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Main idea

� many electrical engineering design problems can be cast as convex

optimization problems

� such problems can appear very di�cult, but can be solved very

e�ciently by recently developed methods

� (unfortunately) convexity is often not recognized, hence not

exploited
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Example 1

� linear elastic structure; forces

f1; : : : ; f100 induce de
ections

d1; : : : ; d300

� 0 � fi � Fmax
i , several

hundred other constraints: max

load per 
oor, max wind load

per side, etc.

f1

f2

f3

f4

Problem 1a: �nd worst-case de
ection, i.e., maxi jdij

Problem 1b: �nd worst-case de
ection, with each force \on" or

\o�", i.e., fi = 0 or Fmax
i
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Example 1

problem 1a is very easy

� readily solved in a few minutes on small workstation

� general problem has polynomial complexity

problem 1b is very di�cult

� could take weeks to solve . . .

� general problem NP-complete
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Example 2

polytope described by linear inequalities, aTi x � bi, i = 1; : : : ; L

a1

0

Problem 2a: �nd point closest to origin, i.e., min kxk

Problem 2b: �nd point farthest from origin, i.e., max kxk
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Example 2

problem 2a is very easy

� readily solved on small workstation

� polynomial complexity

problem 2b is very di�cult

� di�cult even with supercomputer

� NP-complete
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moral:

very di�cult and very easy problems can look quite similar
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Outline

� Convex optimization

� Examples

� Interior-point methods
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Convex optimization

minimize f0(x)

subject to f1(x) � 0; : : : fL(x) � 0

fi : R
n
! R are convex, i.e., for all x, y, 0 � � � 1,

fi(�x + (1� �)y) � �fi(x) + (1� �)fi(y)

� can have linear equality constraints

� di�erentiability not needed

� examples: linear programs (LPs), problems 1a, 2a

� other formulations possible (feasibility, multicriterion)
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(roughly speaking,)

Convex optimization problems are

fundamentally tractable

� computation time is small, grows gracefully with problem size and

required accuracy

� large problems solved quickly in practice

� what \solve" means:

{ �nd global optimum within a given tolerance, or,

{ �nd proof (certi�cate) of infeasibility

� not widely enough appreciated
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Outline

� Convex optimization

� Examples

� Interior-point methods
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Well-known example: FIR �lter design

transfer function: H(z) �=
nX

i=0
hiz

�i

design variables: x �= [h0 h1 : : : hn]
T

sample convex constraints:

� H(ej0) = 1 (unity DC gain)

� H(ej!0) = 0 (notch at !0)

� jH(ej!)j � 0:01 for !s � ! � �

(min. 40dB atten. in stop band)

� jH(ej!)j � 1:12 for 0 � ! � !b

(max. 1dB upper ripple in pass band)

� hi = hn�i (linear phase constraint)

� s(t) �=
tX

i=0
hi � 1:1H(ej0) (max. 10% step response overshoot)
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FIR �lter design example (M. Grant)

� sample rate 2=n sec�1

� linear phase

� max �1dB ripple

up to 0:4Hz

� min 40dB atten

above 0:8Hz

� minimize maxi jhij

� some solution times:

n = 255: 5 sec

n = 2047: 4 min
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Beamforming

omnidirectional antenna elements at positions p1; : : : ; pn 2 R2

plane wave incident from angle �:

exp j(k(�)Tp� !t); k(�) = �[cos � sin �]T

p1
k(�)

�

demodulate to get yi = exp(jk(�)Tpi)

form weighted sum y(�) =
nX

i=1
wiyi

design variables: x = [Re wT Im wT ]T

(antenna array weights or shading coe�cients)

G(�) �= jy(�)j antenna gain pattern
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Sample convex constraints:

� y(�t) = 1 (target direction normalization)

� G(�0) = 0 (null in direction �0)

� w is real (amplitude only shading)

� jwij � 1 (attenuation only shading)

Sample convex objectives:

� max fG(�) j j� � �tj � 5�g

(sidelobe level with 10� beamwidth)

� �2
X

i
jwij

2 (noise power in y)
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Open-loop trajectory planning

discrete-time linear system, input u(t) 2 Rp, output y(t) 2 Rq

sample convex constraints:

� jui(t)j � U (limit on input amplitude)

� jui(t + 1)� ui(t)j � S (limit on input slew rate)

� li(t) � yi(t) � ui(t) (envelope bounds for output)

sample convex objective:

� maxt;i jyi(t) � ydesi (t)j (peak tracking error)

17

Robust open-loop trajectory planning

input must work well with multiple plants

one input u applied to L plants; outputs are y(1); : : : ; y(L)

constraints are to hold for all y(i)

sample objectives:

� weighted sum of objectives for each i (average performance)

� max over objectives for each i (worst-case performance)
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Example

� two plants

� 0 � u(t) � 1

� j�u(t)j � 1:25=sec

� minimize worst-case peak

tracking error
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VLSI transistor sizing

subcircuit during transition contains Rs, Cs:

`on' transistor resistances; drain, source to ground capacitances

vin

R1

R2 R3

R4

R5

R6

C1

C2 C3

C4 C5

C6

v3

Di

vhigh vi

vin

� xi: size (width) of transistors, so total area is A(x) = fTx + g

� `on' conductance of transistor i: gi = �xi

� capacitance at node j : cj = aTj x + bj

� sample problem: minimize area s.t. max delay, limits on widths
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Approximation via dominant time constant

circuit dynamics: C(x)
dv

dt
= �G(x)v(t)

� conductance matrix G(x), capacitance matrix C(x) a�ne in x

� solutions have form v(t) =
X

i
�ie

�it

� eigenvalues 0 > �1 � �2 � � � � � �n given by

det(�iC(x) +G(x)) = 0

� slowest (\dominant") time constant given by Tdom = �1=�1
(related to delay)

� Tdom � Tmax () (�1=Tmax)C(x) +G(x) � 0

Problem: (convex, in fact, a semide�nite program)

minimize A(x)

subject to (�1=Tmax)C(x) +G(x) � 0; xmin
i � xi � xmax

i
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Transmitter power allocation

� m transmitters, mn receivers all at same frequency

� transmitter i wants to transmit to n receivers labeled (i; j),

j = 1; : : : ; n

transmitter i

receiver (i; j)

transmitter k

� Aijk is path gain from transmitter k to receiver (i; j)

� Nij is (self) noise power of receiver (i; j)

� variables: transmitter powers pk, k = 1; : : : ; m
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signal power at receiver (i; j): Sij = Aijipi

noise plus interference power at receiver (i; j): Iij =
X

k 6=i
Aijkpk +Nij

signal to interference/noise ratio (SINR) at receiver (i; j): Sij=Iij

Problem: choose pi to maximize smallest SINR:

maximize min
i;j

Aijipi
X

k 6=i
Aijkpk +Nij

subject to 0 � pi � pmax

. . . a (quasi-) convex problem (same methods work)
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Other examples

� control system analysis and design

� array signal processing, e.g., broadband beamforming

� �lter/controller realization

� experiment design & system identi�cation

� structural optimization, e.g., truss design

� design centering & yield maximization

� statistical signal processing

� computational geometry
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Outline

� Convex optimization

� Examples

� Interior-point methods
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Interior-point convex programming methods

history:

� Dikin; Fiacco & McCormick's SUMT (1960s)

� Karmarkar's LP algorithm (1984); many more since then

� Nesterov & Nemirovsky's general formulation (1989)

general:

� # iterations small, grows slowly with problem size

(typical number: 5��50)

� each iteration is basically least-squares problem

(hence can exploit problem structure via conjugate-gradients)
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Basic idea (oversimpli�ed)

choose (potential fct.) ' s.t.

� ' smooth

� '(x) ! +1

as x! feasible set boundary

� '(x) ! �1 as x! optimal

minimize ' by (modi�ed) Newton method

each Newton step is (mostly) a least-squares problem

if ' is properly chosen:

algorithm is polynomial, extremely e�cient in practice
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Conclusions

� diverse EE design problems can be cast as convex optimization

problems, hence e�ciently solved

� applications: numerical engines for CAD tools, embedded systems

as available computing power increases, this observation becomes more

relevant
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How many practical problems are convex?

many, but certainly not all, or even most

myth # 1: very few practical problems are convex

myth # 2: it's very hard to determine convexity in practice

these are self-propagating
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. . . the great watershed in optimization isn't between

linearity and nonlinearity, but convexity and nonconvexity.

| R. Rockafellar, SIAM Review 1993
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(Pointers to) references

where:

� anonymous ftp to isl.stanford.edu, in pub/boyd

� URL http://www-isl.stanford.edu/ boyd

what:

� survey articles with many references

� code

� lecture notes for EE392: Introduction to Convex Optimization with

Engineering Applications

Course: EE364, Winter 1996-7
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