Example of Exact Trade-offs
in Linear Controller Design
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ABSTRACT: The design of a linear time-
invariant controller for a given linear time-
invariant plant, like any engineering design,
involves trade-offs among many desirable
qualities, such as fast response to commands
without excessive overshoot, low actuator
authority, robustness low controller com-
plexity, and so on. Only for a few very spe-
cial cases are analytic methods known for
finding the exact form of these trade-offs.
Two examples of such analytic methods are
Linear Quadratic Gaussian theory, where the
plant actuator and output variance can be
traded off, and Nevanlinna-Pick theory,
where, for instance, the achievable distur-
bance rejection can be traded off in two dif-
ferent bandwidths. In many cases, the limit
of performance achievable with a linear time-
invariant controller, and thus the exact form
of the trade-offs, can be computed numeri-
cally. To demonstrate this trade-off, the pa-
per treats the design of a regulator for a very
typical plant, a double integrator with some
excess phase. The trade-offs are presented
for two different measures of robustness with
noise sensitivity. The exact form of these
trade-offs is determined numerically by using
the techniques described in the appendixes.

Introduction

Given a (possibly unstable) linear time-
invariant plant, a basic design problem is to
find a linear time-invariant controller that will
stabilize the plant and meet various design
objectives. Beyond simple intuition, little is
known about how the different design objec-
tives or goals trade off.

The basic character of some of the design
trade-offs is obvious from simple physical
reasoning, €.g., it takes more force (actuator
authority) to move a mass from one place to
another more quickly (faster command re-
sponse). Other trade-offs are more subtle. For
example, it is well known to control engi-
neers that robustness or stability margins
trade off against closed-loop bandwidth for
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any plant with delay or other excess phase
(1.

Recently [2], it was observed that the limit
of performance achievable with a linear time-
variant controller can be computed numeri-
cally, where performance reflects many
practical constraints and qualities, including
fast response to commands without exces-
sive overshoot or undershoot, small and
quick reactions to disturbances or noises, low
actuator authority, and certain measures of
robustness or insensitivity to unknown or un-
modeled plant dynamics. Some design goals,
such as low controller complexity and open-
loop controller stability, cannot be included
using the methods in [2].

Finding the Limit of Performance

Recent theoretical results [3] show that the
set of closed-loop responses achievable with
stabilizing controllers is affine. This means
that if controllers C,; and C, each stabilize a
given fixed plant P, and yield closed-loop
transfer functions H, and H,, then, for every
real number A, there is a controller C,, which
stabilizes P and yields the closed-loop trans-
fer function AH, + (1 — A\) H,. Geometri-
cally, this means every closed-loop transfer
function on the line through H, and H, is
achieved by some stabilizing controller. Note
that, in general, the controller C, is not given
by AC, + (1 — N\) C,. These results allow
us to express simply every closed-loop trans-
fer function achievable with stabilizing con-
trollers.

Now consider the controller design prob-
lem, which is the problem of finding a con-
troller that achieves particular design goals.
In many cases, the design goals can be ex-
pressed as convex constraints on various
closed-loop transfer functions. A constraint
on a closed-loop transfer function is convex
if the average value of two closed-loop trans-
fer functions (H, + H,)/2 satisfies the con-
straint whenever H, and H, do (here H, and
H, are the closed-loop transfer functions
yielded by controllers C and C,). Examples
of convex constraints are design goals in-
volving envelope bounds on closed-loop time
responses to any input (e.g., step responses
and impulse responses), sensitivity to noises,
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closed-loop frequency responses, and some
robustness requirements. Examples of de-
sign goals that cannot be expressed as convex
constraints on closed-loop transfer functions
are restrictions on the structure or order of
the controller, e.g., the number of controller
poles.

In the case where every design goal can
be expressed as a convex constraint on some
closed-loop transfer function, the controller
design problem is equivalent to finding a
closed-loop transfer matrix (a collection of
the appropriate closed-loop transfer func-
tions) that satisfies the design goals. The
simple representation of the achievable
closed-loop transfer functions means that this
new problem can be solved numerically to
arbitrary accuracy [2].

A point on a trade-off curve can be found
by constraining all but one of the design goals
and minimizing the remaining one (it is as-
sumed that all design goals are expressed so
that ‘‘smaller’” is ‘‘better’’). The corre-
sponding optimization problem is convex.
This means there are no local minima. Such
convex optimization problems can be solved
numerically to arbitrary accuracy.

The Plant

We consider the design of a regulator for
a single-input/single-output plant that con-
sists of a double integrator with some excess
phase,

P(s) = (1/s}) 4 — $)/(4 + s)

The all-pass term (4 — s)/(4 + s) approxi-
mates a 0.5-sec delay (exp (—s/2)) at low
frequencies. We may think of the all-pass
term as accounting for any and all of a va-
riety of sources of excess phase in a real
control loop, e.g., small delays, antialias fil-
ters, equivalent excess phase contributed by
a sample-and-zero-order-hold plant input,
and so on. The idea of using a double inte-
grator plant with some excess phase as a
simple but realistic typical plant with which
to explore control design trade-offs is taken
from a study presented by Gunter Stein in
[4].

The plant is discretized using a zero-order
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hold at 10 Hz, giving the following transfer
function:

P
~ —0.00379(z> — 0.7241z — 1.1457)
T 2% — 26703z + 2.3406z — 0.6703

_ —0.00379( — 1.492) (z + 0.7679)
B (z — 1) (z — 0.6703)

The objective is to investigate some trade-
offs in the design of a regulator C for this
plant, where the closed-loop system is shown
in Fig. 1. The discrete-time inputs w and v
represent actuator (input-referred process
noise) and sensor noise, which are taken to
be independent white noise. The discrete-
time outputs u and y are the actuator and
plant outputs.

LQG: An Analytically
Computable Trade-off

Consider the steady-state noise at ¥ and y
in Fig. 1 due to the injection of noises at v
and w. As usual, assume that v and w are
zero mean, white, independent, with root-
mean-square (rms) values of 1 for v and 10
for w.

The trade-off between the steady-state out-
put variance lim, _, o, Ey? and the steady-state
actuator variance limy _, , Eu? is analytically
computable from Linear Quadratic Gaussian
(LQG) theory [S]. Given a fixed positive p,
the LQG optimal regulator minimizes (over
all stabilizing regulators) the weighted cost
function J, which is a linear combination of
the actuator and output variance,

J = lim E{y} + pul}
k— oo
Appendix B gives an example where the dis-
crete-time LQG optimal regulator is found
for the plant with p equal to 0.0001.

Note that for each p, the LQG optimal
regulator gives the best noise sensitivity (i.e.,
the minimum J) that can be achieved by any
linear time-invariant regulator (of any com-
plexity or structure) that stabilizes the plant
P. Thus, the rms values of « and y achieved
by the LQG regulator give a point on the
trade-off curve between these quantities. Let
us justify this assertion. If some other linear
time-invariant regulator stabilized P and
achieved better rms values of both u and y,
then it would achieve a cost J smaller than
the LQG regulator (recall that p is greater
than 0). This is not possible, since the LQG
optimal regulator gives the smallest J
achievable by any linear time-invariant reg-
ulator.

As the number p varies, the rms values of
u and y achieved by the corresponding LQG
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Fig. 1.

optimal regulator sweep out the trade-off
curve. For our plant, the trade-off between
the rms values of « and y is shown in Fig.
2. The interpretation of the curve in Fig. 2
is as follows. No linear time-invariant reg-
ulator C that stabilizes P can achieve rms
values of u and y, which lie below the curve.
This is true for regulators of any order, de-
signed by any method. We can restate this
as: every regulator C that stabilizes P
achieves rms values of u and y, which lie in
the shaded region, on or above the trade-off
curve. For example, the following simple
lead-lag regulator stabilizes P and achieves
ms values of # and y of 27.55 and 5.98,
respectively.

C(z) = 10(z — 0.98)/(z — 0.56)

This property is shown in Fig. 3. This reg-
ulator achieves closed-loop performance,
which lies in the shaded region of Fig. 2, as
it must.

Any regulator C that gives closed-loop
performance in the shaded region in Fig. 3
will perform the same or better (in terms of
rms values of u and y) than the simple lead-
lag regulator C. This means that C will
achieve the same or better output regulation
(rms y no worse than 5.98) and use the same
or less actuator effort (rms # no worse than
27.55). One family of such regulators is the
LQG optimal regulators with p between
0.00135 and 2.31. These regulators lie on
the boundary of the shaded region. There are
infinitely many other regulators that give
closed-loop performance in the shaded re-
gion.

This idea gives us a second interpretation
of the trade-off curve in Fig. 2 in terms of
achievable design goals. Any design goals
(i.€., upper bounds on the rms values of u
and y) that lie in the shaded region in Fig. 2
can be met or exceeded by some linear time-
invariant regulator C, which stabilizes P.
Design goals outside of the shaded region
cannot be achieved by any linear time-in-
variant regulator C, which stabilizes the plant

Regulator system.
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Fig. 2. Trade-off between achievable in-
put and output rms noise sensitivities, on a
log-log scale.
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Fig. 3. Simple regulator C, which
achieves performance above the trade-off
curve.

P. For example, consider the design goal
that the rms value of u should be less than
10 and the rms value of y should be less than
4. This design goal can be achieved by a
linear time-invariant regulator that stabilizes
the plant P, whereas the design goal that the
rms value of u should be less than 3 and the
rms value of y should be less than 5 cannot
be achieved by any linear time-invariant reg-
ulator that stabilizes the plant P.

For p equal to 107, the details of the LQG
design are given in Appendix B. The LQG
optimal (current estimator) regulator is
shown to be

45.9747° — 72.79z% + 28.1382

C() =

73 — 0.8061z2 + 0.7107z — 0.1071

45.974z(z — 0.91305) (z — 0.6703)

(z — 0.17897) (z — 0.3136 + 0.7072j) (z — 0.3136 — 0.7072)
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For this regulator, the rms values of u and y
are 63.73 and 2.0184, respectively. The
value of the cost function J is 4.48.

Two Measures of Robustness
Tolerance of Additive Loop Perturbations

One measure of robustness of a control
system, which combines the gain and phase
margins, is the M-circle radius, defined as
the minimum distance from the Nyquist plot
of the loop gain PC(exp jQ) to the critical
point — 1. Mathematically, this can be writ-
ten as

M = dist (PC(exp jQ), —1)
= min |1 + PC(exp jO)|
0=Q=<n7w

The M-circle radius gives a measure of the
sensitivity to additive loop perturbations. If
the distance M is small, then slight variations
in the loop gain PC could change the number
of net clockwise encirclements of —1 by the
loop gain, resulting in an unstable closed-
loop system.

The M-circle radius is related to the max-
imum sensitivity of the control system. The
M-circle radius is the inverse of the maxi-
mum sensitivity

M= 1/

where S = 1/(1 + PC) is the sensitivity
transfer function, and the maximum of the
sensitivity transfer function over all frequen-
cies is

ISlle = max |S(exp |
0<sQ<m

(In this notation, ||H||., denotes the maxi-
mum magnitude over real frequencies of a
transfer function H.) Thus, a small M-circle
radius corresponds to peaking of the sensi-
tivity function at some frequency. It also fol-
lows that constraining the maximum mag-
nitude of the closed-loop transfer function S
to be at most 1 over M., is equivalent to
constraining the M-circle radius to be at least
Min.

For example, the p = 10™* LQG regulator
gives |Sll. = 3.34, so that M = 0.30 is
the closest the Nyquist plot comes to the crit-
ical point —1. This can be seen from the
Nyquist plot in Fig. 4. The M-circle of ra-
dius 0.30 is also shown in Fig. 4. The mag-
nitude of the sensitivity transfer function §
for the p = 10™* LQG regulator is shown in
Fig. 5. Note that its maximum is 10.5 dB
(which is equal to —20 log M).

Tolerance of Additive Plant Perturbations

The second measure of robustness we will
consider concerns the ability of the regulator
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Fig. 4. Nyquist plot of the LQG

regulator. Note: p = 107 and the M =
0.30 circle is shown.
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Fig. 5. Magnitude of sensitivity transfer
function of LQG regulator. Note: p =
1074

to maintain closed-loop stability in the face
of stable additive plant perturbations AP, as
shown in Fig. 6. The plant perturbation could
represent errors in modeling the plant, com-
ponent variations, or deliberately ignored
plant dynamics.

Intuitively, if AP is small at all frequen-
cies, then we would expect that if the reg-
ulator C stabilizes the plant P, then C should
stabilize P + AP as well. This intuition is
indeed correct, a consequence of the small
gain theorem [6], [7].

We may ask, what is the smallest (in the
sense of maximum magnitude of frequency
response) stable additive plant perturbation
AP that will destabilize the system in Fig.
6?7 Let us define the quantity D as the small-
est plant perturbation AP that will destabi-
lize the closed-loop system,

D= min taP] o

A Pdestabilizes system
It is not difficult to derive that the inverse of
D is equal to the maximum of the closed-
loop transfer function from the reference in-

Fig. 6. Additive plant perturbation.

put r to the actuator output u,
1D = |lc/1 + PO) |

This observation is due to Doyle and Stein
[61.

The positive number D can be interpreted
as the largest size of stable additive plant
perturbation the control system can be guar-
anteed to withstand. A regulator that yields
small values of D corresponds to a system
that can be destabilized by a small stable
additive plant perturbation. It also follows
that ¢onstraining the maximum magnitude of
the closed-loop transfer function C/(1 + PC)
to be at most 1/D;, is equivalent to con-
straining the additive plant perturbation tol-
erance D to be at least D,,.

For the p = 107* LQG optimal regulator,
the peak of the closed-loop transfer function
C/(1 + PC) is 83.02; so D = 0.0121.
Hence, there are stable plant perturbations
AP that destabilize the system in Fig. 6, with
tAP|l. as small as 0.0121. One destabi-
lizing perturbation is shown for which
laP|l,, = 1/80, which is greater than D.

0.2152 x 10731 — 2)

APG) =
@ = T 0.985; + 0.9801

This AP destabilizes the system in Fig. 6.
The frequency-response magnitude of AP is
plotted in Fig. 7. The transfer function AP
might represent a mechanical resonance,
which was ignored when the plant P was
modeled for the LQG design.

In general, the robustness requirements
that M and D be large are independent. A
system may have good margins (i.e., large
M) but be quite sensitive to additive plant
perturbations (i.e., small D) and vice versa.

o
=

tude of AP (expj Q)
o
4

0.001

o Magn

.0001

0 05 1 1.5 2 25 3
Frequency Q

Fig. 7. Frequency response of a
destabilizing AP.
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Trade-off Curves Involving
Noise Sensitivity and Robustness

We wish to minimize the noise sensitivity
of the system and determine how this trades
off with the two different robustness require-
ments described in the previous section. Spe-
cifically, how does the noise sensitivity J
trade off against M when we require D =
D, and how does it trade off against D
when we require M = M,;,?

The design problem can be expressed
mathematically as

Jnin = min J
Cstabilizes P
UM = H(1+ PO o < 1/Muin
UD=1CI(1 + PC) |l < V/Dyin

Unlike LQG, no exact analytical solution
of this minimization problem is known, al-
though some work has been done [8]. Never-
theless, this minimization problem can be
solved numerically since it can be cast as an
(infinite-dimensional) convex optimization
problem [2]. In general, the optimizing con-
trollers are of high order. In general, no
method is known for finding low-order con-
trollers that achieve close to the optimal per-
formance.

For three fixed values of D,,, the trade-
off between J,,;, and 1/M_;, is shown in Fig.
8. The p = 107* LQG regulator is also
shown. Since this regulator achieves 1/D =
83.02, it lies below the 1/D,;, = 10 curve
and on the 1/D,;, = 83.02 curve. All trade-
off curves with 1/D;, = 83.02 will pass
through the LQG performance point and be
horizontal to the right of it.

Note the interesting fact that by allowing
the M-circle radius to be less than 0.5, only
modest improvement in the noise response
is gained, with the same tolerance D to ad-
ditive plant perturbations.

For four fixed values of M,,,, the trade-
off between J,;, and 1/D,, is shown in Fig.
9. The p = 1074 LQG regulator is also

6
5 1/D<5 ]
4
- 1/D<10
‘33 I
» 1/D< 83.02
LQG
1
0

1 1.5 2 25 3 3.5
1M

Fig. 8. Trade-off between rms noise and
M-circle radius.
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Fig. 9. Trade-off between rms noise and
additive plant sensitivities.

shown. Since this regulator achieves 1/M =
3.34, it lies below the 1/M;, = 2.0 curve
and on the 1/M,;, = 3.34 curve. All trade-
off curves with 1/M.;, = 3.34 will pass
through the LQG performance point and be
horizontal to the right of it.

From Fig. 9 we can draw some interesting
conclusions. Consider the 1/M < 3.34
curve, which corresponds to regulators that
yield the same or larger M-circle radius as
the p = 107* LQG regulator. The curve is
relatively flat for 1/D = 20, meaning that D
can be increased to about 0.05 with a rela-
tively small increase in rms noise response
and the same or larger M~circle radius (0.3).
For the p = 107* LQG regulator, this rep-
resents an increase in additive plant pertur-
bation tolerance D of a factor of 4.

Of course, all regulators that stabilize P
yield a noise sensitivity J = Jy g, so that
all curves lie on or above the horizontal
asymptote J ll_go = 2.117. Imposing further
constraints on the two measures of robust-
ness naturally will increase the minimum
noise sensitivity J achievable with linear
time-invariant stabilizing regulators. What is
neither intuitively obvious nor analytically
computable is how much the minimum noise
sensitivity J must increase when we impose
various constraints on the two measures of
robustness. Figures 8 and 9 show this trade-
off precisely.

Let us give two examples of specific con-
clusions we may draw from Figs. 8 and 9.
First, the following design goals can be
achieved with a linear time-invariant regu-
lator that stabilizes P (this point is marked
“x"* in Fig. 9).

J7 <3, M=05 D=004

These goals represent an increase in noise
response over the LQG regulator (as any
achievable goal must), a moderate improve-
ment in M-circle radius over the LQG con-
troller, and a substantial improvement in D,
tolerance to additive plant perturbation, over
the LQG controller:

Jioe = 2.117, Mg = 0.3,

Dyigo = 0.0121

Another important conclusion we may draw
from Figs. 8 and 9 is that the following de-
sign goals are not achievable by any linear
time-invariant regulator that stabilizes P.

J7? <3 M=05 D=008

Consider the (easily) achievable design
goals

J¥ <3, M=035 D=004

It is interesting to consider whether we can
achieve these goals using an LQG design
with some appropriate weight p > 0. The
process of *‘tuning’’ the LQG weights (p in
our case) in an attempt to achieve particular
design goals is typical of how LQG is used
in practice.

For each fixed p, the LQG optimal regu-
lator stabilizes the plant P and achieves par-
ticular values of J, D, and M (note that J
denotes the fixed weighted noise sensitivity,
J = limy_ o E{y} + 107*4}}, and is not a
direct function of p). These values are plot-
ted in Fig. 10. As expected, the minimum
value of J is achieved for p = 107*, since
the other LQG regulators each minimize a
slightly different cost function.

The preceding design goals are also shown
in Fig. 10. As can be seen from Fig. 10, no
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Fig. 10. Performance of a family of LQG

regulators.
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value of p (i.e., no amount of ‘‘tweaking’’
of p) will yield a regulator that achieves the
preceding goals. However, it is clear from
Fig. 9 that these design goals can be achieved
by some linear time-invariant stabilizing reg-
ulator.

Conclusion

We have given an example demonstrating
how the methods of [2] can be used to de-
termine numerically the various trade-off
curves for competing design goals or objec-
tives. It should be emphasized that the trade-
off curves shown in Figs. 8 and 9 represent
fundamental trade-offs: they do not merely
show the best we can do; they show the best
anybody can do with a linear time-invariant
regulator of any form or complexity, de-
signed by any scheme or method. We be-
lieve that this information can be very useful
to the designer.

No control engineer would be surprised by
the general shape of the trade-off curves
shown in Figs. 8 and 9: It is intuitively ob-
vious that some improvement in robustness
can be realized at the cost of some degra-
dation in root-mean-square noise sensitivity.
However, even for this very simple, typical
plant, the numerical values of the trade-offs—
how much improvement in robustness can
be ‘‘bought™ for a given increase in noise
response—are not at all obvious. Naturally,
for a complicated multi-input/multi-output
plant and a much larger set of design goals,
specifications, and objectives, the trade-offs
would be considerably less obvious, and such
computations correspondingly more valu-
able.

Appendix A:
Using qdes to Find
the Limits of Performance

Points near the exact trade-off curve were
found using the computer program qdes,

<<

Fig. Al. Regulator system setup for qdes.

described in [2], which should be consulted
for full details. The program qdes trans-
lates a description of the control design prob-
lem into an approximation of the corre-
sponding  convex infinite-dimensional
optimization problem (over a parameteriza-
tion of all controllers that stabilize the plant
P). The accuracy of the approximation can
be improved arbitrarily at the cost of com-
putation time. The source file for qdes
contains the specification of the design ob-
jective (to be minimized) and the design con-
straints.

The discrete-time plant was set up with
two exogenous inputs z and w. To enable
the specification of a bound on | 1/(1 +
PC)|l , a third fictitious exogenous input d
was used. The three exogenous inputs were
then v, w, and d. The two regulated outputs
were the controller output # and the plant
output y. The corresponding block diagram
is shown in Fig. Al.

These exogenous inputs and regulated out-
puts were referred to symbolically by V,
W, D, U, and, Y respectively, in the
gdes source file by use of the qdes
#define facility.

A nominal controller (which stabilized the
plant) was found, and the Q parameterization
was applied to yield transfer-function matri-
ces Ty, T,, and T;. Every closed-loop trans-
fer matrix from [v wd]” to [u y] T achievable
by a controller that stabilizes P is of the form
shown for some stable Q.

T, + T,0T;

Here, 7, is a 2 X 3 transfer matrix, T; is

minimize {

norm_h_sqrlY] [V];

100 * norm_h_sqriY] [W];
0.0001 * norm_h_sqrfUul [V];
0.01 * norm_h_sqrlU] [W];

subject_to {

2 X 1, Tyis 1 x 3, and Q is a single-input/
single-output transfer function.

To set up the problem for gdes, the
impulse responses of T,, T, and T3 (which
are always stable) were truncated at 200
samples.

Since the noises v and w are independent
and white, the weighted noise sensitivity J
can be expressed as a linear combination of
the sums of squares of impulse responses.
For example, if w acted alone, then it is easy
to show that

lim Ey;|, = Ew?® 2 ()

n—o

= Ew’| by |13

where h,,.(i) is the impulse response from w
to y at time i. We see that the steady-state
variance of y is the variance of w times
l| Ay l13, the sum of the squares of the im-
pulse response from w o y.

Similarly, the steady-state variance of y
due to sensor noise is given by Ev?|h,,[3.
Since v and w are independent, the total
steady-state variance or power in y is simply
the sum of these powers,

lim Ey; = Ew?| Ay [3 + Ev?| A, |3

n— o

= 100{| A [13 + WAy I3

In qdes, the quantity [|A,,[3 is referred
toby norm_h_sqrlY] [W].

After the preamble, the design problem
was expressed to gd e s as (the objective is
the sum of each of the terms)

/* output pwr due to sensor noise x/

/* output pwr due to process noise *x/
/* actuator pwr due to sensor noise */
/* actuator pwr due to process noise */

max_Mag_H[U] [V] <=1/D_MIN; /* robust to additive plant perturbation */
max_Mag_HC{U] [D] <= 1/M_MIN; /*M-circle radius constraint */
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D_MIN and M_MIN were specified
using the #de f ine facility in qdes. A
single point on the trade-off curve was found
by running gdes with the constraints
D_MIN and M_MIN fixed. The qdes
objective gave the value of the constrained
minimum noise sensitivity J. A trade-off
curve was swept out by varying one of the
constraints D_MIN or M_MIN.

We expect the value of J computed by
gdes to be close to the minimum J achiev-
able by any stabilizing controller that meets
the specified robustness constraints. To pro-
vide confidence in the values computed, the
two approximations in qdes were refined
steadily. These approximations are the num-
ber of taps in Q and the number of frequen-
cies at which frequency-response constraints
are sampled.

For each point on each trade-off curve, the
number of taps in Q was increased (by
roughly a factor of 2) and the objective func-
tion J was recomputed. This was repeated
until J changed negligibly. We found a neg-
ligible change in the qde s results for the
number of taps between 65 and 200, and, in
many cases, for the number of taps between
20 and 200. (It is interesting to note that we
found a very nonnegligible change in total
gdes computation time, however! The
computation times were on the order of 60
min on a Sun 3/260 for a 200-tap run.) Sim-
ilarly, the number of points at which the fre-
quency-response constraints were sampled
was also increased, also with negligible
change in qde s output. We comment that
even very crude approximations (e.g., 10
taps) often yielded values of J only a few
percent above those yielded for very fine ap-
proximations.

As another test of the validity of the qd e s
results, the nominal controller was changed
and the procedure described earlier was re-
peated. This also produced negligible change
in the computed results.

We believe that the trade-off curves shown
in Figs. 8 and 9 are within, at most, a few
percent of the true trade-off curves, and
probably much closer.

Appendix B:
Details of LQG Design

A state-space realization of the plant with
input u, input-referred process noise w, and
sensor noise v is

Xps1 = Axg + buy, + bwy
Ve = X + U

where

January 1989

[0.6703 0 0
A=1008242 1 0
1 0.004395 0.1 1
0.08242
b = | 0.004395
| 0.0001512

[0 —1 4]

c
The process and sensor noise variances are
W = Ew} = 100
V=Ev};=1

We wish to minimize the weighted noise at
the plant’s input and output

Jige = lim E{yi + puz}
k- oo

lim E{x{Qx; + ui{Ru}
P

where
0 0 0
Q=cle=|0 1 -4
0 —4 16
R=p=10""*

Solving the discrete-time LQG problem gives
an optimal estimator gain / and an optimal
state feedback gain k, where

0.0
=102
0.14
k=[10 89.96 199.9]

A state-space realization of the optimal
current estimator LQG controller is

Arge = A — bk — Alc + bkic

—0.154 —-11.2 —-1.317
= 0.03846 0.6025 —0.8702
0.002882 0.2394  0.3576
~-3.789
bgc = (A — bk) [ = | —0.002066
0.153
cLgc = k — klc = [10 135.9 15.97]

dig = kI = 45.974
The transfer function of the controller is then

CLQG (@)

croc@l — ALQG)_]bLQG + digg

_45.9742° — 72.79° + 28.138¢
72 — 0.8061z2 + 0.7107z — 0.1071
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1990 IFAC World Congress

The 11th World Congress of the Interna-
tional Federation of Automatic Control
(IFAC) will be held August 13-17, 1990, in
Tallinn, USSR. The theme of the Congress
is ‘‘Automatic Control in Service of Man-
kind.”” The program will include plenary,
paper, and discussion sessions, as well as
case studies, all devoted to theory, applica-
tions, and industrial experience.

The Congress will take place at the Tallinn
Technical University. Accommodations will
be available in several easy-to-reach hotels.
Social programs, sight-seeing tours, and
technical visits will be organized. There will
be many possibilities to meet and discuss
with control experts from all over the world.

Workshop on

A Workshop on Higher-Order Spectral
Analysis, sponsored by the Office of Naval
Research and the National Science Founda-
tion and in cooperation with the IEEE Con-
trol Systems Society, will be held at The
Lodge at Vail, Vail, Colorado, on June 28—
30, 1989. The objective of the workshop is
to provide a forum for discussion of new
theories and techniques in the area of higher-
order spectral analysis and their application
to practical problems. The intent is to attract
researchers from this field to exchange ideas
and debate current and future trends. The
emphasis will be on technology transfer is-
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Tallinn is the capital of the Estonian SSR.
It has half a million inhabitants. Tallinn is
an important industrial, scientific, and cul-
tural center, and one of the oldest and most
interesting cities in the Soviet Union, famous
for its medieval architecture. Tallinn can be
reached by air via Moscow and Leningrad
International Airports or by train, and also
by ship from Helsinki, Finland. Tallinn lies
in the temperate zone and has a humid cli-
mate. The average daytime temperature is
18-23°C in August.

IFAC’s scope of interest deals with the
science and technology of automatic control,
both in theory and broad applications for all
systems. This wide variation is indicated by

Spectral Analysis

sues, i.e., how the theory and properties of
polyspectra (or cumulants) can be used to
solve important signal and systems analysis
problems. Both digital and optical signal
processing problems will be addressed.

The workshop will feature four types of
sessions: (1) plenary sessions with keynote
speakers; (2) tutorial sessions; (3) sessions
with contributed presentations that will em-
phasize interdisciplinary contributions; and
(4) panel discussions. The workshop also will
include working social activities and will of-
fer opportunities for those from similar dis-
ciplines to meet and discuss in smaller

its technical committees: Applications;
Biomedical Engineering; Components and
Instruments; Computers; Developing Coun-
tries; Economic and Management Systems;
Education; Manufacturing Technology;
Mathematics of Control; Social Effects of
Automation; Space; Systems Engineering;
Terminology and Standards; and Theory.
The provisional deadline for full-paper
submission is July 1989. However, as soon
as possible, prospective authors should ob-
tain *‘Author Kits’® from the IFAC Secre-
tariat, Schlossplatz 12, A-2361, Laxenburg,
Austria. For further information, contact:
IFAC Tallinn 1990, Institute of Cybernetics,
Akadeemia tee 21, 200108 Tallinn, USSR.

groups. Attendance at the workshop will be
by both invitation and application. Copies of
the Proceedings of the workshop will be
made available to all attendees of the work-
shop.

Prospective authors should submit four (4)
copies of a two-page summary including au-
thors’ names, addresses, affiliations, and
telephone numbers prior to January 15, 1989,
to: Prof. C. L. Nikias, CDSP Research Cen-
ter, 416 Dana Research Bldg., Northeastern
University, 260 Huntington Ave., Boston,
MA 02115; phone: (617) 437-3352.
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