections will
therefore correspond to entirely different dynamic states of the source, which means
that the integral equation (1) is largely under determined. Formally, this may be
seen by the fact that we have to reconstruct a 3D function f(z,t) on the basis of
data given on a the 2D submanifold

M={(t,s,w):w=(cosb,sinf), § =27t/T,0<t<T},

of the full 3D data manifold [0,7] x R x S! (T the time of the scan). In order
to address this fact, we have to provide additional information to reconstruct the
unknown dynamic image f(z,t).

2. Tracer Dynamics

The missing information is based on a suitable model of the chemical reaction
the tracer molecule undergoes during metabolism. As this is highly dependent on
the situation, we proceed to give a rather general description as it applies to our
situation.

Based on theoretical knowledge of the underlying reaction, it is usually possible
to identify a number of different chemical states, called compartments, the tracer
molecule will assume. The compartment model generally represents a simplified
version of the complex reaction. With ¢, (¢) the concentration of tracer in the vth
compartment, the reactive process is represented by a dynamical system

(2) c(t) = Ke(t) +cp(t)

with a system matrix K = (k;;) involving exchange rates k;; between compart-
ments, and a driving term c¢p representing the supply from the blood pool. As
radio active events originating from any one of the chemical states ¢,, v =1,..., P,
could not possibly be distinguished from each others, the emission source is of the
form f(t) = 211;1 ¢y (t), which means that we cannot assess the tracer concentra-
tions ¢, directly.

So far we have represented the traditional point of view of compartmental
modeling which seeks a single dynamic model f(t) for the organ as a whole. This
point of view changes with tomography, where we wish to account for spatially
varying behavior. Assuming that the chemical reaction remains in principal the
same over the entire organ, we allow the exchange rates to vary locally. This
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leads to a localized compartment model of the form ¢'(z,t) = K(z)c(z,t) + cp(z,t)
involving localized exchange rates k;;(x) and leading to a source term of the form

P
flz,t) = Zc,,(ac,t).

The inverse problem of dynamic emission tomography, in a rather general form, is
then the following;:
Find f(z,t), p(x) and exchange rates ki;j(x) such that

(7) R[u,f(-,t)](s,w) = d(t, s,w) for (t,s,w) € M

(3) (P) (i1) (x,t) = K(z)c(z,t) + cp(a,t)
P
(iii)  f(z,t) = ch(ajat)

are satisfied.

This model may in practice be completed by prior information about the ex-
change rates such as bounds or physiologically meaningful ranges.

The shape of the input function, an impulse, is qualitatively known and may
conveniently be modeled as cp(t) = Ae ™ — Ade™t with A > 0 and u > v >
0, if t = 0 corresponds to the moment of injection of the pharmaceutical. If a
considerable time between the injection of the drug and the initialization of the scan
has elapsed, the source term may generally have a simpler form and is often even
assumed constant. Assuming that the system matrices K (z) are diagonalizable,
which in practice is always the case, the source term will have the functional form

P2
(4) flz,t) = Z a, () e Mt

v=1
Recovering the exchange rates k;;(x) from (4) is in general impossible, but the
parameters \;(z), a;(z) still carry useful diagnostic information.

Dynamics of existing radio tracers for SPECT use scarcely more than two
compartments (cf. [16]), even though more complex models with up to five com-
partments have been proposed for some positron emitters (cf. [34]). During the
following, we shall therefore restrict our analysis to a two compartment model with
constant input function ¢p. This is already of sufficient generality for a number of
applications, including for instance a myocardiac viability study presented by Lim-
ber et al. [19], or a renal dynamic SPECT scan discussed in [13]. The functional
form of the unknown emission source, accordingly, is a biexponential

(5) fl@,t) = are @t 4 goe™ 2@t 4 ga(x),
and we may substitute (5) for the equations (ii), (4i7) of (P). The dynamic SPECT
inversion may now be transformed into a nonlinear optimization problem:
minimize  ||R[p]f — d||
(NL) subject to f(x,t) = ay(z)e 1@ 4+ ay(z)e 2@ + az(x).
This approach is the starting point for our algorithmic discussion. Before continuing
this line, we discuss a possible discretization of (P).
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3. Discretization

We assume that the camera cross-section has been divided into M bins j =
1,..., M of size As, the jth bin corresponding to an interval [s; — As/2,s;+As/2].
Suppose the camera takes S angular positions wy = (cosf,sinfy), k = 1,...,5,
with 6, = (k — 1)A#, and remains in the kth position during the time interval
[tr — At/2,t; + At/2]. Then the datum acquired in the jth camera bin during the

kth stop is
tr+At/2  psj+As/2
Yjk = / / d(t, s, wy) ds dt.
tr—At/2 Jsj—As/2

Integrating (1) accordingly gives the condensed form of equation (1):

te+AL/2 psj+As/2 7/ p(swt + 7'w) dr’
/ / / flz,t)ye Jr drdsdt = yji.
tr—At/2 Js;j—As/2 JL(s,wk)

We proceed to discretize the unknown image into IV pixels P;, i = 1,..., N of size
Az x Az, and assume the activity f(z,t) constant on a pixel at every instant ¢, i.e.,
flx,t) = f(w;,t) for the barycenter x; of the ith pixel. Then the unknown variables
are the activities originating from these pixels and cumulated over the stops

tr+AL/2 te+At/2
(6) fi = / / f(z,t) de dt = |P| flant)dt.
t P;

K—At/2 th—At/2
Assuming the attenuation map p(z) constant on each pixel, and using (6), the
discretized form of (1) becomes
N
(7) > Rijilul fir = yn
i=1
where the coefficients R;jx[u] are

o0

te+AL/2 psj+As/2 7/ p(swt + 7'w) dr’

(8) Rijulu] = / / / e ) dr ds dt.
tr—At/2 Js;—As/2 JL(swi)NP;

During the sequel, (7) will be abbreviated as R[u]f = y, the discretized version of
(1). Tt is instructive to see the meaning of the coefficients in the unattenuated case
w = 0. Here R;;;[0] is the surface of that part of the ith pixel lying in the strip
connecting to the jth camera bin during stop k (see Figure 2).

Observe that, unless p = 0, (8) has to be calculated numerically, which by itself
requires a discretization. We mention that our approach is not the only possible,
and various other discretizations for R have been proposed, including wavelet bases
[40], or C%-elements [12].

Let us proceed to discretize (5). Using (6) we obtain the estimate

fir, = (a1 (z;) e M(@te 4 as(x;) e 2@t 4 ag(a:i)) (AtAz? + o( AtAz?))

if z; is the barycenter of the ith pixel. Setting A1; = A (z;)At, Aoy = Aa(x;)At
and a,; = a,(z;)AtAz?, we are led to replace the constraint (5) by its discretized
version

9) fir = arie™ M 4 agie™ % 4 ay,.
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4. Prony’s Method Extended

The projection data are in practice always corrupted by noise, and it is neces-
sary to solve the discretized problem (7), (9) in the least squares sense. Moreover,
since the problem is ill-posed, it is wise to include a regularizing term I[f] into the
objective function. Assuming that p is known suggests the following approach via
nonlinear programming;:

minimize  ((f) = |R[alf — yll* + I]]
(NL) subject to fir = ayje 21k + age 22k + ag;
A1 >0, Ay >0

Possible choices for I[f] will be discussed in Section 8. The problem has been
analyzed by Borwein and Sun [3] in the case I[f] = 0 and found well-behaved if the
matrix R[p] has maximal rank and M S is larger than 5N, the number of unknown
variables in (NL). While the rank condition is often satisfied, in particular if every
camera bin can see at least one pixel at each stop, the second condition is in practice
only satisfied for SPECT devices with a large number of receptors, and does not
hold for the usual rotating camera systems. As an example, consider the case of a
camera, cross section divided into M = 64 bins, the camera taking S = 64 stops,
and divide the region of interest into 64 x 64 pixels. Then 5N > M S for a single
head camera, and even 5N > 3M S when a triple head camera is used.

And in fact, our implementation, based on the limited memory BFGS approach
of Nocedal et al. [21, 5] shows that (VL) is a difficult problem subject to instabil-
ities in particular when the eigenvalues tend to coalesce, A\1; & Ay;. Reconstructing
a typical slice above may take between 1 and 2 hours CPU, which is too slow for
convenient clinical applications.

In order to circumvent the numerical difficulties of (IVL), we consider a gener-
alization of Prony’s method for fitting exponentials (cf. [31]). The key idea is the
simple fact that a curve fj of biexponential form (9) satisfies a difference equation

(10) fr = a1 foe—2 + a2 fr—1 + as,

where the five parameters (a1, as,as, A1, A2) in (9) correspond to the five pieces of
information aq,as, as along with the initial values fo, fi in (10). The links are the
following. If f; has the form (9), then

(11) a1 = —e M2 g, —eM e gy = (1 —a; — as2)as,

along with the obvious expressions for fy, fi. Conversely, if fj satisfies a difference
equation (10) and if we impose conditions to avoid the possible oscillatory solutions,
we retrieve the form (9) through

Qa3 as

(12) a1 +az = fo— , AUy + asus = fi —

1—0(1—0(2 1—0(1—0(2
where u; are the (real) roots of 2 — asz — ay = 0.

In dynamic emission tomography we are mainly interested in two cases: (i)
washout only, where the dynamic profiles are decaying, and (ii) uptake and washout,
where activity in the organ initially increases and after reaching the peak activity,
decays (cf. [4, 10, 15, 18, 19, 30, 34]). The corresponding information may be
expressed in terms of the difference equation:

Lemma 1. The following statements are equivalent:
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1. fr = are M* + age 2k 4 a3 with \ # Ao is monotonically decreasing and
nonnegative on k =0,1,...

2. fr satisfies the difference equation fr = aq fyr—2 + a2 fr—1 + asz, along with
the constraints

1< <0,0<a, <2, a3+4a; >0, a1 +as<landa; >0, ay >0,

where a; are expressed in terms of the parameters a;, f; via (12). O

Similarly, the increasing-decreasing case is covered by the following
Lemma 2. The following are equivalent:

1. fi of the form (9) is increasing-decreasing and nonnegative on the range
kZO,].,... with)\l 75/\2
2. fr satisfies the difference equation (10) along with the constraints
-1<a;<0,0<as <2, a%+4a1>0, ay +as <1landa; +as >0, as >0,
where the a; are expressed in terms of c, f; via (12). O
Let us now show in which way the idea of representing exponentials by difference

equations may be exploited algorithmically. We start with the case (i) where we
expect decaying activity. We replace program (NL) by the following

minimize  (f,a) = |Rlulf — yl[* + I[f,0]
subject to  fin > fiz > -+ > fis > 0,

fit — a1ifip—2 —asifip—1 —as; =0,

for i=1,...,N, k=3,...,S.
with unknown variables f = (fi) and @ = (ay;), and where the regularizing
term I[f, @] may involve both variables. The linear inequality constraints, which
in tandem with the difference equation will yield a decaying positive exponential
(9) will be referred to as shape constraints. These constraints form a cocktail of
the conditions we have isolated in Lemma 1, which are easier to handle than the
nonlinear constraints on « in condition 2 of Lemma 1. As we shall see, the shape
constraints turn out extremely useful during the initial period of the minimization,
but become more and more redundant as the iteration approaches a local minimum.

Before discussing this model any further, let us catch up with more general dy-

namic profiles. The most interesting case is where we expect increasing-decreasing
curves. Here the shape constraints are more delicate to calibrate, since we do not,
in general, know the exact position of the peak activity in each dixel (dixel: short
for dynamic pixel). We propose the program

minimize  ((f,a) = [|R(u)f - ylI? + I[f.0]
subject to 0 < fir < fio <+ < fimi—vis
(NLQ) fi,mi—i-ui > ZfzSZOa
fir —arifip—o —a2ifir—1 —as; =0,
for i=1,....N, k=3,...,5.
which assumes a peak activity in dixel ¢ among the positions k € [m; — v;, m; + 4],
with m; and v; determined beforehand, say from prior knowledge or by inspecting
the projection data. A second possibility, to constrain an increasing-decreasing
profile with the peak position assumed among four previously assigned positions,
was used in [22], and is considered again in the experimental section.

(NLy)
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5. Augmented Lagrangian Method

Our first algorithmic approach to (VL) is an augmented Lagrangian method.
We consider the partially augmented objective function

N S
(13) L(fia) = Uf0) + 5 3 Y ealf,0) = U(f.a) + S elf.a) e(f, ),

i=1 k=3
where the e; are the equality constraints in (N L),
(14) eir(f,a) = fir — auifik—2 — a2 fig—1 — i3 =0,
and e stands for the vector of e;;. We do not include the shape constraints into

(13). Due to their linear structure, we prefer to carry them explicitly through the
approach. The augmented Lagrangian associated with (13) is then

(15) Lo(fras0 1) = Le(f,0) + Me(f, ) + p' (Af = b),

where Af < b represents the shape constraints. This suggests the following algo-
rithm:
Algorithm 1
1. Initialize the multiplier estimates A and p > 0, and the penalty parameter
c>0.
2. Given multiplier estimates A and g > 0, and the penalty parameter ¢, solve

P) minimize  L.(f, a5 A, p)
subject to Af <b

The solution is (f*,a™). Let u* the Lagrange multiplier belonging to the
inequality constraint in (P).

3. Update the multiplier estimate through AT = X+ ce(f*,a™).

4. Update ¢t > c.

5. Return to step 2 until convergence.

This scheme is known to have local superlinear convergence if the penalty parameter
sequence ¢ it generates tends to infinity (cf. [2]), which is in practice prohibitive
due to ill-conditioning.

Fixing ¢ at a sufficiently large value ¢ still ensures local linear convergence
(cf. [2]). In practice, the correct value ¢ is not known, and in order to guarantee
numerical stability of the algorithm, after some updates we usually fix ¢ at a moder-
ate size. This means that the solution so obtained, although practically useful, will
not fully match the difference equation (10). We may therefore consider Algorithm
1 as a relaxation approach, where the regularizer I[f, o] includes, possibly among
other terms, the term (¢/2) e(f,a)Te(f, ).

We consider a variation of the augmented Lagrangian approach which divides
step 2 of the above Algorithm 1 into two steps, a minimization over f, followed
by a minimization over a. Given the current estimates f, a, A and u > 0 as well
as the constant ¢ > 0, we obtain the update f* and the new multiplier u* > 0
by minimizing L.(-, a; A, u) subject to the shape constraints. In a second step, we
obtain the new estimate a® by solving the problem

minimize Z(fj‘ — ailfz_k_z — Oéigfi-‘:_k_l — ai3)2
ik
subject to —1<a; <0, 0 <a; <2, oz?2 +4a; >0, a1 + e < 1.

The multiplier AT is updated as before, as is the constant c*.
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This method is algorithmically easier than optimizing simultaneously in (f, @).
Using the constraints from condition 2 in Lemma 1 resp. Lemma 2 is possible here
since a posteriori fitting, that is finding o™ with fT given, leads to N problems
of size S, and is therefore algorithmically simpler. The drawback of this method
is that its convergence properties are not clear. Alternating schemes converge at
best with a linear rate, but worse, may even fail to converge. We therefore use this
scheme during the initial stages of the optimization only.

6. Lagrangian SQP Method

The canonical way to deal with the equality constraints is the Lagrangian SQP
method, which consists in applying the sequential quadratic programming (SQP)
method to the augmented objective function (13), cf. [2].

Given a current primal estimate (f,a) and Lagrange multiplier estimates A,
and p > 0, the SQP method generates new iterates (f¥,a™) = (f,a) + (Af, Aa)
by solving the quadratic program

minimize g o (Af, Aa)
(QP) subjectto A(f+Af) <b
MAf+NAa+d=0

choosing as the new multiplier estimates AT and pu™ > 0 the Lagrange multipliers
belonging to the linearized constraints in (Q P). Here gy, is the quadratic functional

47 (AF, 80) = V(£ )T AF+VAL(f @) Dk S (A, A) V3Ll f, 050, 1) (AS, Ac)”

and L.(f,a; A, ) is the augmented Lagrangian (15). Moreover, the (i, k)th line of
the linearized equality constraint MAf + NAa + d = 0 is the linearization of (14)
about the current (f,a), that is:

filc + Afik - alifichZ - aliAfichZ - AaLifichZ - ai2fi,k71
—apAfir—1 — Ao fir—1 — a3 — Aayz = 0.
While having fast local convergence properties (cf. [2]), the SQP scheme is cer-

tainly demanding in large size applications, as the number of equality constraints
is important. We therefore propose a relaxation which bypasses this difficulty.

7. Relaxation

We observe a particular block structure in the equality constraints, which makes
it possible to explicitly calculate the least squares solution

(16) Aa=—(NTN)TINT(MAf+d) = WAf +v

of the linear equality constraints, and to substitute (16) into the objective g¢,q.
This suggests the reduced quadratic program

QP') minimize  qf(Af) = qra(Af, WASf +0) + E|MAf + NWAF +0) +d|?
subject to A(f+Af) <b

where the new penalty term (k/2)||MAf+ N(WAf +v) +d|? is intended to keep
the feasible variables A f in (QP’) close to producing feasible pairs (Af, WA f +v)
for (QP), which we aim at since (QP) presents the correct Newton step ensuring
fast local convergence. Since (QP'), nonetheless, allows elements A f which are not



10 JEAN MAEGHT, DOMINIKUS NOLL, AND STEPHEN BOYD

admitted in (QP), the problems are not equivalent, and we may at the end expect
solutions which do not fully match the equality constraints. Notice that

MAf+NWAf+v)+d= (I —-NNIN)TINTYMAF +d),

with Il := I — N(NTN)=INT the projection onto ker(NT), so ker(Il) = R(N).
Consequently, the penalty term in gy attributes a high cost to a mismatch in MA f+
NAa+d =0, and (QP') may be expected to be close to the original quadratic
program (QP).

While the substitution (16) gives a more convenient quadratic subproblem
(QP'), no longer involving equality constraints, we recall that ironically we still
have to maintain a Lagrange multiplier estimate A for the linearized equality con-
straints we have dispensed with. In fact, the terms in ¢y, including Ly, = Vfcaﬁc
require the estimate A. Due to linearity, this is not the case for the multiplier
estimate p, so maintaining an update of p is not mandatory here.

The Kuhn-Tucker conditions to (QP’) guarantee a multiplier » > 0 such that
with the notations Ly; := V3 L(f, a; \, p), etc.,

(@) Vle+ WiVl + LigAf + LyaWAS + Lygv +WHLT Af
(17) AWT Lo WASf +0v) + ATv + kII(Af + Nv+d) = 0

(b) A(f+Af) <b, V(A(f+Af)—b) =0
are satisfied. These have to be matched with the Kuhn-Tucker conditions for the
original program (Q)P), with (16) substituted for Ac:

(’L) Vf€C+LffAf+Lfa(WAf+’L))+ATM++MT)\+:0
(i1)  Vale+ L Af + LaaAa+ NTAT =0

(1)) A(f+Af) <b, p"(A(f+Af)—b) =0, p">0
(iv) MAf+ NWAf+v)+d=0

Matching (a) of (17) with (¢) of (18) implies

MIXT + ATpt =

ATy + WT(Vale + LT Af + Lao(WAS +0)) + kKII(Af + No + d),

while matching (a) of (17) with (ii) of (18), the latter pre-multiplied by W7, leads to
WENTAt =

ATy 4+ Vil + Ly Af+ Lo WAS +0) + kWITI(Af + Nv + d).

While (19), (20) as they stand would seem difficult to satisfy due to the condition
ut >0, v > 0, we may heuristically assume that u* = v, as this would be the case
if the solution Af to (QP') matched the constraint MAf + NAa + d = 0 exactly,
producing a pair (Af, WA f +v) admissible in (QP). With ut = v, (19), (20) are
conveniently solved for AT, possibly in the least squares sense using the same block
structure of the constraints. An alternative would be to estimate AT only on the
basis of (19), as this is even an explicit update not involving any inversion.

Resuming the above observations, we propose the following algorithm:

Algorithm 2

1. Initialize f, a, A, and ¢. Fix k£ > 0.

2. Given the current f, a, A and ¢, calculate a step A f by solving the quadratic

program

(18)

(19)

(20)

minimize  qp(Af)
(QF) subject to A(f+ Af) <b
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Obtain A« through (16).
3. Calculate a step AX by estimating At through the formulae (19) and (20).
4. Do a line search with an appropriate merit function to find ¢ > 0 and
fr=f+tAf, at = a+tAa and AT = X+ tAN.
5. Update ¢t > c.
6. Return to step 2 until convergence.

We recall that if the correct SQP method using (QP) was used, the second
order sufficient optimality conditions at a local minimum would imply fast local
convergence with the penalty parameter ¢ fixed at a sufficiently large value (cf.
[2]). This suggests the same strategy for the relaxed version and fixing c at a
moderate value. Since the correct ¢ is not known, we propose to initially use an
update rule like in [2] until a satisfactory value of ¢ has been found.

We mention that a plausible idea is to apply the same least squares relaxation
to the original program (NL) directly, that is, eliminate the unknown variable «
in (VL) by calculating for every i the least squares solution (au;, @s;, as;) to the
set of equations e;3 = 0,...,e;5 = 0. This is, however, less convenient than the
corresponding substitution in the linearized setting, since the functional relationship
a = «(f) so obtained is more complicated and renders the gradient and Hessian
calculation for the reduced problem difficult.

8. Practical Aspects

Designing a correct compartmental model for a specific situation is usually dif-
ficult due to the high complexity of metabolism. As a consequence, reconstructing a
dynamic tomographic image with a particular tracer dynamic model imposed may
bear the risk to miss or suppress dynamic phenomena apparent in the unknown
source, but not included in the chosen compartment model. This risk would be
less severe if we were able to reconstruct the dynamic image before doing the ex-
ponential fit. In Positron Emission Tomography (PET) this strategy is valid, since
the movie may be reconstructed frame by frame. As we have indicated, this is not
possible in SPECT if rotating camera systems are used, because the number of
views we could possibly scan during a fixed state of the unknown dynamic source
is too small. Nonetheless, with specially equipped triple head cameras one can
mimic the situation in PET by doing fast rotations which collect sufficiently many
views at a single dynamic state of the source, cf. [15, 25]. This method suffers
from poor data statistics, and we claim that with our present techniques we can
improve, doing slow rotations.

The approach discussed in [22] - similar to the situation in PET - reconstructs a
movie prior to exponential fitting by imposing shape constraints only. This seems a
crude procedure, but in many cases produces good results, in particular for double
and triple head cameras (cf. [13]). What we presented here is a more sophisti-
cated approach, which again reconstructs a dynamic image f prior to the definitive
exponential fitting, now aiming at reconstructions which are already close to the
exponential form (5). Using shape constraints in tandem with the augmented La-
grangian type penalty terms encourages doubly exponential fits.

A second practical aspect is CPU time, which should not be exceedingly large
if the method is to be clinically useful. This means that we may perform only a
limited number of SQP or augmented Lagrangian steps, probably never reaching
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any neighborhood of fast local convergence of the method. The approximate so-
lution so obtained may then still be improved by doing an a posteriori fit of the
chosen exponential model (5), a procedure which may be repeated several times, as
it is fast in comparison to the reconstruction process.

These practical aspects emphasize the idea of regularization versus exact fit-
ting, and one may ask about other possible regularizers for the dynamic emission
tomography problem. Reconstructing a movie requires regularization in space and
in time. For simplicity we consider regularizers of the form I[f] = ILJ[f] + L[f],
where I, is a spatial regularizer, I; a regularizer in time.

The classical choice among the spatial regularizers is of course the Tychonoff
functional I[f] = (k/2)||Vf||?, and its offsprings, which we may apply frame by
frame. Following [24], we prefer a Fourier domain regularizer whose philosophy is
based on the Fourier slice theorem for the unattenuated Radon transform: f(ow) =
(Rf)(0,w). This means that the expected signal f could not possibly have a
better spatial resolution than each of the projections. Having decided on a spatial
bandwidth b in the s-variable, and after choosing a high-pass filter H; with the
corresponding cutoff frequency, the spatially regularizing term should be chosen as

L[f] = (k/2)He f11*.

This filter could be applied either to each frame, or to a subset of frames. The
approach should still be qualitatively correct if the transform is attenuated, even
though the Fourier slice theorem is no longer true in this case.

Regularizing in the time domain could be done in several ways. A Fourier reg-
ularizer could be designed in much the same way as for spatial smoothing. The
corresponding dynamic cutoff frequency could be obtained by a prior Fourier anal-
ysis of the expected exponential curves (5), as soon as realistic bounds on the
eigenvalues \; are known.

However, a particular difficulty with Fourier filtering in the time domain, al-
ready analyzed in [23], is the fact that most practical time profiles are not con-
tinuous in the sense of the space Cper[0,7], and Fourier filtering would therefore
introduce unwanted smoothing at the early and late views. Ways to overcome this
have been proposed in [23] and could be adapted to build an appropriate temporal
high pass filter.

We conclude by presenting a dynamic regularizer based on a different philos-
ophy, motivated by the dynamic heart-in-thorax phantom built at the Vancouver
Hospital (cf. [7]). The phantom heart consists of several cylindrical containers
with a drain and an inflow. Each container is equipped with a mixing propeller
to guarantee a homogeneous flow. Tuning the motor which steers the pump could
now, at least in principle, produce any possible activity profile in the containers.
Consider for instance the situation of washout, where the container is initially filled
with activity f(0). Pumping fresh water at flow rate R(t) means that the remaining
activity in the container of volume V' at time ¢ is

f(t) = £0) exp{ - / t A0) dT}'

The idea is now to avoid highly irregular curves f(t) by penalizing irregular be-
havior of the motor. And in a sense the most natural profile is a flow at constant
rate, that is, R'(t) = 0. In terms of the curve f, this leads to R'/V = —(f'/f) =
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— (log f)"" = 0, so in the continuous model the dynamic regularizer could be cho-
sen as

T
L] = / ((log £(£))")* dt.

Discretizing the time step and using finite differences to replace time derivatives
leads to

S—1 S—1 f f
LIf] = )" (log frg1 +1log fro1 — 2log fi)* = > log” <k+172k_1>
k=2 k=2 fk

The ultimate link with tomography is the hypothesis that each cell, in a very
oversimplified way, acts similar to the macroscopic containers of the phantom heart.

9. Simulation

The following simulation uses a dynamic heart-in-thorax phantom, displayed
in Figure 3a and 3b. The scan assumes 64 time steps, and in line 1 the phantom
is displayed at times 11 and 19. The heart has been segmented into two dynamic
zones exhibiting different up-take and washout profiles, simulating a stenosis in the
left part of the muscle. The other sections of the body contour are assumed static.
The ideal time profiles for the two zones are shown in Figure 3a, line 2 (right). From
an experimental standpoint, the question is that of knowing whether the different
dynamic modes are recognized by our inverse method for ideal and noisy data.

EIEACT

Phantom at time 11 at time 19 Mask

35

20 B

15 - B

10 - B

o lb 2‘0 3‘0 4‘0 5‘0 66 70
Attenuation map curves in the heart
Figure 3a. Simulated phantom and attenuation map.
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The data acquisition simulates a rotating double head camera with two heads at
90, each head rotating over a 90° sector, with a total of 180° scanned. Each camera
head takes 32 angular positions. The ideal sinogram is displayed in Figure 3b (left),
while the right hand image shows the data rendered Poisson distributed. Notice
that in a static scan, the sinograms of the two heads could usually be assembled to
a single sinogram of twice as many steps for one head. Due to changing activity,
this is no longer possible in ASPECT, and we emphasis this fact by presenting the
two sinograms in reversed order. We assume a realistic tissue attenuation map,
displayed in Figure 3a, line 2 (left).

Sinogram Noised sinogram
Figure 3b. Sinograms. The two camera heads are placed at 90°.

The reconstruction process now starts with a preliminary phase which serves
three different purposes. A first reconstruction (a) is obtained by imposing decreas-
ing activities only, a second one (b) imposing increasing activities only. While (a)
will show a flat part at the early views, with decay at the later views, (b) will have
the opposite form. Matching these reconstructions will provide a first guess for the
peak activity position in each pixel.

A third reconstruction (c) is now produced with the assumed peak positions in
each pixel, and the reconstruction is used to identify the body contour. Reconstruc-
tion (c) also serve the purpose of identifying pixels which are apparently static, and
rendering these dixels static reduces the total number of unknown parameters to
fit. The resulting mask is shown in Figure 3a, line 1 (right), assuming pixels outside
the phantom heart as static. Obtaining the mask may be more difficult in a clinical
scan, and some practical issues of this phase, in particular, its automatization, will
be discussed elsewhere.

A fourth reconstruction (d) is now obtained on the basis of the previously
obtained mask, and is used to initialize the Prony type algorithm. This phase of
the reconstruction process uses version (N Ls), either without regularizing term,
or with some of the regularizers discussed in section 8. A definitive conclusion on
what regularizer behaves best at step (d) has not been drawn as yet, and its choice
may depend on the situation.

Reconstruction (d), displayed at times 11 and 19 in Figure 4, line 1, is already
of satisfactory visual quality, but the dynamic profiles shown in Figure 5, line 1,
are not sufficiently closed to the sought for biexponential form. Step (e) of the
procedure now does an a posteriori curve fitting of a biexponential on a pixel-by-
pixel basis, translating the model (9) to the form (10), or directly uses the method
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from section 5. This step is again critical, since some of the reconstructed profiles in
(d) may be far from biexponentials and may lead to aberrant parameter estimates.
We address this problem by switching to a local fit which uses the weighted sum of
9 neighboring pixels to a given pixel to stabilize.

Reconstruction (d): before Prony at times 11 and 19
Reconstruction (f): after 4 Prony iterations at times 11 and 19

Figure 4. Noise-free reconstruction. The total CPU was 3 minutes.

Estimate (e), translated into the corresponding (a1, @2, a;s) information is
then used as the initial guess to the Prony type procedure, which in our study is
the augmented Lagrangian approach in Section 5 with initial A = 0. The result is
the reconstruction (f), shown in Figure 4, line 2. As we can see, in the noise-free case
a few iterations suffice to produce satisfactory curves which even allow separating
the ideal time profiles visually. However, the initial stages of the procedure, shown
in Figure 5, seem to indicate oscillatory behavior of the method.

The reconstruction may be terminated by a last step (g) doing a second a pos-
teriori fit, eventually after drawing regions of interest for specific purposes. Notice
here that in contrast with other approaches, segmenting is not used in the recon-
struction process itself, but serves for the interpretation of the results. This is an
advantage of our method, since segmentation for reconstruction, usually employed
in order to reduce the number of unknown variables, is critical as it may oversimplify
or introduce unnecessary bias in the reconstructions.
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Figure 5. Prouny iterates in the heart for the noise free case.
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The results in Figure 6 show the same phantom experiment with the noisy sino-
gram obtained by rendering the ideal data Poisson distributed (Figure 3b, right).
Figure 6, lines 1 and 2 show the reconstructed slice, with little to no visual dif-
ference between the raw reconstruction and the result obtained after 4 Prony type
iterations.

Reconstruction (f): after 4 Prony iterations: images at times 11 and 19
Figure 6. Reconstruction for the noisy case. The total computation time was 3
minutes 30 seconds. Neither the data nor the reconstruction have been filtered.

A visual check of the reconstructed curves as in the noise free case (Figure 5)
is no longer possible here. We therefore draw masks for the two parts of the heart
we wish to discriminate, shown in Figure 7, line 1. We represent the result for each
region by taking the averaged curves. In the left region, this means averaging 46
curves, in the right hand regions 91 curves. The result is displayed in line 3. The
correct input is re-displayed in line 2.

As we can see, the reconstruction is capable of representing the cross-over of
the two curves apparent in the true image. Equally, the peak positions in each
profile are rather accurately represented. The reconstruction is off by about 10%
in absolute values. This may not be blamed on attenuation artifacts, as the correct
attenuation map has been used in the reconstructions. It is more likely that this
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is caused by the imperfections of the reconstruction process itself. A refined esti-

mation disregarding outliers in the reconstructed profiles from each region would
probably help to improve the accuracy in absolute values.

30 - B

35

25 - B

20 - B

15 B

10 - E

30

251 B

201 B

1s B

10 B

sk 4

o

() 10 20 30 a0 50 60 70

Figure 7. Evaluation of the noisy case. Line 1 shows the masks drawn to distin-
guish the different dynamic profiles. Line 3 shows the result of the reconstruction
after 4 Prony type iterations. We plot the averages of the curves in each region of
the heart against each others. Line 2 shows the true curves. The reconstruction is
able to represent the cross-over of the curves and the peak activities, but absolute
heights around the peaks are off by approximately 10%.

10. Conclusion

We have presented a way of estimating kinetic parameters for compartmental
models directly from a dSPECT reconstruction. The approach is an extension of
Prony’s method and the optimization uses an augmented Lagrangian type proce-
dure. Due to breaking the iteration into two separate steps (section 5), a procedure
which accelerates, the method tends to oscillate after some rapid improvements
during the early steps. The approach has been validated through a simulated case
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study. A more refined scheme (described in section 6 and 7) avoiding the oscillatory
behavior has been presented but needs to be validated by means of numerical simu-
lations. Several dynamic regularizers have been successfully used, but a qualitative
comparison offering a preference for a specific regularizers has not been obtained
as yet.

11. Appendix - Transport Model

Dynamic emission tomography is described by the dynamic photon transport
equation (compare [11, Vol. I, Section 5]):
10 (
- =u
(21) c Ot
:/ b(z, B E, 0", w)u(z,', E' t)dw’ + f(z,E,t)
SQ

z,w, B t) +w-Vu(z,w, E,t) + p(z, B)u(z,w, E,t)

Here u(z,w, E, t) is the specific intensity or density of the angular transport of pho-
tons at position x, time ¢, in direction w € S?, and with energy E; c is the speed of
light. f(x, E,t) is the unknown radio active source we wish to estimate, and u(z, E)
is the linear attenuation coefficient which decomposes as u(z, E) = p(x) pm (E)
with p(z) the unknown density at position z, and u,,(E) a known term represent-
ing all physical processes which end flights of photons at energy E. For the energies
relevant to nuclear medecine, these comprise photo effect, Rayleigh scattering, and
Compton scattering, while pair production becomes relevant at higher photon en-
ergies encountered in radio therapy. For energies E between 100keV and 1000keV,
photo effect and Rayleigh scatter are almost negligeable, and we_may model the
scattering kernel as b(z, E, E',w,w') = p(x) B(E,§), where § = (w,w’) is the angle
between w and w’, and 8 is the known Klein-Nishina scattering cross-section (cf.
[12]). Notice here that due to conservation of energy and momentum in the Comp-
ton scatter process, the energy E’ of the incident photon scattered from direction
w' into the direction w with energy F is fixed through the formula
EI

(22) b= 1+ (E'/mc?)(1 — cosb)

with 6 = (m and m the electron mass (ctf. [39]).

Before discussing (21), it is instructive to see the general form of the dynamic
emission tomography problem:

Find an input function cg(z,t), exchange constants k;j(x), and a mass dis-
tribution p(x) such that with a dynamic source f(x,E,t) satisfying (ii) and (iii)
of (P), the photon transport u(x,w, E,t) solving (21) matches the projection data
d(t,z,w, E) acquired at time t, sensor position x, angular direction w, and energy
E.

This cast of the problem, although not very helpful from the algorithmic point of
view, reveals it as a control problem with control vector (¢g, K, p). In this context,
our regularization approach may be understood as an optimal control technique.

Let us continue our investigation of the transport model. Notice that the
energy of photons used in nuclear medicine is often monochromatic, so ideally
flz,E,t) = f(z,t) §(E—Ey) for a fixed energy level Ey. (For example, Ey = 140keV
for 9°Tc used in SPECT, and Ey = 511keV in PET). Assuming that our camera
has a perfect energy resolution, we are capable of recognizing photons which have
Compton scattered with angle § # 0 due to the loss of energy (22). Therefore,
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for monochromatic sources, the scattering kernel in (21) becomes irrelevant, and
on suppressing the dependence of the variables on Ey, we obtain the simplified
transport equation

L0 ) o Ve, 0,1) + ) ule0,0) = fa 1)
with w € S%, 2 € R®, t > 0. Clearly this equation decouples into a series of
equations on 2D slices.

In cases where the emission source is not monochromatic, the scattering kernel
is required. Even for monochromatic sources, scattering is of practical important
due to the finite camera resolution which implies that we collect data over an energy
window Eg &+ AE.

Despite these observations it is customary to ignore the scatter contribution or
to interpret it as a source of noise in the data. Introducing the cumulated angular
transport

(23)

Eg+AE
u(z,w,t) = / u(z,w, E,t)dE
Eo—AE

we obtain, on assuming u(z, E) = p(z, Ey) = p(z) energy independent over Ey +
AE, the same simplified equation (23) in u(z,w,t).

Discussing (23) in a slice we parameterize lines by s € R, and w = (cos8,sinf) €
St, letting L(s,w) = {sw’ +tw : t € R}. Suppose the unknown source and
attenuation coefficient are zero outside the unit disk 2. Then the measured data
may be understood as boundary information on 2. Indeed,

(24) u(zo,w,t) =0 for vy, -w <0, =z€ N

(vy = outer unit normal to ), i.e., there is no incoming radiation. And further,
the outgoing radioactive transport is known:

(25) u(zy,w,t) =:d(t,s,w) forwv,, -w>0, x5 €09,
where
Eo+AE
d(t,s,w) = / d(t,s,w,E)dE
Eo—AE

represents the counts collected over the camera energy window Ey £ AE about
the expected energy Ey of the isotope. Here L(s,w) N Q = [zg,x1], and we call
xo = xo(s,w),x1 = x1(s,w) the entry and exit points.

Assuming that the source f(x,t) and data d(t,s,w) decay sufficiently fast as
t — oo we may Fourier transform equation (23). This leads to the family of
equations

(26) w-VU(z,w,0) + (u(z) +ic/c)U(z,w,0) = F(z,0)
with boundary information
(27) U(zo,w,0) =0, U(z1,w,0) = D(o,s,w).

Here capital letters refer to the Fourier transforms of the corresponding lower case
functions, and o stands for the Fourier domain variable. Integrating equation (26)
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using (27) on each segment L(s,w) N Q = [zg, z1] separately leads to the formula

1
@1 : - / n(y) dy
(28) / F(x,0)-e"lm=alle. o Ju dx = D(s,w,0),
Zo

which is a Fourier domain counterpart of the known integral equation obtained
in the case of stationary SPECT based on the attenuated Radon transform (cf.
[27, 26, 28]). Multiplying (28) by e‘?, Fourier inversion then gives the family of
integral equations

Z1

1 7/ wy) dy
(29) / Flt— o —a|)c) - e I de = d(t, s,w),

exhibiting a delay between the data acquired at time ¢ and the source terms emitting
at times ¢ — |x; — z|/c. The method of characteristics (cf. [11]) would of course
have produced the same result without using the Fourier transform. Since photons
travel with the speed of light, we may in practice assume

t— |z, —z|/crt,

which leads to the approximate equation involving the dynamic attenuated Radon
transform Ry, f]:

Z1

. 7 e
B0 Rl 01) 1= | f(w,t)-e/f P de = e, sw).

Notice that for monochromatic sources, (30) represents the correct transport model,
while in more general situations it stands for the simplification obtained by setting
b=0.

For completeness, let us consider the situation in PET. Assuming again that
the relevant information is captured by the disk 2, we are led to use the PET-
geometry which parameterizes the lines in the plane via the entry and exit points
zg, 1 on 0N, The boundary information being symmetric

d($0:$1;t) = d($17$07t)7

and with the incoming radiation assumed zero as before, the formula replacing (28)
is

1
—/ wy)dy 21
e o -67”“”17””0'/0-/ F(z,s)dx = D(zg,z1,s),
zg

and Fourier inversion provides the following family of integral equations

f/ py)dy e
e Juo / flz,t —|z1 — xol/c) dz = d(zo, 1,1),
o

showing a similar type of delay between the source and data terms. In the case of
PET a simple change of variables leads to the compact formula

(31)  exp{—R[pl(zo, x1)} - R[f (-, D)](wo,21) = d(wo, 21,1 + |21 — 0| /¢)
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involving the classical Radon transform parametrized through the lines L(zg, )
spanned by points zg,z; € 0. Again we may in practice assume t £ |zy —xo|/c &t
in (31), leading to

(32)

exp{ —R[u](zo, 1)} - R[f(-,t)|(z0,21) = d(z0,71,1)

The interpretation of (32) is that it is justified to do dynamics in PET simply by
reconstructing a series of static images, as proposed already in the basic reference
for probabilistic approaches to PET [36].
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