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Uniqueness of a Basic Nonlinear Structure 
STEPHEN BOYD AND LEON 0. CHUA, FELLOW, IEEE 

A/Asovzc~--I~ this paper we show that systems consisting of a memory- 
less nonlinearity sandwiched between two linear time-invariant (LTI) oper- 
ators are unique module scaling and delays. We mention a few corollaries 
and applications of general circuit and system theoretic interest. 

I. INTRODUCTION 

I N NONLINEAR systems theory two types of opera- 
tors are especially important: linear time-inuariant (LTI) 

operators and memoryless or static nonlinear operators. 
Many important and well-known results pertain to systems 
which are interconnections of these operators, for example, 
the Popov criterion for the Lur’e structure. Indeed if 
multi-input multi-output (MIMO) operators are consid- 
ered, all dynamical systems are included. 

In this paper we consider what is perhaps the simplest 
interconnection of these operators, shown in Fig. 1, and 
ask the question: in what sense are such systems unique, 
that is, under what conditions could two such systems have 
the same input-output (I/O) map? Some conditions are 
easy to think of, for example, we can rescale the operators 
or distribute any delay in A and C arbitrarily between 
them (A = (Y exp (- sT)A, C = y exp (sT)C, B(x) = 
k’B(y-lx)). W e s h ow that these are the only ways these 
systems fail to be unique. 

Rugh and others [l]-[5] have shown that certain systems 
containing lumped LTI operators and memoryless power 
nonlinearities or multipliers are unique in a certain sense, 
and this paper is inspired by their work. Our emphasis, 
however, is slightly different: we consider memoryless non- 
linearities as opposed to multipliers and pure power 
nonlinearities, and general as opposed to lumped LTI 
operators. 

II. NOTATION 

We consider operators with a Volterra series: 

%t)= I? r,(t) 
n=l 

.y,(t) =/. . . /h&,7*, * * * +4(t - q)u(t - 7&. . 

where h, is a symmetric real tempered distribution sup- 
ported on (R+)“, and the inputs u belong to some subset 
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Fig. 1. The system considered: A and C are LTI with frequency re- 
sponses A(s) and C(s), B is memoryless with characteristic function 
B(x). 

of Cm(R+) which ensures y, summable.’ We refer to h, as 
the nth time-domain Volterra kernel of N; we will work 
with their Laplace transforms, called the (frequency- 
domain) Volterra kernels or nonlinear transfer functions: 

Hn(sl,s*;-*s,)= / J ... hn(tl,t2,-t,) 

aexp - k siti dt,dt, . . . dt, 
( 1 i=l 

defined and analytic at least in { s]Re sk > 0, k = 1 . . . n }, 
henceforth denoted (C+)“. For more details, see [6]-[ll]. 

A LTI operator has all kernels above the first vanishing; 
a memoryless operator is one with all kernels constant, and 
a positive radius of convergence. To keep the notation 
simple, we will use the same symbol for a LTI operator and 
its first kernel, and similarly for a memoryless operator and 
its associated function from R to R. Juxtaposition of 
operators will denote composition, equality of operators 
will mean that they have the same I/O map. 

We should mention that the Volterra kernels are com- 
pletely determined by the operator N, i.e., by its I/O map. 
Indeed for wk distinct and nonzero, 

ff,(j% * * +J,) 

1 an =- 
d a(yl-a(y, 

where the right-hand side refers only to the operator N, and 
not to any particular representation of it. This means that 
the kernels can be measured [12]. 

III. STATEMENTANDPROOFOFTHEOREM 

Theorem I: Suppose A, 2, C, C are nonzero LTI opera- 
tors, B and h are memoryless operators, at least one of 
which is not linear. If ABC = kfiC, then there are real 
constants (Y, y, T such that 

A(s) = cuexp( - sT)A(s) 

‘This formulation includes operators such as differentiation and has a 
correspondingly restricted signal space. If you like, the h, can be bounded 
measures, the 
limsupllh,,Ili/“. 

signal space the open ball in Lm with radius R-t = 
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C(s) = yexp(sT)C(s) 

B(x) = a-‘B(y-lx). 
That is, systems of the form (1) which are not linear have a 
unique representation of the form (1) modulo scaling, and 
delays. 

Proof: Under the hypotheses of Theorem 1, the two 
systems have the same kernels 

Hn=A(sl+ ... + &2mlcb,)cb2)~~ . c(&J (1) 

= A”(s, + *. . + s,)B,qs,)qs,)~ . . C(s,). (2) 

Consider now any n > 1 for which H,, is not identically zero 
(and there is at least one such n). Find an open ball D in 
(C+)’ on which H, # 0. Indeed {s E (C+)nlHn(s) # 0} ‘is 
open and connected in (C+)n. On D define 

Q = ln[Bn(C/Wsl)~~~ (W)(s,)] (3) 

=ln[B,(k/A)(s,+ ... +sn)]. (4 
Any branch of In will do. Then on D, 
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a*Q o -= 
as, as, 

when calculated from (3) and 

-$$-= [ln(k/A)]“(s,+ +.a +s,) (6) 
1 2 

when calculated from (4). Note that n > 1 is crucial; this is 
where the requirement of strict nonlinearity enters. From 
(5) and (6) we conclude for some n and T 

ln(‘A/A)(s, + . . . +s,,)=v-T(sl+ .a. +s,) (7) 

on D and hence everywhere in (C+)“. Thus 

A(s) = aexp( - sT)A(s) (8) 
for s E C+, where cw=expq. From A(S)=A(s) we con- 
clude a and T are real. Substituting (8) into (1) and (2) 
yields 

C(s) = yexp(sT)C(s) (9) 
where y n = B,,& ‘a-l and as above y real. Thus we have 
B, = c?Bny-“, which remains true for those n for which 
B, = &, = 0, hence 

i(x) = a-‘B( y-lx) 00) 
and the theorem is proved. 

Corollary 1: Systems of the form HN are completely 
disjoint from systems of the form NH, where H is LTI 
nonconstant and N is memoryless strictly nonlinear. (See 
Fig. 2.) This may be obvious for other reasons, for exam- 
ple, if h is absolutely continuous then the kernels of HN 
are absolutely continuous whereas those of NH are singular 
measures. 

Corollary 2: Given any operator N with at least two 
nonzero kernels, the only LTI operators which commute 
with N are delays (or delays and negation, if N is odd). 

Corollary 3: Chua [13] has defined algebraic circuit ele- 
ments as those with constitutive relations of the form 

NC*) __ H(s) 

memoryless LTI 

(4 

H(S) NC-1 

LTI memoryless 
- 

(b) 

Fig. 2. Two simple nonlinear structures: (a) is of the form HN, and (b) 
is of the form NH. Except in the trivial cases H constant or N linear, 
the two types are exclusive. 

cable repeater 

Ii (b) 

ii 
(4 

Fig. 3(a). Cable-repeater section. (b) Communications system. (c) Sys- 
tem with k th repeater nonlinearly faulted at output. (d) System with 
k th repeater linearly faulted. 

inductors are examples. Under weak conditions Theorem 1 
shows that if such an element is strictly nonlinear its order 
(a, /3) and its characteristic curve (a(~, y) = 0 are unique, 
that is, such elements have only one description as alge- 
braic elements. 

Application: Consider a communications system con- 
sisting of N cable-repeater sections, each with frequency 
response R(s). Suppose the output stage of the k th re- 
peater drifts off bias and starts distorting slightly. The 
faulted system I/O operator is then RN-“f(*)Rk, where 
f( .) represents the nonlinear output stage: see Fig. 3. 
Theorem 1 tells us that from I/O measurements alone (of 
the whole system) we can locate the faulty repeater.* This 
should be compared to a linear fault: suppose an element 
in the k th repeater amplifier drifts in such a way as to, say, 
halve the bandwidth of the repeater. The k th repeater is 
still linear, but with frequency response I?(s). I/O mea- 
surements alone cannot locate this fault, since the system’s 
linear (and only) frequency response is R(s)~-‘k(s) no 
matter where the fault is. 

IV. COMMENTS AND GENERALIZATIONS 

The theorem remains true under a wide variety of gener- 
alizations. It is true for discrete-time systems, with the 
obvious modification of the conclusion k(z) = azPdA( z) 
and C(z) = yzdC(z), d an integer. It holds for multidimen- 
sional systems as well, for example, for two-dimensional 

@a( da), i(p))-= 0 (where f(*) is the ath derivative, or in- 
tegral if -(Y < 0, of f ). Nonlinear resistors, capacitors, and 

‘One might suspect that this is possible. The advantage of our machin- 
ery is that it can tell us exactly which distortion products to look at. 
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syst.ems we get 

H,(sl;..s,;pl;..p,)=A(sl+ ... +s,,p,+ ... +p,) 

%Ch ~1). . . C(s,> P,) 

and a proof analogous to the one above establishes 

k(s,p)=aexp(-sX-pY)A(s,p) 

t(s, P) = yexp(sX+ pY)C(s, p) 

B(x) = a-‘B(y-lx). 

The theorem is also true for most noncausal A and C. 
For example, when their impulse responses fall off ex- 
ponentially A(s) and C(s) are analytic in a strip - z < Re s 
< E and the proof above applies directly. And under weaker 
conditions it is usually true as a consequence of the fact 
that the functional equation f (x + y) = ag(x)g( y) only 
has exponential solutions under quite general conditions, 
e.g., f and g measurable and nonzero. But there are 
pathological cases in which the theorem fails, for example, 
consider 

A( j,) = 
1 Iwl<l 
0 loI> 

B(x) =x2 

C( jw) = 
1 

1 I4<3 
0 IwI>3. 

Then ABC = ABZ, where I(s) = 1. 
From these comments we may conclude, for example, 

that the theorem holds for image processing operators of 
the form (1). Other generalizations, however, are not 
straightforward. We do not know under what conditions 
the theorem holds in the MIMO case. We suspect but 
cannot prove that the theorem holds for any measurable 
nonlinearity, and not just the analytic ones considered 
here. 

We have recently shown [15] that systems containing one 
SISO memoryless nonlinearity (possibly in a feedback loop) 
are unique modulo scaling, delays, and loop transforma- 
tion. This result applies directly to circuits containing one 
nonlinear element. The argument is slightly more involved 
and can be found in [15]. 

V. A STABLE DECOMPOSITIONMETHOD 

Our proof, which relies on partial derivatives and ana- 
lytic continuation, might suggest that the decomposition of 
H,, into A(s), B,,, and C(s) is quite sensitive. The main 
purpose of this section is to show that this is not so. We 
now give a sketch of the simplest case: discrete time, 
minimum phase exponentially decaying A and C. We de- 
compose the second kernel since the higher order kernels 
decompose similarly. We assume that H2 has been mea- 
sured: there are simpler methods to estimate A and C 
based on partial knowledge of H2 (e.g., from H2( ej’, e-i’) 
= A(0)B2JC(eJ”)j2; cf. [2], [3]) but measuring the kernels 

allows us to verify that the system has the form (I), as well 
as estimate A and C. It will be convenient to normalize 
A(0) = C(0) =l. Then In H2 is analytic in {(zl, z2)l lzll ~1, 
1~~1 al} and 

In H2 (e-j’,, ej’z) 

= In A(ej(“l+“‘))+ln B, +lnC(ej”l)+lnC(e@z). 

The assumptions imply that the terms above containing A, 
B,, and C, when considered elements of L,(T X T),4 are 
contained in the mutually orthogonal subspaces S,, S,, and 
S,, where 

S,= (g(O,+O,)lgcL,(T),Ig=O) 

S,= {f(e,)+f(o,)lfEL,(T), /f=O) 

and S, is the constants. A natural method to estimate In A, 
In B,, and 1nC is to project In H2 on these subspaces, i.e. 

lnB=&jn /” In H2(ei”l, ej’z) dQ,dQ, 
--a -77 

InA(e”) lnH2(ej(“-“l),e’“l)b~2,-lnB 
II 

lnC(e”)=&/: InH2(ej”,ej”l)d&?2,-lnB. 
$7 

In fact these formulas can be used to estimate In IAl, In ICI, 
and B, when A or C is not minimum phase,5 but the 
method must be modified to yield the correct phasts. The 
point is that A, B,, and C can be estimated in a stable way, 
without taking partial denvatives. 

VI. CONCLUSION 

The theorem has the interpretation that from I/O mea- 
surements alone, we can in principle extract information 
about the internal structure of a system of the form (1). We 
believe that this is an instance of a general property of 
nonlinear systems: the same complexity which makes non- 
linear systems difficult to represent, analyze, and design 
(e.g., noncommutativity, nondistributivity . . . ) also allows 
much more information about internal structure to be 
extracted from I/O measurements. 
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The Effects of Small Noise on Implicitly 
Defined Nonlinear Dynamical Systems 

S. SHANKAR SASTRY, MEMBER, IEEE 

Absrracr-The dynamics of a large class of nonlinear systems are 
described implicitly, i.e., as a combination of algebraic and differential 
equations. These dynamics admit of jump behavior. We extend the de- 
terministic theory to a stochastic theory since (i) the deterministic theory is 
restrictive, (ii) the macroscopic deterministic description of dynamics fre- 
quently arises from an aggregation of microscopically fluctuating dynamics, 
and (iii) to robustify the deterministic theory. We compare the stochastic 
theory with the deterministic one in the limit that the intensity of the 
additive white noise tends to zero. We study the modeling issues involved 
in applying this stochastic theory to the study of the noise behavior of a 
multivibrator circuit, discuss the limitations of our methodology for certain 
classes of systems and present a modified approach for the analysis of 
sample functions of noisy nonlinear circuits. 

I. INTRODUCTION 

T HE DYNAMICS of a large class of engineering sys- 
tems are described only implicitly, for instance, those 

of nonlinear circuits, swing dynamics of an interconnected 
power system, as also thermodynamic systems far from 
equilibrium. The implicit definition of their dynamics is as 
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follows: the state variables are constrained to satisfy some 
algebraic equations, i.e., they are constrained to lie on a 
manifold M in the state space. The dynamics on this 
manifold M are then specified implicitly by specifying only 
the projection of the vector field on M onto a certain base 
space above which M lies. (i.e., a subspace of the original 
state space of the same dimension as M). The process of 
obtaining the system dynamics explicitly consists of “lift- 
ing” the specified velocities onto a vector field on M 
(lifting is the inverse of projecting). Lifting may not, how- 
ever, be possible at points where the projection map (re- 
stricted to the tangent space of the constraint manifold) 
has singularities. This singularity is typically resolved by 
regzkzrization, i.e., by interpreting the algebraic constraint 
equations as the singularly perturbed limit of “parasitic” 
or fast dynamics. The dynamics of the original system are 
obtained as the degenerate limit of the dynamics of the 
regularized system-the resulting trajectories may be dis- 
continuous and this is referred to as jump behavior. 

The foregoing deterministic theory needs to be extended 
to a stochastic theory for three reasons: 

a) The conditions under which the limit trajectories to 
the regularizations exist are extremely restrictive so as to 
exclude several systems of interest.’ 
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