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1 Introduction

A multidisk problem in frequency domain con-
trol system synthesis is a problem in which the
designer wishes to find a feedback compensator
that minimizes the H,-norm of a certain trans-
fer matrix related to the system being designed,
subject to constraints on the H-norms of one
or more other transfer matrices related to the
system. These problems typically arise when a
designer is asked to minimize a performance in-
dex such as the gain from a disturbance to a plant
output while providing robust stabilization of the
plant and/or satisfying constraints on other per-
formance indices.

There are no known analytical solutions
to general multidisk problems, although there
are partial and approximate solutions [BH79,
Kwa85] as well as an explicit solution to a special
case [OF86]. In [TP88], Ting and Poolla propose
and demonstrate a technique for finding subop-
timal solutions to linear two-disk problems.

The purpose of this short paper is to show that
while multidisk problems may not have analyti-
cal solutions, they can often be posed as infinite-
dimensional convex programming problems, and
so can be readily solved numerically. In fact, a
program called qdes, described in [BBB*88], can
be used to generate and solve finite-dimensional
approximations to such infinite-dimensional pro-
gramming problems. Qdes was used to solve the
example two-disk problem considered in [TP88);
the optimal performance index was found to be
over four times better than the “approximate so-
lution” found in [TP88]. This short paper out-
lines how qdes was used to solve this example
two-disk problem.
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Figure 1: Block diagram for the example prob-
lem.

2 Example two-disk problem
The problem, as stated in [TP88], is

inf ||W1(I+ PQK)_'JHQO

K stabilizing Py
subject to

“WQPQI{(I + PQK)-lHQO S l,

where
3—-2
Po(s) = 5 — 12
1 /s+6
Wi(s) = %(3+1)

1 fs+1 (s +6)2
Wals) = 5(s+2) (32+2s+37>‘

The objective is to minimize the W;-weighted
Hoo-norm of the gain from the disturbance d to
the plant output y, as shown in Figure 1, and
the constraint is obtained from the specification
that K stabilize all plants in the family

C = {Po(I + AW2) : ||Alleo < 1}

The derivation of the H,, constraint {from this
robustness specification is described in {DS81,
Zam81).

It is easy to pose the problem as a convex
optimization problem. In the terminology of

Reprinted from 1989 American Control Conference, vol. 2. pp. 1745-1747, June 1989,
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Figure 2: Problem posed in terms of H-norms
of closed-loop transfer functions.

[BBB*88], u is the single control input and e is
the single measured variable. As shown in Fig-
ure 2, the problem can be stated as that of find-
ing the compensator K that stabilizes P, and
minimizes the H,-norm of the closed-loop trans-
fer function from the ezogenous input d to the
regulated variable z), subject to the constraint
that the Hoo-norm of the closed-loop transfer
function from the exogenous input r to the reg-
ulated variable z; be less than or equal to one.
In general any multidisk problem of the form

Minimize the H,-norm of one closed-
loop transfer matrix subject to up-
per bounds on the H.-norms of other
closed-loop transfer matrices

is a convex programming problem.

The solution of the problem using qdes pro-
ceeds as follows. A stable coprime factorization
of Phas P = ND-" with XN +YD = I, taken
from [TP88], is

0= (5 0= (55)

X{s)=1.8; and Y(s) = -0.8.

The set of achievable stable closed-loop transfer
matrices from the exogenous input vector [d )T
to the regulated variable vector [z1 z3]T can be
parametrized as

{Tl + 1QT5: Q stable}

where the parameter Q is a SISO transfer func.
tion and Ty, T3, and T are stable transfer mj,.
trices of appropriate sizes computed from the €o.
prime factorization as shown in (BBB*88]. The
compensator corresponding to a given paramete,
Qis

K =(X+DQYY - NQ)™.

The version of qdes available to solve this
problem is for use with discrete-time systems,
so the problem is converted to an equivaleny
discrete-time problem by mapping the jw-axis i,
the S-plane on to the unit circle in the z-plane
with the substitution (bilinear tra.nsformation)
s=20 (:—i‘-}-) The solution space is made finjte.
dimensional by assuming that the optimal pa.
rameter (z) is closely approximated by a finite
impulse response (FIR) filter with 20 taps.

The fragment of qdes source code found below
shows how the problem is specified to qdes.

minimize {
max_Mag H[Z1][D];
}

subject_to {
max_Mag_H[Z2][R] <= 1.0;
}

This fragment specifies the objective and con-
straint; the dimensions of the problem and the
values of Ty, Ty, and T3 must also be specified.
The output of qdes is a list of the FIR filter co.
efficients corresponding to the optimal Q(z).

For the two-disk problem, qdes finds a 20-tap
@ which satisfies the constraint. The ol jective
function value for the approximation to the two.
disk problem is 0.1864. Increasing the number
of taps in the FIR filter Q(z) to 40 and S0 does
not significantly improve the solution: this gives
some confidence that the solution based on the
20-tap Q(z) is very nearly optimal. The compen-
sator A'(z) obtained from Q(z) is a 23rd-order
stable compensator, which has a 20th-order min.
imal realization. The Hankel singular values of
K(z) are

1.427, 1.371, 0.821, 0.040, 0.033, ... .

It seems likely that the compensator model cau
be reduced to third-order, and this turns on: o
be the case. Using simple balance-and-truncaze
model reduction a third-order compensator was

obtained that performed as well as the orivin.




sgth-order design. The application of the sub-

- .

gitution (inverse bilinear transformation) z =

(g,;,g_) gives the compensator
-

—0.084796) (9% +1.51665+35.658)
K(s)=—1.53435 ((’s+0.86685)(:=+1.3714:4-24.576) :

with this compensator

(Wi (I + PoK) | = 0.1995

and
WaPoK (I + Pok)™[|os = 0.9929.

For comparison, the “approximate solution” in
{TPSB] has

Wi (I + PoK)™"|oo = 0.7998
IW2PoK(I + PoK) Yoo = 1.

3 Conclusion

While there are no known analytical techniques
for solving general multidisk problems, many
multidisk problems are susceptible to effective
numerical solutions.
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