
Annual Reviews in Control 56 (2023) 100917

A
1

F

V
A
D

A

K
A
S
C
V
S

1

c
k
A
a
a
q
Q
c
e
A
t
2

f
c
I
B
t
i
i
B
I
f

t

h
R

Contents lists available at ScienceDirect

Annual Reviews in Control

journal homepage: www.elsevier.com/locate/arcontrol

ull length article

alue-gradient iteration with quadratic approximate value functions
lan Yang ∗, Stephen Boyd
epartment of Electrical Engineering, Stanford University, Stanford, CA, USA

R T I C L E I N F O

eywords:
pproximate dynamic programming
tochastic control
onvex optimization
alue function approximation
upply chain optimization

A B S T R A C T

We propose a method for designing policies for convex stochastic control problems characterized by random
linear dynamics and convex stage cost. We consider policies that employ quadratic approximate value functions
as a substitute for the true value function. Evaluating the associated control policy involves solving a
convex problem, typically a quadratic program, which can be carried out reliably in real-time. Such policies
often perform well even when the approximate value function is not a particularly good approximation
of the true value function. We propose value-gradient iteration, which fits the gradient of value function,
with regularization that can include constraints reflecting known bounds on the true value function. Our
value-gradient iteration method can yield a good approximate value function with few samples, and little
hyperparameter tuning. We find that the method can find a good policy with computational effort comparable
to that required to just evaluate a control policy via simulation.
. Introduction

We consider convex approximate dynamic programming (ADP) poli-
ies for convex stochastic control problems, which involve systems with
nown random linear dynamics and convex stage costs. Evaluating an
DP policy reduces to solving a convex optimization problem involving
convex approximate value function. We focus on fitting quadratic

pproximate value functions, and refer to the associated policies as
uadratic approximate dynamic programming (QADP) policies. While
ADP policies are optimal for problems with convex quadratic stage
ost (Barratt & Boyd, 2021; Bertsekas, 2012), they can also serve as
ffective heuristics for other problem types. It has been observed that
DP policies can perform well even when using imperfect approxima-

ions of the true value function (Bertsekas, 2019; Keshavarz & Boyd,
014; Powell, 2007).

In this work, we propose an approximate value iteration method
or finding quadratic approximate value functions for convex stochastic
ontrol problems, which we refer to as value-gradient iteration (VGI).
n principle, an optimal value function may be found by iterating the
ellman operator, which maps real-valued functions on the state space
o real-valued functions on the state space (Bellman, 1954). Since it
s not possible in general to exactly represent functions on 𝐑𝑛, we
ncorporate a function approximation step after each application of the
ellman operator, a general approach called fitted value iteration (FVI).
n our proposed VGI, instead of directly fitting the value function, we
it the gradient of the value function with respect to the state vector.

It is sufficient to approximate the gradient since constant offsets in
he value function have no impact on the associated ADP policy. In

∗ Corresponding author.
E-mail address: yalan@stanford.edu (A. Yang).

addition, the gradient of the value function carries more information
than the value function itself (Dayan & Singh, 1995; Fairbank, 2008).
If the gradient is well approximated at a set of states, then the value
function is also well approximated locally around those states, up to an
additive constant which does not affect the policy. However, having a
good approximation of only the value at a set of states does not imply
that the value function is well approximated locally around those states.

Most importantly, VGI is practical to implement for QADP. We show
that, when it exists, the gradient of the Bellman operator applied to a
convex quadratic function can be obtained at any state by evaluating
a particular optimal dual variable associated with the QADP policy.
Since the gradient of a convex quadratic is an affine function, in
each iteration we fit an affine function to a set of pairs of states and
value-gradients. This fitting problem is a convex optimization problem.
Therefore, VGI involves solving a sequence of convex optimization
problems, which can be carried out reliably.

We also consider several techniques for enhancing the reliability
of VGI, including damping, a robust Huber fitting loss, and the in-
corporation of prior knowledge constraints and regularization. VGI
remains effective even when the state space dimension is large relative
to the number of fitting samples, as we will demonstrate with several
numerical examples. Finally, we note that the computational effort of
obtaining a good QADP policy using VGI is small enough that it is
comparable to that of simply evaluating the policy through simulation.
vailable online 10 November 2023
367-5788/© 2023 Elsevier Ltd. All rights reserved.

ttps://doi.org/10.1016/j.arcontrol.2023.100917
eceived 13 July 2023; Received in revised form 2 November 2023; Accepted 3 No
vember 2023

https://www.elsevier.com/locate/arcontrol
http://www.elsevier.com/locate/arcontrol
mailto:yalan@stanford.edu
https://doi.org/10.1016/j.arcontrol.2023.100917
https://doi.org/10.1016/j.arcontrol.2023.100917
http://crossmark.crossref.org/dialog/?doi=10.1016/j.arcontrol.2023.100917&domain=pdf

Annual Reviews in Control 56 (2023) 100917A. Yang and S. Boyd

B
1
2

d
f
v
c
o
H
(
B
t
2

R
s
p
i
t
o
a
b
a
2
t
1

a
C
w
E
c
X
t
e

t
M
s
d
e

1

a
c
m
i
i
i
m
s

2

2

D
𝑡

1.1. Related work

Dynamic programming. Dynamic programming (DP) provides
techniques for computing the optimal value function and policy for
general Markov decision processes. The optimal policy is evaluated
by solving an optimization problem, where the control is chosen by
minimizing the current stage cost plus the expected value function at
the next state. For convex stochastic control problems, this is a convex
optimization problem (Bellman, 1954; Bertsekas, 2017; Bertsekas &
Shreve, 1996; Puterman, 2014). However, it is possible to exactly
represent and find the value function in a only few special cases, for
example when the state space is discrete (Sutton & Barto, 2018), or
when we have a convex stochastic control problem with a convex
extended quadratic stage cost (Barratt & Boyd, 2021).

Approximate dynamic programming. ADP (Bertsekas, 2012, 2019; Pow-
ell, 2007) methods are heuristics used in stochastic control when the
problem cannot be solved by applying DP directly. Typically, these
methods either approximate the value function in DP or tune the
parameters of a parametric policy. In some contexts, approximate
value functions are known as control Lyapunov functions (Corless &
Leitmann, 1988; Freeman & Primbs, 1996).

One approach to ADP is to approximate the value function by
relaxing the Bellman equation to an inequality, and then solving a
convex optimization problem involving a model of the dynamics and
stage cost. When the state and input spaces are finite, this leads to a
linear program (LP) (De Farias & Van Roy, 2003). When the dynamics
are affine, the stage cost is quadratic, and the input is constrained
to be in a convex set, quadratic approximate value functions can be
obtained using semidefinite programming (Wang & Boyd, 2009; Wang,
O’Donoghue, & Boyd, 2015). In both cases, the resulting approximate
value functions are lower bounds on the true value function.

Other value function approximation methods search for an approxi-
mate value function that satisfies the Bellman equation along simulated
trajectories. This includes the method proposed in this paper, which
is closely related to fitted (or projected) value iteration (Bellman &
Dreyfus, 1959; Bertsekas, 2012; Keshavarz & Boyd, 2014). Other meth-
ods, which do not assume that a model of the dynamics and stage cost
are available, include 𝑄-iteration (Antos, Szepesvári, & Munos, 2007;

ertsekas, 2012), 𝑄-learning (Sutton & Barto, 2018; Watkins & Dayan,
992), and temporal difference learning (Bertsekas, Borkar, & Nedic,
004; Sutton, 1988).

Instead of approximating the value function, other ADP techniques
irectly optimize the parameters of a parametric policy to improve per-
ormance along system trajectories. Stochastic gradient descent and its
ariants have been employed to tune convex optimization control poli-
ies (Agrawal, Barratt, Boyd, & Stellato, 2020) and controllers based
n Proportional-Integral-Derivative (PID) control (Åström, Hägglund,
ang, & Ho, 1993; Minorsky, 1922) and model predictive control

MPC) (Amos, Jimenez, Sacks, Boots, & Kolter, 2018; Camacho &
ordons, 2013). Policy gradient methods provide a method for differen-
iating through policies parametrized by neural networks (Mnih et al.,
016; Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017).

einforcement learning. Reinforcement learning (RL) methods (Bert-
ekas, 2019; Sutton & Barto, 2018) can be considered a form of ap-
roximate dynamic programming (ADP), although their primary focus
s on learning from interactions with the system or a simulator, rather
han relying on explicit mathematical models of the system dynamics
r stage cost. In this work, we assume that models of the dynamics
nd stage cost are either known or have been estimated or learned
eforehand. This is similar to some model-based RL methods that learn
policy and a model of the dynamics jointly (Deisenroth & Rasmussen,
011; Sutton, 1990). In the context of control, the process of learning
he dynamics is typically referred to as system identification (Ljung,
2

998).
Value gradients. When considering a differentiable approximate value
function, it is advantageous to have accurate approximations of its
derivatives with respect to the state, i.e., the value gradient. If the value
gradient is well-approximated along a simulated trajectory, then the
approximate value function also provides a good local approximation
around that trajectory (Dayan & Singh, 1995). Notably, it is only
necessary to approximate the value gradient since constant offsets in
the approximate value function do not affect the associated policy.

On the other hand, solely having a good approximation of the value
function itself along a trajectory does not ensure a good local approxi-
mation. In many cases, value function approximation methods rely on
stochastic local exploration, such as dithering (Bertsekas, 2012; Sutton
& Barto, 2018), to overcome this limitation. Indeed, value-gradient-
based RL methods such as dual heuristic programming (DHP), Werbos
(1999) globalized DHP (Prokhorov & Wunsch, 1997), value-gradient
learning (Fairbank, 2008; Fairbank & Alonso, 2012), and stochastic
value gradients (Amos, Stanton, Yarats, & Wilson, 2021; Heess et al.,
2015) have been shown to find better policies using less simulation than
value function approximation methods that do not directly approximate
the value gradient.

VGI differs from the aforementioned value-gradient-based methods
in that it does not require stochastic approximations of the value
gradient. Fitted value iteration with value gradients is tractable for
convex stochastic control problems, since we can exactly evaluate the
gradient of the Bellman operator applied to a convex approximate value
function by solving a convex optimization problem.

Convex optimization control policies. For convex stochastic control, the
policy associated with a convex quadratic approximate value function
can be evaluated by solving a convex optimization problem, i.e., it is

convex optimization control policy (COCP) (Agrawal et al., 2020).
OCPs are typically evaluated by solving quadratic programs (QPs),
hich can often be done efficiently in real-time (Wang & Boyd, 2010).
valuating a COCP may also involve minimizing a more complex
onvex function, such as one parametrized by a neural network (Amos,
u, & Kolter, 2017) To enable embedded applications, code generation

ools like CVXGEN (Mattingley & Boyd, 2012) and CVXPYgen (Schaller
t al., 2022) can be utilized.

Other examples of COCPs include convex model predictive con-
rol (MPC) (Borrelli, Bemporad, & Morari, 2017; Garcia, Prett, &
orari, 1989) and convex approximate dynamic programming (Bert-

ekas, 2012; Keshavarz & Boyd, 2014). COCPs can also be tuned by
ifferentiating through their solution maps (Agrawal et al., 2020; Amos
t al., 2018).

.2. Outline

In Section 2, we introduce the convex stochastic control problem
nd solution methods, via dynamic programming and model predictive
ontrol. Approximate dynamic programming with quadratic approxi-
ate value functions is described in Section 3, value-gradient iteration

s introduced in Section 4, and extensions and variations are discussed
n Section 5. In Section 6, we present three numerical examples: an
nput-constrained linear quadratic regulator (LQR) problem, a com-
itments planning problem involving alternative investments, and a

upply chain optimization problem.

. Convex stochastic control

.1. Average-cost convex stochastic control problem

ynamics. We consider a dynamical system evolving in discrete time
= 0, 1, 2,…, with state 𝑥𝑡 ∈ 𝐑𝑛, input 𝑢𝑡 ∈ 𝐑𝑚, and affine dynamics

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 + 𝑐𝑡, 𝑡 = 0, 1,… ,

where 𝐴𝑡 ∈ 𝐑𝑛×𝑛, 𝐵𝑡 ∈ 𝐑𝑛×𝑚, and 𝑐𝑡 ∈ 𝐑𝑛 are random. We assume
the dynamics are time-invariant, i.e., (𝐴 ,𝐵 , 𝑐) are independent and
𝑡 𝑡 𝑡

Annual Reviews in Control 56 (2023) 100917A. Yang and S. Boyd

i

c

𝑥

t
t
f

a

identically distributed (IID) for different values of 𝑡. The initial state 𝑥0
s also random, independent of all (𝐴𝑡, 𝐵𝑡, 𝑐𝑡). When 𝐴𝑡, 𝐵𝑡, or 𝑐𝑡 are not

random, i.e., constant, we write them as 𝐴, 𝐵, or 𝑐.

Certainty-equivalent dynamics. We denote the expectations of the dy-
namics matrices as 𝐴̄ = 𝐄𝐴𝑡, 𝐵̄ = 𝐄𝐵𝑡, and 𝑐 = 𝐄𝑐𝑡. We refer to the
dynamical system with the matrices replaced by their expectations,

𝑧𝑡+1 = 𝐴̄𝑧𝑡 + 𝐵̄𝑡𝑣𝑡 + 𝑐 𝑡 = 0, 1,… ,

with initial condition 𝑧0 = 𝐄𝑥0, as the certainty-equivalent system (with
state 𝑧𝑡 ∈ 𝐑𝑛 and input 𝑣𝑡 ∈ 𝐑𝑚).

State-feedback policy. We consider the time-invariant state feedback
policy

𝑢𝑡 = 𝜙(𝑥𝑡), 𝑡 = 0, 1,… ,

where 𝜙 ∶ 𝐑𝑛 → 𝐑𝑚 is the policy that maps the state to the input. The
losed-loop system dynamics are

𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝜙(𝑥𝑡) + 𝑐𝑡, 𝑡 = 0, 1,… ,

which defines a stochastic process for the state 𝑥𝑡.

Stage cost. The stage cost is a function 𝑔 ∶ 𝐑𝑛 × 𝐑𝑚 → 𝐑 ∪ {∞}, where
𝑔(𝑥𝑡, 𝑢𝑡) is the cost at time 𝑡. The stage cost 𝑔 imposes constraints by
aking infinite values at disallowed state-input pairs (𝑥𝑡, 𝑢𝑡). We assume
hat the stage cost is a closed convex function. Note that the cost
unction does not depend on time, i.e., it is time-invariant.

In some applications the cost is also random, e.g., of the form
𝑔̃𝑡(𝑥𝑡, 𝑢𝑡), where 𝑔̃𝑡 is IID, and independent of 𝐴𝑡, 𝐵𝑡, 𝑐𝑡, and therefore
lso of 𝑥𝑡. Since we will work with the expected value of the stage

cost, we can handle this situation by taking 𝑔(𝑥, 𝑡) = 𝐄𝑔̃𝑡(𝑥, 𝑡), where
the expectation is over the random stage cost. For simplicity we assume
that this expectation may be computed analytically. In other cases, the
expectation may be approximated, for example using a sample average.

Average cost. The infinite-horizon average cost is given by

𝐽 = lim
𝑇→∞

1
𝑇 + 1

𝑇
∑

𝑡=0
𝐄𝑔(𝑥𝑡, 𝑢𝑡). (1)

Here, we assume that the limit and expectations exist.
We exclusively consider the average-cost problem, and do not con-

sider the closely-related discounted infinite horizon problem and finite
horizon problem, which may have time-varying stage cost. However,
our approach is readily extended to those problem settings, as discussed
in Section 5.

Convex stochastic control problem. The convex stochastic control prob-
lem is to choose the policy 𝜙 so as to minimize the cost 𝐽 . We will
denote an optimal policy as 𝜙⋆, and assume that it exists. We let 𝐽⋆

denote the optimal value, i.e., the cost 𝐽 with an optimal policy. The
data in this problem are the distributions of (𝐴𝑡, 𝐵𝑡, 𝑐𝑡) (which do not
depend on 𝑡), the distribution of 𝑥0, and the stage cost function 𝑔.

2.2. Dynamic programming

The optimal control problem is readily solved, at least in principle,
using dynamic programming (DP) (Bellman, 1954; Bertsekas, 2012;
Bertsekas & Shreve, 1996; Pontryagin, 1987; Puterman, 2014). An
optimal policy may be expressed in terms of a so-called Bellman or
optimal value function 𝑉 ⋆ ∶ 𝐑𝑛 → 𝐑 ∪ {∞}, which roughly speaking
represents the optimal long-term cost of being in a given state.

An optimal policy can be expressed in terms of a value function as

𝜙⋆(𝑥) = argmin
𝑢

(

𝑔(𝑥, 𝑢) + 𝐄𝑉 ⋆(𝐴𝑡𝑥 + 𝐵𝑡𝑢 + 𝑐𝑡)
)

. (2)

If there are multiple minima, we can arbitrarily choose one. The first
term in the quantity that is minimized is the immediate stage cost
3

incurred by the input choice 𝑢. The second term reflects the optimal
expected long-term cost of starting from the next state. The optimal
policy balances these two costs.

The policy does not change when we add a constant to a value
function. Without loss of generality we can remove this ambiguity by
insisting that 𝑉 ⋆(𝑥ref) = 0, where 𝑥ref is a reference state (for which
there is an optimal value function with finite value). The value function

𝑉 rel(𝑥) = 𝑉 ⋆(𝑥) − 𝑉 ⋆(𝑥ref)

is sometimes called a relative value function.

Bellman operator. It can be shown that a value function 𝑉 ⋆ and the
optimal cost 𝐽⋆ satisfy

𝑉 ⋆ + 𝐽⋆ =  𝑉 ⋆, (3)

where  is the Bellman operator, given by

( ℎ) (𝑥) = min
𝑢

(

𝑔(𝑥, 𝑢) + 𝐄ℎ(𝐴𝑡𝑥 + 𝐵𝑡𝑢 + 𝑐𝑡)
)

, (4)

for ℎ ∶ 𝐑𝑛 → 𝐑 ∪ {∞}.
It follows that a relative value function is a fixed point of the

Bellman operator  , i.e.,

𝑉 rel =  𝑉 rel.

This fixed point condition implies (3), with optimal cost 𝐽⋆ =  𝑉 ⋆

(𝑥ref).

Value iteration. The relative value function 𝑉 rel may be found by fixed
point iteration. Under certain technical conditions, the so-called value
iteration (or relative value iteration)

𝑉 𝑘+1 =  𝑉 𝑘 −  𝑉 𝑘(𝑥ref), 𝑘 = 1, 2,… (5)

converges, i.e., 𝑉 𝑘 − 𝑉 𝑘(𝑥ref) → 𝑉 rel and  𝑉 𝑘(𝑥ref) → 𝐽⋆ (Bertsekas,
2012; Puterman, 2014; White, 1969).

For future reference we mention a variation on value iteration called
damped value iteration, which has the form

𝑉 𝑘+1 = 𝜌𝑘
(

 𝑉 𝑘 −  𝑉 𝑘(𝑥ref)
)

+ (1 − 𝜌𝑘)𝑉 𝑘, 𝑘 = 1, 2,… , (6)

where 𝜌𝑘 ∈ (0, 1] with ∑

𝑘 𝜌𝑘(1 − 𝜌𝑘) = ∞. Damped value iteration
also satisfies 𝑉 𝑘 − 𝑉 𝑘(𝑥ref) → 𝑉 rel and  𝑉 𝑘(𝑥ref) → 𝐽⋆ under certain
technical conditions.

The value function is convex. The Bellman operator (4) maps con-
vex functions to convex functions, since expectation and partial min-
imization preserve convexity (see, e.g., Boyd and Vandenberghe (2004,
§3.2.1, §3.2.5)). With any convex 𝑉 1 (e.g., the zero function), it follows
that all iterates of value iteration are convex, which implies that its
limit 𝑉 ⋆ is convex.

One implication is that evaluating the policy (2), i.e., minimizing

𝑔(𝑥, 𝑢) + 𝐄𝑉 ⋆(𝐴𝑡𝑥 + 𝐵𝑡𝑢 + 𝑐𝑡)

over 𝑢, is a convex optimization problem. To see this, we observe that
𝐴𝑡𝑥+𝐵𝑡𝑢+𝑐𝑡 is an affine function of 𝑢, so by the affine pre-composition
rule, 𝑉 ⋆(𝐴𝑡𝑥+𝑏𝑡𝑢+𝑐𝑡) is a convex function of 𝑢. Adding this to 𝑔(𝑥, 𝑢) and
taking expectation preserve convexity, so the function that is minimized
is a convex function of 𝑢.

Since evaluating the policy (2) involves solving a convex optimiza-
tion problem, we refer to it as a convex optimization control policy.

Linear quadratic regulator. The dynamic programming approach can
only be carried out in practice in special cases. The most widely known
example is when the stage cost is a (convex) quadratic function, in
which case the optimal control problem is called the linear quadratic reg-
ulator (LQR). For LQR the Bellman operator preserves convex quadratic
functions, so it follows that the limit 𝑉 ⋆ is also convex quadratic, and
the optimal policy is affine, i.e., 𝜙⋆(𝑥) = 𝐾𝑥 + 𝑙, where 𝐾 ∈ 𝐑𝑚×𝑛

and 𝑙 ∈ 𝐑𝑚 (see Barratt and Boyd (2021)). Value iteration for LQR
can be carried out using basic linear algebra operations, and so is
tractable. Most importantly we have a practical way to represent the
Bellman iterates, and also their limit, by a finite set of parameters, the

coefficients of a quadratic function.

Annual Reviews in Control 56 (2023) 100917A. Yang and S. Boyd

(
i
e

(
a
c
a

t
o
a
s
i
𝑔
a
p
e
a
w
a

3

f

𝑉

w

o
a
d

Dynamic programing in the general case. Beyond the special case of LQR
described above, there are a handful of other very specific stochastic
control problems that are tractable to solve. These cases follow the
same general story line as LQR: There is a class of functions that
is preserved under the Bellman operator. One example is Merton’s
portfolio problem, which considers the allocation of wealth between
various assets over time, and admits a closed-form solution (Merton,
1969). Problems with a finite state space may, in principle, be solved
by DP, by representing the value function with a table of values. This
is referred to as the tabular case (Sutton & Barto, 2018). When the
state space is continuous but low-dimensional, say, with 𝑛 ≤ 4, the
region of interest in the state space may be represented using a finite
number of points, for example a uniform grid. Tabular DP may then be
used, in combination with an interpolation over those points, to give a
good approximation of the value function. However, this approach does
not scale to problems with larger state dimension, since the number of
points needed to represent the value function to a given accuracy grows
exponentially with the state dimension.

The challenge in carrying out dynamic programming in more gen-
eral cases is simple: There is no practical way to represent an arbitrary
convex function on 𝐑𝑛.

2.3. Certainty-equivalent steady-state optimal state-input pair

For many stochastic control problems, certainty-equivalent approx-
imations may be used to obtain heuristic policies without dynamic
programming. In this section we explain the idea of an optimal steady-
state certainty-equivalent optimal state-input pair. We start by making
two very crude approximations of the stochastic control problem. First,
we ignore all uncertainty by replacing the dynamics matrices with their
mean values (also called certainty-equivalent). Second, we assume that
the system is in steady-state, with constant state 𝑧 ∈ 𝐑𝑛 and constant
input 𝑣 ∈ 𝐑𝑚, i.e., 𝑧 = 𝐴̄𝑧+ 𝐵̄𝑣+ 𝑐. Then we choose 𝑧 and 𝑣 to minimize
the objective, which with the assumptions above reduces to 𝑔(𝑧, 𝑣). Thus
we solve the convex optimization problem

minimize 𝑔(𝑧, 𝑣)
subject to 𝑧 = 𝐴̄𝑧 + 𝐵̄𝑣 + 𝑐,

(7)

with variables 𝑧 ∈ 𝐑𝑛 and 𝑣 ∈ 𝐑𝑚. We refer to a solution of this problem
𝑧⋆, 𝑣⋆) as a certainty-equivalent steady-state optimal (CE-SSO) state-
nput pair, and denote it as (𝑥sso, 𝑢sso). For some problems, such as the
xample considered in Section 6.2, the constant policy 𝜙(𝑥) = 𝑢sso is a

reasonable heuristic.

2.4. Certainty-equivalent model predictive control

Certainty-equivalent model predictive control (CE-MPC) is another
heuristic policy for stochastic control (Borrelli et al., 2017; Garcia et al.,
1989). CE-MPC is not our focus, but the methods of this paper can also
be used to develop a good CE-MPC policy.

To evaluate the CE-MPC policy 𝜙mpc(𝑥), we solve an 𝐻-step ahead
planning problem with certainty-equivalent dynamics. The planning
problem is

minimize 1
𝐻+1

∑𝐻
𝜏=1 𝑔(𝑧𝜏 , 𝑣𝜏) + 𝑉 mpc(𝑧𝐻+1)

subject to 𝑧𝜏+1 = 𝐴̄𝑧𝜏 + 𝐵̄𝑣𝜏 + 𝑐, 𝜏 = 1,… ,𝐻
𝑧1 = 𝑥,

(8)

with variables 𝑧1,… , 𝑧𝐻+1 and 𝑣1,… , 𝑣𝐻 . The CE-MPC policy is then
𝜙mpc(𝑥) = 𝑣⋆1 , the first input of an optimal trajectory of the MPC
planning problem. (8).

In the CE-MPC problem (8), 𝑉 mpc is called the terminal cost. It can
be chosen to be zero (particularly when 𝐻 is large enough), or the
indicator function of 𝑥sso, an optimal certainty-equivalent steady-state
state. Another very good choice is 𝑉 , an approximation of the value
function, which can be found by the methods of this paper.
4

l

3. Quadratic approximate dynamic programming

3.1. Approximate dynamic programming

In this paper, we consider ADP policies that replace the optimal
value function 𝑉 ⋆ in (2) with a convex approximation 𝑉 . The ADP
policy is of the form

𝜙̂(𝑥) = argmin
𝑢

(

𝑔(𝑥, 𝑢) + 𝐄𝑉
(

𝐴𝑡𝑥 + 𝐵𝑡𝑢 + 𝑐𝑡
))

. (9)

We omit the constant or offset term since it does not affect the
ssociated policy.) If there are multiple minima, we can arbitrarily
hoose one. When 𝑉 is a convex quadratic function, we refer to (9)
s a QADP policy.

ADP is a heuristic that addresses the issue mentioned above, that
here is no practical way to represent an arbitrary convex function
n 𝐑𝑛 (Bellman & Dreyfus, 1959; Bertsekas, 2012; Munos, 2007). The
pproximate value function 𝑉 is chosen to approximate 𝑉 ⋆ in some
ense, and to make evaluating the policy (9) tractable. Evaluating 𝜙̂
s always a convex optimization problem; depending on the form of

and 𝑉 , the expectation can simplify and the problem can reduce to
common form, such as a quadratic program (QP). When it is not

ossible to evaluate the expectation in the policy exactly, we can use an
stimate obtained by replacing the expectation with a suitable sample
verage, i.e., a Monte Carlo approximation (Bertsekas, 2012). ADP often
orks well in practice, even in cases when 𝑉 is not a particularly good
pproximation of 𝑉 ⋆ (Agrawal et al., 2020; Keshavarz & Boyd, 2014).

.2. Quadratic approximate value functions

In this paper we focus exclusively on quadratic approximate value
unctions of the form

̂ (𝑥) = 1
2

[

𝑥
1

]𝑇 [

𝑃 𝑝
𝑝𝑇 0

] [

𝑥
1

]

= 1
2
𝑥𝑇 𝑃𝑥 + 𝑝𝑇 𝑥, (10)

where 𝑃 ⪰ 0, i.e., 𝑃 ∈ 𝐒𝑛+, the set of symmetric positive semidefinite
(PSD) 𝑛 × 𝑛 matrices.

The QADP policy associated with 𝑉 is parametrized by the 𝑛×𝑛 PSD
matrix 𝑃 and 𝑛-vector 𝑝, which we collectively refer to as 𝜃 = (𝑃 , 𝑝).
All together, the parameter 𝜃 contains

𝑛(𝑛 + 1)∕2 + 𝑛 = (1∕2)𝑛2 + (3∕2)𝑛 (11)

scalar parameters, which has order 𝑛2. We define 𝛩 = {𝜃 ∣ 𝑃 ⪰ 0}, the
set of parameters for which 𝑉 is convex.

3.3. Properties of QADP policies

We now consider several properties of the QADP policies which will
be useful in the sequel.

Simplifying the expectation. The QADP policy can be simplified, since
the expectation of a quadratic function can be expressed analytically in
terms of the first and second moments of its argument. Thus we have

𝐄𝑉 (𝐴𝑡𝑥 + 𝐵𝑡𝑢 + 𝑐𝑡) =
1
2

[

𝑢
1

]𝑇 [

𝑀 𝑚
𝑚𝑇 𝜇(𝑥)

] [

𝑢
1

]

, (12)

here
𝑀 = 𝐄𝐵𝑇

𝑡 𝑃𝐵𝑡,

𝑚 = 𝐄𝐵𝑇
𝑡 (𝑃𝐴𝑡𝑥 + 𝑃𝑐𝑡) + 𝐵̄𝑇 𝑝,

𝜇(𝑥) = 𝑥𝑇𝐄(𝐴𝑇
𝑡 𝑃𝐴𝑡)𝑥 + 2𝑥𝑇𝐄(𝐴𝑇

𝑡 𝑃𝑐𝑡) + 2𝑥𝑇 𝐴̄𝑇 𝑝 + 2𝑝𝑇 𝑐 + 𝐄𝑐𝑇𝑡 𝑃𝑐𝑡.

Note that 𝜇(𝑥) depends on 𝑥, and therefore is not constant, but the
ther coefficients 𝑀 and 𝑚 are constant and depend only on the first
nd second moments of 𝐴, 𝐵, 𝑐 (and 𝑃 and 𝑝). These formulas are
erived in Appendix A. Finally, we observe that 𝑀 , 𝑚, and 𝜇(𝑥) are
inear functions of 𝜃.

Annual Reviews in Control 56 (2023) 100917A. Yang and S. Boyd
Evaluating the policy. Since 𝑔(𝑥, 𝑢) is convex, evaluating the quadratic
ADP policy reduces to solving a deterministic convex optimization
problem. When in addition 𝑔(𝑥, 𝑢) is QP-representable, i.e., a con-
vex quadratic function plus a convex piecewise linear function, plus
the indicator function of linear inequality and equality constraints,
evaluating the QADP policy reduces to solving a QP (Wang & Boyd,
2010).

Gradient of the Bellman operator image. Given convex quadratic 𝑉 , we
may evaluate  𝑉 (𝑥), the Bellman operator applied to 𝑉 at any state 𝑥,
by solving the convex optimization problem associated with the QADP
policy. We can also compute ∇ 𝑉 (𝑥), where it is differentiable, and a
subgradient otherwise.

To do this, we represent  𝑉 (𝑥) as the optimal value of the convex
optimization problem

minimize 𝑔(𝑥̃, 𝑢) + 𝐄𝑉 (𝐴𝑡𝑥̃ + 𝐵𝑡𝑢 + 𝑐𝑡)
subject to 𝑥̃ = 𝑥,

(13)

where we have introduced the variable 𝑥̃. Let 𝜈⋆(𝑥) ∈ 𝐑𝑛 represent
the optimal Lagrange multiplier associated with the constraint 𝑥̃ = 𝑥.
Then, we have ∇ 𝑉 (𝑥) = −𝜈⋆(𝑥) when the gradient exists (Boyd &
Vandenberghe, 2004, §5.6). Otherwise, −𝜈⋆(𝑥) is a subgradient, i.e.,
−𝜈⋆(𝑥) ∈ 𝜕 𝑉 (𝑥).

4. Value-gradient iteration

4.1. Fitted value iteration

We begin by reviewing fitted (or projected) value iteration (FVI),
which is an approximation of value iteration (Bellman & Dreyfus,
1959; Bertsekas, 2012; Keshavarz & Boyd, 2014). The issue with value
iteration is that in practice, we cannot exactly represent the function
 𝑉 𝑘 in the update (6). FVI addresses this by restricting all approximate
value function iterates 𝑉 𝑘 to be convex quadratic functions.

In the 𝑘th iteration, we choose a set of states 𝑥1,… , 𝑥𝑁 , and evaluate
 𝑉 𝑘(𝑥𝑖) for each 𝑖 = 1,… , 𝑁 . We can evaluate each  𝑉 𝑘(𝑥𝑖) by
evaluating (4), which is a convex optimization problem. Then, we fit a
convex quadratic function 𝑉 𝑘+1∕2 to those points, such that

𝑉 𝑘+1∕2(𝑥𝑖) ≈  𝑉 𝑘(𝑥𝑖), 𝑖 = 1,… , 𝑁.

This leads to the damped fitted value iteration update

𝑉 𝑘+1 = 𝜌𝑘𝑉
𝑘+1∕2 + (1 − 𝜌𝑘)𝑉 𝑘, 𝑘 = 0, 1,… , (14)

which generates a sequence of convex quadratic functions 𝑉 𝑘, with
associated QADP policies.

Fitting convex quadratic functions. One method for finding parameters
𝜃 = (𝑃 , 𝑝) for the convex quadratic function 𝑉 𝑘+1∕2 is to fit it to a set
of points. We first evaluate 𝑣𝑖 =  𝑉 𝑘(𝑥𝑖) for each 𝑖 = 1,… , 𝑁 , and then
solve the fitting problem

minimize (1∕𝑁)
∑𝑁

𝑖=1 𝐿
(

𝑉 𝑘+1∕2(𝑥𝑖) + 𝑐 − 𝑣𝑖
)

+ 𝑟(𝜃)
subject to 𝜃 ∈ 𝛩,

(15)

with variables 𝜃 and 𝑐 ∈ 𝐑, where 𝑐 is a scalar offset. Here 𝐿 ∶ 𝐑 → 𝐑
is a convex fitting loss function, and 𝑟 ∶ 𝐒𝑛 × 𝐑𝑛 → 𝐑 ∪ {∞} is
a convex regularization function, with infinite values used to impose
(convex) constraints on 𝜃. This is a convex optimization problem, since
𝑉 𝑘+1∕2(𝑥𝑖) is a linear function of 𝜃. Possible choices for 𝐿 include the
squared loss or the robust Huber loss (Huber, 1992), given by

𝐿hub(𝑧) =

{

(1∕2)𝑧2 |𝑧| ≤ 𝑀
𝑀(|𝑧| −𝑀∕2) |𝑧| > 𝑀.

(16)

The Huber loss is a more robust alternative to the square loss, in the
presence of outliers. Possible choices for 𝑟 include 𝓁2 regularization
and prior knowledge constraints, and are discussed in Section 4.3. For
simplicity, we consider the standard Huber function, which transitions
from the quadratic to absolute value at 𝑀 = 1. In general, 𝑀 may be
tuned by cross-validation, using a procedure similar to that described
5

in Section 4.3.
Convergence. Convergence guarantees for FVI are available when the
approximation error of ∇ 𝑉 𝑘 is small enough (Bertsekas, 2012; Munos,
2007). However, unlike value iteration, FVI is not guaranteed to con-
verge in general (Baird, 1995; Tsitsiklis & Van Roy, 1996). Never-
theless, with an appropriate approximation ∇̂ 𝑉 𝑘 and damping pa-
rameters 𝜌𝑘, FVI can often find policies with good performance in
practice.

4.2. Value-gradient iteration

VGI is a special case of FVI, where we fit 𝑉 𝑘+1∕2 using gradients
instead of values. In Section 3.3, we showed that we can evaluate
∇ 𝑉 𝑘(𝑥) at any state 𝑥 where  𝑉 𝑘 is differentiable, by evaluating a
particular optimal Lagrange multiplier. Therefore, we can find 𝑉 𝑘+1∕2

by fitting its gradient.
That is, we choose 𝑉 𝑘+1∕2(𝑥) = (1∕2)𝑥𝑇 𝑃𝑥+𝑝𝑇 𝑥 such that 𝑃 ⪰ 0 and

∇𝑉 𝑘+1∕2(𝑥) = 𝑃𝑥𝑖 + 𝑝 ≈ ∇ 𝑉 𝑘(𝑥𝑖), 𝑖 = 1,… , 𝑁.

Once we have found 𝑉 𝑘+1∕2, we apply the damped update (14) to
generate the next iterate 𝑉 𝑘+1. Like in standard FVI, this generates
a sequence of convex quadratic functions 𝑉 𝑘, with associated QADP
policies.

Fitting the gradient. In this case, we fit an affine function ∇𝑉 𝑘+1∕2(𝑥) =
𝑃𝑥 + 𝑝 to a set of points, subject to the constraint that 𝑃 is symmetric
positive semidefinite. In each iteration, we evaluate 𝑔𝑖 = ∇ 𝑉 𝑘(𝑥𝑖) for
each 𝑖 = 1,… , 𝑁 , and then solve the fitting problem

minimize (1∕𝑁)
∑𝑁

𝑖=1 𝐿
(

∇𝑉 𝑘+1∕2(𝑥𝑖) − 𝑔𝑖
)

+ 𝑟(𝜃)
subject to 𝜃 ∈ 𝛩,

(17)

with variables 𝜃. Here 𝐿 ∶ 𝐑𝑛 → 𝐑 is a multivariate convex fitting
loss function, and 𝑟 is, like in (15), a convex regularization function.
This is also a convex optimization problem, since ∇𝑉 𝑘+1∕2(𝑥𝑖) is a linear
function of 𝜃.

Possible choices for 𝐿 include the squared 𝓁2 norm and the circular
Huber loss

𝐿hub(𝑧) =

{

(1∕2)‖𝑧‖22 ‖𝑧‖2 ≤ 𝑀
𝑀(‖𝑧‖2 −𝑀∕2) ‖𝑧‖2 > 𝑀,

(18)

which extends the scalar Huber loss (16) to the multivariate case. Like
in the scalar case, the circular Huber loss is a more robust alternative
to the square function, in the presence of outliers.

Choice of sampling points. An important consideration is the choice of
the state samples values 𝑥1,… , 𝑥𝑁 at which we evaluate the policy and
 𝑉 𝑘(𝑥𝑖). Ideally the samples should reflect the states that the system
is likely to be in, i.e., samples from the steady-state distribution of 𝑥𝑡
under the policy 𝜙𝑘.

To accomplish this we choose the sample points by simulating the
current policy for 𝑁 steps, using the current policy 𝜙𝑘. In the first
iteration 𝑘 = 1, we initialize the simulation at a state chosen at random.
In subsequent iterations, we initialize the simulation at the last state in
the previous iteration.

4.3. Regularization, constraints, and lower bounds

Prior information, if available, can be incorporated as regularization
terms or constraints in the fitting problem, through the function 𝑟(𝜃) in
the fitting problem (17). Constraints and lower bounds may be imposed
by setting 𝑟 to have value ∞ when 𝜃 is not consistent with the prior
information. We now describe a nonexhaustive list of possibilities that

may be combined to form 𝑟(𝜃).

Annual Reviews in Control 56 (2023) 100917A. Yang and S. Boyd

𝑃
p

o

r

w
a
i

𝜕

w
p
S
f

∇

w
t
c

5

5

w
i

𝑥

w
a
d
a

𝜙

S
i
f
i
&
a

Ridge regularization. We may add an 𝓁2 penalty on the parameters of
the value function

𝑟(𝜃) = 𝜆
(

‖𝑃‖2𝐹 + ‖𝑝‖22
)

,

where 𝜆 > 0 is a scalar regularization parameter and ‖ ⋅ ‖𝐹 denotes the
Frobenius norm. The 𝓁2 regularization ensures that the fitting problem
is well-posed and helps mitigate overfitting, and is sometimes referred
to as Tikhonov or ridge regularization (Hastie, Tibshirani, & Friedman,
2009; Tikhonov & Arsenin, 1977).

The parameter 𝜆 is typically chosen using use out-of-sample or cross-
validation. To do this we divide the fitting data (𝑥𝑖, 𝑣𝑖) into two sets, the
training data and the validation data. We fit 𝑉 using the training data,
for a range of values of 𝜆, typically on a log scale with upper limits
𝜆max and 𝜆max, and then evaluate the average loss on the validation
data for each value of 𝜆. We then choose a value that gives near
minimum validation error, with a preference for larger values, i.e., more
regularization. This approach is often referred to as grid search. A more
thorough method is to use cross-validation (Hastie et al., 2009), and
more sophisticated search methods for evaluating scaling parameters
may also be considered; see, for example, Jamieson and Talwalkar
(2016).

Lasso regularization. The 𝓁1 penalty

𝑟(𝜃) = 𝜆

(𝑛
∑

𝑖,𝑗=1
|𝑃𝑖𝑗 | + ‖𝑝‖1

)

with regularization parameter 𝜆 > 0 is known as LASSO (Hastie et al.,
2009). This regularization is similar to ridge regression in that both
shrink the values of the parameters; however, the LASSO is more likely
to produce sparse solutions, i.e., 𝑃 and 𝑝 with zero-valued entries.
Therefore, the LASSO regularization can be particularly useful for
weakly coupled systems.

Like with ridge regression, the value of 𝜆 may be tuned using out-
of-sample or cross-validation. When multiple regularization terms are
used, we can use the same strategy to find a good set of values for each
regularization parameter. For example, the case where both ridge and
LASSO regularization are employed is known as the elastic net (Zou
& Hastie, 2005). In this case, the aforementioned grid search strategy
may be used to select the two regularization parameters jointly.

Symmetry. In some cases, we may know that the value function 𝑉
should be symmetric, i.e., 𝑉 (𝑥) = 𝑉 (−𝑥) for any 𝑥 ∈ 𝐑𝑛. The LQR exam-
ple considered in Section 6.1, for example, satisfies this property. For
quadratic approximate value functions, symmetry may be implemented
by the constraint 𝑝 = 0.

Fixed minimizer. When we can identify a point 𝑥⋆ in the state space
that seems to be the best, we may include the constraint argmin𝑥 𝑉 (𝑥) =
𝑥⋆ to the fitting problem. This is equivalent to the linear equality
constraint 𝑃𝑥⋆ + 𝑝 = 0. A special case is when 𝑉 is constrained to be
symmetric, in which case 𝑉 (𝑥) is minimized at zero.

Lower bounds. In some cases, a quadratic pointwise lower bound

𝑉 lb(𝑥) = 1
2
𝑥𝑇 𝑃 lb𝑥 + (𝑝lb)𝑇 𝑥 = 1

2

[

𝑥
1

]𝑇 [

𝑃 lb 𝑝lb

(𝑝lb)𝑇 0

] [

𝑥
1

]

on 𝑉 ⋆ is available up to an additive constant, and may be included as
an additional constraint. This may be done by introducing an additional
variable 𝑠, and imposing the pointwise constraint 𝑉 + 𝑠 ≥ 𝑉 lb. This can
be expressed as the convex constraint
[

𝑃 − 𝑃 lb 𝑝 − 𝑝lb

(𝑝 − 𝑝lb)𝑇 𝑠

]

⪰ 0, (19)

as shown in Appendix B. Since 𝑃 lb ⪰ 0, this constraint implies that
⪰ 0. So when we add a quadratic lower bound constraint to the fitting

roblem, we no longer need the constraint 𝑃 ⪰ 0.
In many cases we can form a convex quadratic lower bound 𝑉 lb

n the true value function 𝑉 ⋆. In the simplest case we can take
6

s

𝑉 ⋆ = 0 when the stage cost is nonnegative. Another method is
to form an LQR relaxation of the problem, i.e., to replace 𝑔 with
a quadratic lower bound, for example, by ignoring constraints on
𝑢. The resulting LQR problem can be solved exactly, and its value
function 𝑉 lqr is a lower bound on 𝑉 ⋆. More sophisticated methods
for computing a lower bound on the value function involve solving
a convex optimization problem (Wang & Boyd, 2009) or a series of
convex problems (O’Donoghue, Wang, & Boyd, 2011).

When the dynamics matrices 𝐴𝑡 and 𝐵𝑡 are random, a simpler lower
bound may be found by considering the (deterministic) LQR relaxation
of the CE problem; see Appendix C.

Policy interpolation. Suppose we have a set of states 𝑥1,… , 𝑥𝐵 , and
equire that the policy takes on corresponding values 𝑢1,… , 𝑢𝐵 , i.e.,

𝜙(𝑥𝑗) = 𝑢𝑗 , 𝑗 = 1,… , 𝐵.

This condition may be written as

0 ∈ 𝜕𝑔(𝑥𝑗 , 𝑢𝑗) + ∇𝐄𝑉 𝑘(𝐴𝑡𝑥
𝑗 + 𝐵𝑡𝑢

𝑗 + 𝑐𝑡), (20)

where 𝜕𝑔(𝑥𝑗 , 𝑢𝑗) is the set of subgradients of 𝑔(𝑥, 𝑢) with respect to 𝑢,
evaluated at (𝑥𝑗 , 𝑢𝑗).

In some cases, this constraint has a simple representation. For
example, if the stage cost may be written in the form

𝑔(𝑥, 𝑢) = ℎ(𝑥, 𝑢) + 𝐼 ((𝑥, 𝑢) ∈ 𝐶)

here ℎ is differentiable and 𝐼 ((𝑥, 𝑢) ∈ 𝐶) is the indicator function of
polyhedral set 𝐶, then the constraint may be written as a linear

nequality constraint on the parameters 𝑃 and 𝑝. First, note that

𝑔(𝑥𝑗 , 𝑢𝑗) = ∇ℎ(𝑥𝑗 , 𝑢𝑗) + 𝜕𝐼 ((𝑥, 𝑢) ∈ 𝐶) ,

here 𝜕𝐼 ((𝑥, 𝑢) ∈ 𝐶) is the normal cone to 𝐶 at (𝑥𝑗 , 𝑢𝑗). Since 𝐶 is a
olyhedron the normal cone is also a polyhedron (Rockafellar, 1970,
23), i.e., representable by a set of linear inequality constraints. Next,
rom (12) we have

𝐄𝑉 𝑘(𝐴𝑡𝑥
𝑗 + 𝐵𝑡𝑢

𝑗 + 𝑐𝑡) = 𝐄(𝐵𝑇
𝑡 𝑃𝐵𝑡)𝑢𝑗 + 𝐄𝐵𝑇

𝑡 (𝑃𝐴𝑡𝑥
𝑗 + 𝑃𝑐𝑡) + 𝐵̄𝑇 𝑝,

hich is a linear function of 𝑃 and 𝑝. Therefore, the policy interpola-
ion constraints (20) may be represented by a set of linear inequality
onstraints on 𝑃 and 𝑝.

. Extensions and variations

.1. Input-affine dynamics

The methods presented in this paper can also be applied in cases
here the dynamics are nonlinear but input-affine. That is, the dynam-

cs may be written in the form

𝑡+1 = 𝑓𝑡(𝑥𝑡) + 𝐵𝑡(𝑥𝑡)𝑢𝑡,

here 𝑓𝑡 ∶ 𝐑𝑛 → 𝐑𝑛 and 𝐵𝑡 ∶ 𝐑𝑛 → 𝐑𝑛×𝑚 are random functions. We
gain assume that (𝑓𝑡, 𝑔𝑡) are IID for different values of 𝑡. The affine
ynamics described in Section 2 are a special case, where 𝑓𝑡(𝑥) = 𝐴𝑡𝑥+𝑐𝑡
nd 𝑔𝑡(𝑥) = 𝐵𝑡.

In the input-affine case, the ADP policy (9) is of the form

̂(𝑥) = argmin
𝑢

(

𝑔(𝑥, 𝑢) + 𝐄𝑉
(

𝑓𝑡(𝑥) + 𝑔𝑡(𝑥)𝑢
))

.

ince the dynamics are affine in 𝑢, the expected value 𝐄𝑉 (𝑓𝑡(𝑥)+𝑔𝑡(𝑥)𝑢)
s also affine in 𝑢, when 𝑉 is convex. When 𝑉 is a convex quadratic
unction of the form (10), the expected value may be computed exactly,
n terms of the first and second moments of 𝑓𝑡(𝑥) and 𝑔𝑡(𝑥) (Keshavarz

Boyd, 2014). Hence, the policy can still be evaluated by solving
convex optimization problem, and VGI can still be performed in a

imilar manner.

Annual Reviews in Control 56 (2023) 100917A. Yang and S. Boyd
5.2. Alternative cost functions

Discounted infinite-horizon problem. The mean discounted infinite-
horizon cost is given by

𝐽 =
∞
∑

𝑡=0
𝛾 𝑡𝐄𝑔𝑡(𝑥𝑡, 𝑢𝑡),

where 𝛾 ∈ (0, 1) is a discount factor, and the sum and expectations
are assumed to exist. In this case, the value function 𝑉 ⋆ represents the
optimal cost-to-go, and the optimal policy is of the form

𝜙⋆(𝑥) = argmin
𝑢

(

𝑔(𝑥, 𝑢) + 𝛾𝐄𝑉 ⋆(𝐴𝑡𝑥 + 𝐵𝑡𝑢 + 𝑐𝑡)
)

.

For the discounted infinite-horizon problem, VGI proceeds in the same
way, except with the Bellman operator defined as

( ℎ) (𝑥) = min
𝑢

(

𝑔(𝑥, 𝑢) + 𝛾𝐄ℎ(𝐴𝑡𝑥 + 𝐵𝑡𝑢 + 𝑐𝑡)
)

,

for ℎ ∶ 𝐑𝑛 → 𝐑 ∪ {∞}.

Finite-horizon problem. In the finite-horizon problem, the cost is given
by

𝐽 =
𝑇
∑

𝑡=0
𝐄𝑔𝑡(𝑥𝑡, 𝑢𝑡),

where the stage cost may be time-varying, and the expectations are
assumed to exist. In this case, the value function 𝑉 ⋆

𝑡 depends on time,
and may be found using a backward recursion. The value iteration
starts with

𝑉 ⋆
𝑇 (𝑥) = min

𝑢
𝑔𝑇 (𝑥, 𝑢),

and then proceeds as

𝑉 ⋆
𝑡 (𝑥) = 𝑡𝑉 ⋆

𝑡+1(𝑥), 𝑡 = 𝑇 , 𝑇 − 1,… , 0,

where the Bellman operator at time 𝑡 is defined as
(

𝑡ℎ
)

(𝑥) = min
𝑢

(

𝑔𝑡(𝑥, 𝑢) + 𝛾𝐄ℎ(𝐴𝑡𝑥 + 𝐵𝑡𝑢 + 𝑐𝑡)
)

,

for ℎ ∶ 𝐑𝑛 → 𝐑 ∪ {∞}.
VGI proceeds similarly for the finite-horizon problem, using an

analogous function fitting approximation of the Bellman operator.

5.3. Parallel simulations

In VGI (and FVI in general), we select 𝑁 sample points by simulating
the current policy. We can also select points from more than one simu-
lated trajectory. To do this we choose the sample points by simulating
𝐾 different trajectories for 𝑇 steps each, using the current policy. In
iteration 𝑘, each of these 𝐾 trajectories gives us 𝑇 states at which we
evaluate the policy 𝜙𝑘, so all together we have 𝑁 = 𝑇𝐾 states and
associated evaluations of ∇ 𝑉 𝑘 to use in the fitting problem (17). One
advantage of this method is that the 𝐾 trajectories can be evaluated in
parallel.

6. Numerical examples

In this section, we present three numerical examples, which in-
volve a box-constrained LQR problem, a commitment planning problem
with an alternative investments fund, and a supply chain optimization
problem. Comparisons with other ADP methods are given in Section 7.

The code for the examples is available at https://github.com/
cvxgrp/vgi. The ADP policies and VGI method are implemented using
CVXPY (Agrawal, Verschueren, Diamond, & Boyd, 2018; Diamond &
Boyd, 2016). In addition, the code generation tool CVXPYgen (Schaller
et al., 2022) was used to create custom solvers for the ADP policies,
implemented in C. The experiments were performed on two cores of
an Intel Xeon E5-2640 CPU.
7

Fig. 1. VGI for the box-constrained LQR problem.

6.1. Box-constrained linear quadratic regulator

We first consider a traditional linear quadratic regulator (LQR)
problem. The dynamics are time-invariant, and given by

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑐𝑡,

where 𝐴 ∈ 𝐑𝑛×𝑛 and 𝐵𝑛×𝑚 are known and fixed, and 𝑐𝑡 is an IID random
variable with zero mean and covariance 𝐄𝑐𝑡𝑐𝑇𝑡 = 𝐶. The stage cost is
given by

𝑔(𝑥, 𝑢) = 𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢 + 𝐼(−𝑢max ≤ 𝑢 ≤ 𝑢max),

where 𝑄 ⪰ 0, 𝑅 ≻ 0, and 𝑢max > 0 is a maximum input magnitude, in
any component of the input.

For this problem, a lower bound 𝐽 lb on the optimal cost and a
quadratic lower bound 𝑉 lb on the optimal value function can be found
by solving a semidefinite program (SDP) (Wang & Boyd, 2009). An
upper bound on the optimal cost may be found by evaluating the ADP
policy using 𝑉 lb as the approximate value function.

Numerical example. We consider a problem instance with 𝑛 = 12 and
𝑚 = 3. The entries of 𝐴 are chosen IID from a uniform distribution on
[−1, 1]. The matrix 𝐴 was then rescaled to have a maximum eigenvalue
of 1. The entries of 𝐵 are chosen IID from a uniform distribution on
[−0.5, 0.5]. The process noise 𝑐𝑡 is normally distributed, with zero mean
and covariance 0.4𝐼 . The stage cost parameters are given by 𝑄 = 𝐼 and
𝑅 = 𝐼 , and the maximum input magnitude is 𝑢max = 0.4.

Results. We carried out VGI for 40 iterations, starting from the initial
value function 𝑉 1(𝑥) = 𝑥𝑇𝑄𝑥. We included the symmetry constraint
𝑝 = 0 in the fitting step. In each iteration, the fitting step was performed
using 𝑁 = 50 fitting points, obtained by simulating the current policy.
The damping coefficient was fixed to 𝜌𝑘 = 0.5.

Fig. 1 shows the average cost versus the number of policy evalu-
ations used to generate the data for the fitting step. Also plotted are
the SDP-based upper and lower bounds (Wang & Boyd, 2009) and
the average cost of the CE-MPC policy with a horizon of 𝐻 = 30. In
this example, VGI converges to a slightly better cost than that of the
CE-MPC policy.

6.2. Commitments in an alternative investments fund

Our next example is a practical example, and more specific. We con-
sider a fund that invests in 𝑚 so-called alternative investment classes,
such as venture capital, infrastructure projects, direct lending, or pri-
vate equity. Alternative investments are found in the portfolios of in-
surance companies, retirement funds, and university endowments. For
more details, see Luxenberg, Boyd, van Beek, Cao, and Kochenderfer
(2022) and the papers cited therein.

https://github.com/cvxgrp/vgi
https://github.com/cvxgrp/vgi
https://github.com/cvxgrp/vgi

Annual Reviews in Control 56 (2023) 100917A. Yang and S. Boyd

a
n
c
m
N
a
c

T

𝑛

w
c
n
m
d
i
T

𝑝

a
i
a
o

w

𝐴

T
d
m

c

In each time period (typically quarters) 𝑡 = 1, 2,…, we make
nonnegative commitments to the 𝑚 alternative asset classes. These are
mounts we promise to invest, in response to capital calls. Over the
ext few years, we put money into the investments in response to
apital calls, up to the amount of previous commitments. We receive
oney from each the investments in later years through distributions.
either the timing nor amounts of the capital calls and distributions
re directly under our control, except that the total of the capital calls
annot exceed our total commitments for each asset class.

We first describe some critical quantities.

• 𝑢𝑡 ∈ 𝐑𝑚
+ denotes the amounts that the investor commits in period

𝑡, to each of the 𝑚 asset classes. (These commitments will be the
input in our stochastic control problem.)

• 𝑝𝑡 ∈ 𝐑𝑚
+ denotes the amounts that the investor pays in to the

investment in response to capital calls in period 𝑡.
• 𝑑𝑡 ∈ 𝐑𝑚

+ denotes the amount that the investor receives in distri-
butions from the investments in period 𝑡.

• 𝑛𝑡 ∈ 𝐑𝑚
+ denotes the net asset values (NAVs) of the investments in

period 𝑡.
• 𝑙𝑡 ∈ 𝐑𝑚

+ denotes the total amount of uncalled commitments, i.e.,
the difference between the total so far committed and the total so
far that has been called. (This is a liability, so we use the symbol
𝑙.)

he units for all of these is typically millions of USD.
A simple dynamical model relating these variables is

𝑡+1 = 𝐝𝐢𝐚𝐠(𝑟𝑡)𝑛𝑡 + 𝑝𝑡 − 𝑑𝑡, 𝑙𝑡+1 = 𝑙𝑡 − 𝑝𝑡 + 𝑢𝑡, 𝑡 = 1, 2… ,

here 𝑟𝑡 ∈ 𝐑𝐾
++ is the vector of per-period total returns for the asset

lasses, assumed to be IID with some known distribution such as log-
ormal. In words: the value of each investment class in each period is
ultiplied by its (random) return, increased by the amount paid in, and
ecreased by the amount distributed; the total uncalled commitments
s decreased by the capital calls, and increased by new commitments.
he calls and distributions are modeled as

𝑡 = 𝐝𝐢𝐚𝐠(𝛾call
𝑡)𝑙𝑡, 𝑑𝑡 = 𝐝𝐢𝐚𝐠(𝛾dist

𝑡)𝐝𝐢𝐚𝐠(𝑟𝑡)𝑛𝑡, 𝑡 = 1, 2,… ,

where 𝛾call
𝑡 and 𝛾dist

𝑡 are random variables in (0, 1)𝑚, called the call
nd distribution intensities. We will assume that these are IID, and
ndependent of 𝑟𝑡. In words: In each period and for each asset class,
random fraction of the total liability is called, and a random fraction
f the NAV is distributed.

We can express the dynamics as a random linear dynamical system
ith state 𝑥𝑡 = (𝑛𝑡, 𝑙𝑡) ∈ 𝐑2𝑚 and input 𝑢𝑡 ∈ 𝐑𝑚, with dynamics matrices

𝑡 =
[

𝐝𝐢𝐚𝐠(𝑟𝑡)(𝐼 − 𝐝𝐢𝐚𝐠(𝛾dist𝑡)) 𝐝𝐢𝐚𝐠(𝛾call𝑡)
0 𝐼 − 𝐝𝐢𝐚𝐠(𝛾call𝑡)

]

, 𝐵𝑡 =
[

0
𝐼

]

, 𝑐𝑡 = 0.

The goal is to choose commitments so as to reach and maintain a
target asset allocation 𝑛tar ∈ 𝐑𝑚

+, while penalizing deviations of the
commitments 𝑢𝑡 from the CE-SSO commitment 𝑢sso ∈ 𝐑𝑚

+. We consider
stage cost

𝑔(𝑥𝑡, 𝑢𝑡) = ‖𝑛𝑡 − 𝑛tar‖2 + 𝜆‖𝑢𝑡 − 𝑢sso‖2 + 𝐼(0 ≤ 𝑢𝑡 ≤ 𝑢max),

where 𝜆 > 0 is a penalty coefficient and 𝑢max ∈ 𝐑𝑚
+ are the maximum

allowable commitments to each of the asset classes. We take the fixed
input 𝑢sso is a solution to the certainty-equivalent steady-state problem
(7), with the input cost term 𝜆‖𝑢𝑡 − 𝑢sso‖2 removed from the stage cost.

For this problem, we find a quadratic lower bound 𝑉 lb on the value
function by relaxing the constraints on the input 𝑢𝑡, replacing 𝐴𝑡 with
𝐴̄, and solving the certainty equivalent LQR problem.

Numerical example. We consider an example with 𝑚 = 6 asset classes.
The returns 𝑟𝑡 are distributed according to a log-normal distribution,
i.e., 𝑟𝑡 = exp(𝑧𝑡), with 𝑧𝑡 ∼  (𝜇,𝛴). The parameters 𝜇 and 𝛴 were
chosen such that the mean quarterly returns have means
8

𝐄𝑟𝑡 = (1.0, 1.1, 1.1, 1.0, 1.1, 1.1)
Fig. 2. VGI for the commitments planning problem.

and standard deviations

𝜎𝑡 = (0.1, 0.2, 0.2, 0.1, 0.2, 0.1) .

his leads to annualized returns with means around 20% and standard
eviations around 30%. The returns are correlated, with correlation
atrix

orr(𝑟𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −0.06 −0.05 0.62 −0.32 −0.44
−0.06 1 −0.21 0.18 0.80 −0.12
−0.05 −0.21 1 0.35 −0.27 −0.19
0.62 0.18 0.35 1 0.18 −0.15
−0.32 0.80 −0.27 0.18 1 0.37
−0.44 −0.12 −0.19 −0.15 0.37 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The components of 𝛾call
𝑡 and 𝛾dist

𝑡 are independent and beta-
distributed, such that (𝛾call

𝑡)𝑖 ∼ Beta(𝛼call
𝑖 , 𝛽call

𝑖), where 𝛼call𝑖 = 2 for
𝑖 = 1,… , 𝑚, and

𝛽call = (10.3, 10.0, 12.9, 10.5, 11.8, 10.5) .

The distribution intensities were also beta distributed, such that (𝛾dist
𝑡)𝑖

∼ Beta(𝛼dist
𝑖 , 𝛽dist

𝑖), where 𝛼dist𝑖 = 3 for 𝑖 = 1,… , 𝑚, and

𝛽dist = (13.0, 12.7, 15.9, 12.8, 13.2, 14.2) .

These parameters lead to typical values of call and distribution intensi-
ties around 0.14 and 0.16 respectively. The target asset values 𝑛tar are
chosen to be between 4 and 5, the maximum commitment is 𝑢max = 3,
and the penalty coefficient was 𝜆 = 0.01.

Results. We carried out VGI for 20 iterations, starting from 𝑉 1 =
𝑉 lb. In each iteration, the fitting step was performed using 𝑁 = 50
fitting points, obtained by simulating the current policy. The damping
coefficient was fixed to 𝜌𝑘 = 0.5.

Fig. 2 plots the average cost versus the number of policy evaluations
used, along with the average cost of the CE-MPC policy with a horizon
of 𝐻 = 30. Our method converges to a policy that is 25% better than
the CE-MPC policy. It is able to significantly outperform the CE-MPC
policy because it accounts for the correlation between the returns 𝑟𝑡.
The CE-MPC policy, on the other hand, only accounts for the average
returns. The average costs were computed by simulating the system for
ten thousand steps.

Fig. 3 shows an example trajectory of asset value, liability, and
commitments made for one of the six asset classes, using the ADP policy
found by VGI. The policy makes commitments when the asset value
dips below the target value.

6.3. Supply chain optimization

In our final example, we consider the problem of shipping goods
efficiently across a network of warehouses to maximize profit. We con-

sider a single-good, multi-echelon supply chain with 𝑛̃ interconnected

Annual Reviews in Control 56 (2023) 100917A. Yang and S. Boyd

w

s

w
t

w
c

f
(
T
b
𝑢

N
𝑛
i
a


𝜇

T
i
w
a

R
t
u
T
f
𝜆

t
h
t

t
p
w

Fig. 3. Commitments, NAV, and uncalled commitments for one asset class. The policy
found by VGI makes commitments when the NAV dips below the target value.

Fig. 4. Supply chain network.

Fig. 5. VGI for the supply chain problem.

arehouses, which are represented by nodes in a graph. There are 𝑚
directed links over which goods can flow; 𝑛𝑠 links connect suppliers to
nodes, 𝑛𝑐 links connect nodes to consumers, and 𝑚−𝑛𝑠−𝑛𝑐 links connect
nodes to each other.

The amount of good held at each node at time 𝑡 is represented by
ℎ𝑡 ∈ 𝐑𝑛̃

+. The prices at which we can buy the good from the suppliers
are denoted by 𝑝𝑡 ∈ 𝐑𝑛𝑠

+ , the fixed prices at which goods can be sold
to consumers are denoted by 𝑟 ∈ 𝐑𝑛𝑐

+ , and the consumer demand is
𝑑𝑡 ∈ 𝐑𝑛𝑐

+ . The prices and demand are random and independent between
time points, but are known at time 𝑡 for planning. The inputs are
𝑏𝑡 ∈ 𝐑𝑛𝑠

+ , amounts bought from the suppliers, 𝑠𝑡 ∈ 𝐑𝑛𝑐
+ , the amounts sold

to the consumers, and 𝑧𝑡 ∈ 𝐑𝑚−𝑛𝑠−𝑛𝑐
+ , the amounts transported across

inter-node links. The dynamics are given by

ℎ = ℎ +
(

𝐴in − 𝐴out) (𝑏 , 𝑠 , 𝑧),
9

𝑡+1 𝑡 𝑡 𝑡 𝑡
where 𝐴in, 𝐴out ∈ 𝐑𝑛×𝑚; 𝐴in (out)
𝑖𝑗 is 1 if link 𝑗 enters (exits) node 𝑖 and

0 otherwise.
The dynamics may be expressed as a random linear dynamical

system with augmented state 𝑥𝑡 = (ℎ𝑡, 𝑝𝑡, 𝑑𝑡), input 𝑢𝑡 = (𝑏𝑡, 𝑠𝑡, 𝑧𝑡), and
dynamics matrices

𝐴𝑡 =
⎡

⎢

⎢

⎣

𝐼 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎦

, 𝐵𝑡 =
⎡

⎢

⎢

⎣

𝐴in − 𝐴out

0
0

⎤

⎥

⎥

⎦

, 𝑐𝑡 =
⎡

⎢

⎢

⎣

0
𝑝𝑡+1
𝑑𝑡+1

⎤

⎥

⎥

⎦

,

uch that 𝑥𝑡 ∈ 𝐑𝑛 with 𝑛 = 𝑛̃ + 𝑛𝑠 + 𝑛𝑐 and 𝑢𝑡 ∈ 𝐑𝑚.
The prices and demand 𝑝𝑡 and 𝑑𝑡 are included in the state since they

are known at time 𝑡 for planning. However, since they are random and
independent between time points, the value function need only be a
function of ℎ𝑡. Moreover, we only require that the stage cost be jointly
convex in (ℎ𝑡, 𝑢𝑡).

The goal is to maximize the revenue from selling goods to customers
hile minimizing the material costs paid to the suppliers, transporta-

ion costs, and holding costs of the goods at each node. Let 𝜏 ∈ 𝐑𝑚
+

encode the costs of transporting a unit of good across each link, and
𝛼 ∈ 𝐑𝑛

+ and 𝛽 ∈ 𝐑𝑛
+ parametrize the linear and quadratic holding costs

of the goods at each node.
The stage cost is

𝑔(𝑥𝑡, 𝑢𝑡) = −𝑟𝑇 𝑠𝑡 + 𝑝𝑇𝑡 𝑏𝑡 + 𝜏𝑇 𝑧𝑡 + 𝛼𝑇 ℎ𝑡 + 𝛽𝑇 ℎ2𝑡 + 𝐼(𝑥𝑡, 𝑢𝑡),

here 𝐼(𝑥𝑡, 𝑢𝑡) is the indicator function that encodes the following
onstraints:

• The warehouses have maximum capacity ℎmax > 0: 0 ≤ ℎ𝑡+1 ≤
ℎmax.

• The links have maximum capacity 𝑢max > 0: 0 ≤ 𝑢𝑡 ≤ 𝑢max.
• The amounts shipped out should not exceed the current capaci-

ties: 𝐴out𝑢𝑡 ≤ ℎ𝑡.
• The amounts sold to consumers cannot exceed the current de-

mand: 𝑠𝑡 ≤ 𝑑𝑡.

For this example, we find a quadratic lower bound 𝑉 lb on the value
unction by relaxing the constraints, adding the quadratic penalty 𝑢𝑇𝑡 𝑢𝑡−
1∕2)𝑢max𝟏⊤𝑢𝑡 to the stage cost, and solving the resulting LQR problem.
he lower bound is valid, since the added penalty is a pointwise lower
ound on the indicator of the input constraints, which is zero for 0 ≤
𝑡 ≤ 𝑢max, and infinity otherwise.

umerical example. We consider a network with 𝑛̃ = 4 warehouses,
𝑠 = 2 suppliers, 𝑛𝑐 = 2 consumers, and 𝑚 = 8 links. The network is
llustrated in Fig. 4. The supplier prices 𝑝𝑡 and customer demands 𝑑𝑡
re log-normally distributed, such that log 𝑝𝑡 ∼  (𝜇𝑝, 𝛴𝑝) and log 𝑑𝑡 ∼
(𝜇𝑑 , 𝛴𝑑), with

𝑝 = (0.0, 0.1), 𝛴𝑝 = 0.4𝐼, 𝜇𝑑 = (0.0, 0.4), 𝛴𝑑 = 0.4𝐼.

he holding cost parameters are 𝛼 = 𝛽 = (0.01)𝟏, the transportation cost
s 𝜏 = (0.05)𝟏, and the consumer prices are 𝑟 = (1.3)𝟏. The maximum
arehouse capacities are ℎmax = (3)𝟏, and the maximum link capacities
re 𝑢max = (2)𝟏.

esults. We carried out VGI for 20 iterations, starting from the quadra-
ic lower bound 𝑉 lb. In each iteration, the fitting step was performed
sing 𝑁 = 50 fitting points, obtained by simulating the current policy.
he damping coefficient was fixed to 𝜌𝑘 = 0.5. When solving the
itting problem, we add an 𝓁2 (or ridge) regularization, with coefficient
= 10−4.

Fig. 5 shows the average cost versus the number of policy evalua-
ions used, along with the average cost of the CE-MPC policy with a
orizon of 𝐻 = 30. Our method converges to roughly the same cost as
he CE-MPC policy.

Fig. 6 shows the storage ℎ𝑡 for each of the four warehouses over
ime, for the initial policy using 𝑉 lb and the final policy after VGI. The
lots show average trajectories over 500 simulations, each initialized
ith a state in [0, ℎ]4, chosen uniformly at random.
max

Annual Reviews in Control 56 (2023) 100917A. Yang and S. Boyd

w
S
s
f

W
p
(
(
o

i
p
o
2
a
I
d

7

o
V
p
g
t

𝑁

Fig. 6. Supply chain storage ℎ𝑡 for each warehouse over time. Left: initial ADP policy using 𝑉 lb. Right: final policy after VGI.
a
p

t
b
p
m
w
F

C
f
s
p

t
b
s
g

S
t
𝐾
𝜌
t

a
b
s
w

On average, the VGI policy is able to keep the storage levels close to
half capacity for all warehouses. On the other hand, the initial policy
tends to put too much stock in the first warehouse with storage (ℎ𝑡)1,

hich can, on average, buy goods at a lower price from the suppliers.
imilarly, the policy tends to under-utilize the third warehouse with
torage (ℎ𝑡)3, which experiences lower consumer demand than the
ourth warehouse with storage (ℎ𝑡)4.

7. Comparison with other methods

In this section, we evaluate VGI against two related ADP methods
for finding a quadratic approximate value function: the standard FVI
described in Section 4.1 and a COCP gradient method. They are iter-
ative methods that follow the same pattern as VGI: at each iteration,
we simulate the system for 𝑁 steps, and then use the resulting data to
update the parameters of the quadratic approximate value function.

COCP gradient method. We compare against a gradient based method
that updates the parameters 𝜃 of the ADP policy (9) using the deriva-
tives of the cost along simulated trajectories, with respect to 𝜃 (Agrawal
et al., 2020). At iteration 𝑘, the policy 𝜙𝑘 with parameters 𝜃𝑘 is used to
simulate the system for 𝑁 steps. The resulting data is used to compute
an estimate of the average cost, given by

𝐽 (𝜃𝑘) = 1
𝑁

𝑁−1
∑

𝑗=0
𝑔(𝑥𝑗 , 𝜙𝑘(𝑥𝑗)).

e then compute ∇𝐽 (𝜃𝑘) using the chain rule, and then update the
arameters. This approach is known as backpropagation through time
Werbos, 1990). In our experiments, we use the projected stochastic
sub)gradient rule 𝜃𝑘+1 = 𝛱𝛩(𝜃𝑘−𝛼𝑘∇𝐽 (𝜃𝑘)), where 𝛱𝛩 is the projection
nto 𝛩, and 𝛼𝑘 > 0 is a step size.

This approach requires derivatives of the policy with respect to
ts parameters. Those derivatives may be found by applying the im-
licit function theorem to the optimality conditions of the convex
ptimization problem associated with the policy (Agrawal et al., 2019,
020). Examples of the COCP gradient method used to find quadratic
pproximate value functions may be found in Agrawal et al. (2020).
n our experiments, we used cvxpylayers to compute the necessary
erivatives (Agrawal et al., 2019).

.1. Results

In general, FVI and COCP gradient methods required more tuning
f hyperparameters than VGI to work well. As shown in Table 1,
GI achieves the best (or close to the best) performance in all three
roblems, all using far fewer policy evaluations than the FVI and COCP
radient methods. The costs were evaluated in each case by simulating
he policy for ten thousand steps.

VGI used the same hyperparameters as in Section 6, i.e., 𝜌𝑘 = 0.5 and
= 50. The method was run for 40 iterations for the box-constrained
10

C

Table 1
Comparison of cost and number of policy evaluations used (in thousands).

Method Box LQR Commitments Supply chain

Cost evals. (×103) Cost evals. (×103) Cost evals. (×103)

VGI 32.3 2 9.1 1 −0.79 0.75
FVI 32.2 20 9.1 4 −0.77 16
COCP gradient 33.2 24 9.4 20 −0.77 70
MPC 33.3 – 11.9 – −0.77 –

LQR problem, 20 iterations for the commitments example, and 15
iterations for the supply chain problem.

We now discuss the hyperparameters chosen for FVI and the COCP
gradient method. All methods were initialized using the same initial
quadratic approximate value function. For the box-constrained LQR
problem we used 𝑉 1(𝑥) = 𝑥𝑇𝑄𝑥, and for the other two problems we
used 𝑉 1(𝑥) = 𝑉 lb, the quadratic lower bound on 𝑉 available for each
problem.

Box constrained LQR. FVI was run using 𝑁 = 400 policy evaluations,
for a total of 50 iterations. The damping parameter was 𝜌𝑘 = 0.5,
nd the symmetry constraint 𝑝 = 0 was incorporated into the fitting
roblem.

The COCP gradient method was run using 𝑁 = 300 policy evalua-
ions, for a total of 80 iterations. The 300 sample points were generated
y simulating 𝐾 = 3 trajectories each of length 𝑇 = 100, using the
rocedure described in Section 5.3. We used a step size of 𝛼𝑘 = 0.01. The
ethod was initialized with 𝑃 = 𝐼 , and the symmetry constraint 𝑝 = 0
as incorporated into the fitting problem. VGI took 6 s to complete,
VI took 29 s, and the COCP gradient method took 4 min and 10 s.

ommitments planning. FVI was run using 𝑁 = 200 policy evaluations,
or a total of 20 iterations. The sample points were generated by
imulating 𝐾 = 2 trajectories each of length 𝑇 = 100. The damping
arameter was 𝜌𝑘 = 0.5.

The COCP gradient method was run using 𝑁 = 200 policy evalua-
ions, for a total of 100 iterations. The sample points were generated
y simulating 𝐾 = 2 trajectories each of length 𝑇 = 100. We used a step
ize of 𝛼𝑘 = 10−4. VGI took 5 s to complete, FVI took 7 s, and the COCP
radient method took 5 min.

upply chain. FVI was run using 𝑁 = 800 policy evaluations, for a
otal of 20 iterations. The sample points were generated by simulating
= 2 trajectories each of length 𝑇 = 400. The damping parameter was

𝑘 = 0.75. An 𝓁2 regularization with coefficient 𝜆 = 10−4 was used in
he fitting problem.

The COCP gradient method was run using 𝑁 = 1000 policy evalu-
tions, for a total of 70 iterations. The sample points were generated
y simulating 𝐾 = 10 trajectories each of length 𝑇 = 100. We used a
tep size of 𝛼𝑘 = 0.01. An 𝓁2 regularization with coefficient 𝜆 = 10−4

as added to the cost. VGI took 2 s to complete, FVI took 25 s, and the

OCP gradient method took 13 min.

Annual Reviews in Control 56 (2023) 100917A. Yang and S. Boyd

w

F
n
[

A

𝑉

𝑉

B

𝑉

8. Conclusion

In this work, we propose value-gradient iteration, a method for
finding a quadratic approximate value function for convex stochastic
control. The method is an approximation of value iteration, and we
show how we may compute the gradient of the Bellman operator image
to fit the gradient of the approximate value function in each iteration.
By fitting the gradient of the approximate value function instead of the
approximate value function itself, we can find a good policy using far
less simulation data. Indeed, we find that the computational effort of
obtaining a good approximate value function is comparable to that of
evaluating the policy through simulation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

Stephen Boyd was partially supported by ACCESS (AI Chip Center
for Emerging Smart Systems), sponsored by InnoHK funding, Hong
Kong SAR, and by Office of Naval Research, United States grant
N00014-22-1-2121. We would also like to thank Pieter Abeel and Zico
Kolter for helpful discussions and feedback.

Appendix A. Expectation of quadratic functions

Let 𝑉 be a convex quadratic function of the form (10). We now
show that 𝐄𝑉 (𝐴𝑡𝑥 + 𝐵𝑡𝑢 + 𝑐𝑡) is a convex quadratic function in 𝑢, with
coefficients that may be written in terms of 𝑃 , 𝑝, and 𝜋 and the first
and second moments of (𝐴𝑡, 𝐵𝑡, 𝑐𝑡).

Let 𝐴̄ = 𝐄𝐴𝑡, 𝐴̄ = 𝐄𝐴𝑡, and 𝑐 = 𝐄𝑐𝑡 denote the expected values.
Let (𝐴𝑡)𝑖, (𝐵𝑡)𝑖, 𝐴̄𝑖, and 𝐵̄𝑖 denote the 𝑖th columns of 𝐴𝑡, 𝐵𝑡, 𝐴̄, and
𝐵̄ respectively. Let 𝛴𝐴𝐵

𝑖𝑗 denote the covariance matrix between the 𝑖th
column of 𝐴𝑡 and the 𝑗th column of 𝐵𝑡, and let 𝛴𝐴

𝑖𝑗 and 𝛴𝐵
𝑖𝑗 be defined

similarly. Finally, let 𝛴𝐴𝑐
𝑖 and 𝛴𝐵𝑐

𝑖 denote the covariances between the
𝑖th columns of 𝐴𝑡 and 𝐵𝑡 with 𝑐𝑡, respectively, and let 𝛴𝑐 denote the
covariance of 𝑐𝑡.

We have

𝐄𝑉 (𝐴𝑡𝑥+𝐵𝑡𝑢+𝑐𝑡) =
1
2
𝐄
(

[

𝐴𝑡𝑥 + 𝐵𝑡𝑢 + 𝑐𝑡
1

]𝑇 [

𝑃 𝑝
𝑝𝑇 𝜋

] [

𝐴𝑡𝑥 + 𝐵𝑡𝑢 + 𝑐𝑡
1

]

)

.

Expanding terms, we obtain

𝐄𝑉 (𝐴𝑡𝑥 + 𝐵𝑡𝑢 + 𝑐𝑡) =
1
2

[

𝑢
1

]𝑇 [

𝑀 𝑚
𝑚𝑇 𝜇

] [

𝑢
1

]

,

here
𝑀 = 𝐄𝐵𝑇

𝑡 𝑃𝐵𝑡,

𝑚 = 𝐄𝐵𝑇
𝑡 𝑃𝐴𝑡𝑥 + 𝐄𝐵𝑇

𝑡 𝑃𝑐𝑡 + 𝐵̄𝑇 𝑝,

𝜇 = 𝜋 + 𝑥𝑇𝐄(𝐴𝑇
𝑡 𝑃𝐴𝑡)𝑥 + 2𝑥𝑇𝐄(𝐴𝑇

𝑡 𝑃𝑐𝑡) + 2𝑥𝑇 𝐴̄𝑇 𝑝 + 2𝑝𝑇 𝑐 + 𝐄𝑐𝑇𝑡 𝑃𝑐𝑡.

Finally, we note that

𝐄𝑐𝑇𝑡 𝑃𝑐𝑡 = 𝑐𝑇 𝑃𝑐 + 𝐓𝐫(𝑃𝛴𝑐),

and for all indices 𝑖 and 𝑗,

(𝐄𝐴𝑇
𝑡 𝑃𝐴𝑡)𝑖𝑗 = 𝐴̄𝑇

𝑖 𝑃 𝐴̄
𝑇
𝑗 + 𝐓𝐫(𝑃𝛴𝐴

𝑖𝑗),

(𝐄𝐵𝑇
𝑡 𝑃𝐵𝑡)𝑖𝑗 = 𝐵̄𝑇

𝑖 𝑃 𝐵̄
𝑇
𝑗 + 𝐓𝐫(𝑃𝛴𝐵

𝑖𝑗),

(𝐄𝐵𝑇
𝑡 𝑃𝐴𝑡)𝑖𝑗 = 𝐵̄𝑇

𝑖 𝑃 𝐴̄
𝑇
𝑗 + 𝐓𝐫(𝑃𝛴𝐴𝐵

𝑖𝑗),

(𝐄𝐴𝑇
𝑡 𝑃𝑐𝑡)𝑖 = 𝐴̄𝑇

𝑖 𝑃𝑐 + 𝐓𝐫(𝑃𝛴𝐴𝑐
𝑖),

𝑇 𝑇 𝐵𝑐
11

(𝐄𝐵𝑡 𝑃𝑐𝑡)𝑖 = 𝐵̄𝑖 𝑃𝑐 + 𝐓𝐫(𝑃𝛴𝑖).
Appendix B. Lower bounds on quadratic functions

We say that 𝑉1 ≥ 𝑉2 if 𝑉1(𝑥) ≥ 𝑉2(𝑥) for all 𝑥 ∈ 𝐑𝑛. We consider the
case of convex quadratic functions, where for 𝑖 = 1, 2, 𝑉𝑖 is given by

𝑉𝑖(𝑥) =
1
2

[

𝑥
1

]𝑇 [

𝑃𝑖 𝑝𝑖
𝑝𝑇𝑖 𝜋𝑖

] [

𝑥
1

]

,

where 𝑃𝑖 ⪰ 0. Then, 𝑉1 ≥ 𝑉2 holds if and only if the quadratic function
𝑉12 = 𝑉1 − 𝑉2 is positive semidefinite, i.e.

𝑉12(𝑥) =
1
2

[

𝑥
1

]𝑇 [

𝑃1 − 𝑃2 𝑝1 − 𝑝2
𝑝𝑇1 − 𝑝𝑇2 𝜋1 − 𝜋2

] [

𝑥
1

]

≥ 0,

for all 𝑥 ∈ 𝐑𝑛. The function 𝑉12 has a minimum value if and only if
𝑃1 − 𝑃2 ⪰ 0 and 𝑝1 − 𝑝2 is in the range of the matrix 𝑃1 − 𝑃2 (see
e.g. Boyd and Vandenberghe (2004, § A.5.5)). The range condition may
be written as
[

𝐼 − (𝑃1 − 𝑃2)(𝑃1 − 𝑃2)†
]

(𝑝1 − 𝑝2) = 0,

where (𝑃1 − 𝑃2)† is the pseudo-inverse of (𝑃1 − 𝑃2). In this case, the
minimum value is given by

min
𝑥

𝑉12(𝑥) =
1
2
(

𝜋1 − 𝜋2 − (𝑝1 − 𝑝2)𝑇 (𝑃1 − 𝑃2)†(𝑝1 − 𝑝2)
)

.

inally, by the generalized Schur complement, min𝑥 𝑉12(𝑥) exists and is
onnegative if and only if

𝑃1 − 𝑃2 𝑝1 − 𝑝2
𝑝𝑇1 − 𝑝𝑇2 𝜋1 − 𝜋2

]

⪰ 0.

ppendix C. Lower bound from certainty equivalence

Solving the certainty equivalent problem involves finding a function
ce that satisfies the Bellman equation
ce(𝑥) = min

𝑢

(

𝑔(𝑥, 𝑢) + 𝑉 ce(𝐴̄𝑥 + 𝐵̄𝑢 + 𝑐)
)

.

y Jensen’s inequality,
ce(𝐴̄𝑥 + 𝐵̄𝑢 + 𝑐) ≤ 𝐄𝑉 ce(𝐴𝑥 + 𝐵𝑢 + 𝑐).

Therefore, we have

𝑉 ce(𝑥) ≤ min
𝑢

(

𝑔(𝑥, 𝑢) + 𝐄𝑉 ce(𝐴𝑥 + 𝐵𝑢 + 𝑐)
)

=  𝑉 ce(𝑥).

By the monotonicity of the Bellman operator, we have

𝑉 ce ≤  𝑉 ce ≤ lim
𝑘→∞

 𝑘𝑉 ce = 𝑉 ⋆.

This implies that 𝑉 ce is a lower bound on the true value function.

References

Åström, K. J., Hägglund, T., Hang, C. C., & Ho, W. K. (1993). Automatic tuning and
adaptation for PID controllers-A survey. Control Engineering Practice, 1(4), 699–714.

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., & Kolter, J. Z. (2019).
Differentiable convex optimization layers. Advances in Neural Information Processing
Systems, 32.

Agrawal, A., Barratt, S., Boyd, S., & Stellato, B. (2020). Learning convex optimization
control policies. In Learning for dynamics and control (pp. 361–373). PMLR.

Agrawal, A., Verschueren, R., Diamond, S., & Boyd, S. (2018). A rewriting system for
convex optimization problems. Journal of Control and Decision, 5(1), 42–60.

Amos, B., Jimenez, I., Sacks, J., Boots, B., & Kolter, J. Z. (2018). Differentiable MPC for
end-to-end planning and control. Advances in Neural Information Processing Systems,
31.

Amos, B., Stanton, S., Yarats, D., & Wilson, A. G. (2021). On the model-based stochastic
value gradient for continuous reinforcement learning. In Learning for dynamics and
control (pp. 6–20). PMLR.

Amos, B., Xu, L., & Kolter, J. Z. (2017). Input convex neural networks. In The
international conference on machine learning (pp. 146–155). PMLR.

Antos, A., Szepesvári, C., & Munos, R. (2007). Fitted Q-iteration in continuous
action-space MDPs. Advances in Neural Information Processing Systems, 20.

Baird, L. (1995). Residual algorithms: Reinforcement learning with function

approximation. In Machine learning proceedings 1995 (pp. 30–37). Elsevier.

http://refhub.elsevier.com/S1367-5788(23)00081-0/sb1
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb1
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb1
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb2
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb2
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb2
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb2
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb2
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb3
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb3
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb3
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb4
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb4
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb4
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb5
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb5
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb5
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb5
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb5
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb6
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb6
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb6
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb6
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb6
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb7
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb7
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb7
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb8
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb8
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb8
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb9
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb9
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb9

Annual Reviews in Control 56 (2023) 100917A. Yang and S. Boyd

B

B

B

B

B
B

B
C

C

D

D

D

F

F

F

G

H

H

H

J

K

L
L

M

M

M

M

M

O

P
P

P

P

R
S

S

S

S

S
T
T

W

W

W

W
W

W

W
Z

Barratt, S., & Boyd, S. (2021). Stochastic control with affine dynamics and extended
quadratic costs. IEEE Transactions on Automatic Control, 67(1), 320–335.

ellman, R. (1954). The theory of dynamic programming. American Mathematical
Society. Bulletin, 60(6), 503–515.

ellman, R., & Dreyfus, S. (1959). Functional approximations and dynamic
programming. Mathematical Tables and Other Aids to Computation, 247–251.

ertsekas, D. P. (2012). Dynamic programming and optimal control. Vol. 2 (4th ed.).
Athena Scientific.

ertsekas, D. P. (2017). Dynamic programming and optimal control. Vol. 1 (4th ed.).
Athena Scientific.

ertsekas, D. P. (2019). Reinforcement learning and optimal control. Athena Scientific.
ertsekas, D. P., Borkar, V. S., & Nedic, A. (2004). Improved temporal difference

methods with linear function approximation. In Learning and approximate dynamic
programming (pp. 231–255). New York: IEEE Press.

Bertsekas, D. P., & Shreve, S. E. (1996). Stochastic optimal control: the discrete-time case.
Vol. 5. Athena Scientific.

Borrelli, F., Bemporad, A., & Morari, M. (2017). Predictive control for linear and hybrid
systems. Cambridge University Press.

oyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.
amacho, E. F., & Bordons, C. (2013). Model predictive control. Springer Science &

Business Media.
orless, M., & Leitmann, G. (1988). Controller design for uncertain systems via

Lyapunov functions. In 1988 American control conference (pp. 2019–2025). IEEE.
ayan, P., & Singh, S. (1995). Improving policies without measuring merits. Advances
in Neural Information Processing Systems, 8.

De Farias, D. P., & Van Roy, B. (2003). The linear programming approach to
approximate dynamic programming. Operations Research, 51(6), 850–865.

eisenroth, M., & Rasmussen, C. E. (2011). PILCO: A model-based and data-efficient
approach to policy search. In The international conference on machine learning (pp.
465–472).

iamond, S., & Boyd, S. (2016). CVXPY: A Python-embedded modeling language for
convex optimization. Journal of Machine Learning Research, 17(83), 1–5.

airbank, M. (2008). Reinforcement learning by value gradients. arXiv preprint arXiv:
0803.3539.

airbank, M., & Alonso, E. (2012). Value-gradient learning. In The IEEE international
joint conference on neural networks (pp. 1–8).

reeman, R. A., & Primbs, J. A. (1996). Control Lyapunov functions: New ideas from
an old source. In Proceedings of 35th IEEE conference on decision and control. Vol. 4
(pp. 3926–3931). IEEE.

arcia, C. E., Prett, D. M., & Morari, M. (1989). Model predictive control: Theory and
practice—A survey. Automatica, 25(3), 335–348.

astie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning:
data mining, inference, and prediction, Vol. 2. Springer.

eess, N., Wayne, G., Silver, D., Lillicrap, T., Erez, T., & Tassa, Y. (2015). Learning
continuous control policies by stochastic value gradients. Advances in Neural
Information Processing Systems, 28.

uber, P. J. (1992). Robust estimation of a location parameter. In Breakthroughs in
statistics (pp. 492–518). Springer.

amieson, K., & Talwalkar, A. (2016). Non-stochastic best arm identification and
hyperparameter optimization. In Artificial intelligence and statistics (pp. 240–248).
PMLR.

eshavarz, A., & Boyd, S. (2014). Quadratic approximate dynamic programming for
input-affine systems. International Journal of Robust and Nonlinear Control, 24(3),
432–449.
12
jung, L. (1998). System identification. Springer.
uxenberg, E., Boyd, S., van Beek, M., Cao, W., & Kochenderfer, M. (2022). Strategic as-

set allocation with illiquid alternatives. In Proceedings of the third ACM international
conference on AI in finance (pp. 249–256).

attingley, J., & Boyd, S. (2012). CVXGEN: A code generator for embedded convex
optimization. Optimization and Engineering, 13, 1–27.

erton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-
time case. The Review of Economics and Statistics, 247–257.

inorsky, N. (1922). Directional stability of automatically steered bodies. Journal of
the American Society for Naval Engineers, 34(2), 280–309.

nih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., et al. (2016). Asyn-
chronous methods for deep reinforcement learning. In The international conference
on machine learning (pp. 1928–1937). PMLR.

unos, R. (2007). Performance bounds in 𝐿𝑝-norm for approximate value iteration.
SIAM Journal on Control and Optimization, 46(2), 541–561.

’Donoghue, B., Wang, Y., & Boyd, S. (2011). Min-max approximate dynamic program-
ming. In The IEEE international symposium on computer-aided control system design
(pp. 424–431). IEEE.

ontryagin, L. S. (1987). Mathematical theory of optimal processes. CRC Press.
owell, W. B. (2007). Approximate dynamic programming: solving the curses of
dimensionality, Vol. 703. John Wiley & Sons.

rokhorov, D. V., & Wunsch, D. C. (1997). Adaptive critic designs. The IEEE Transactions
on Neural Networks, 8(5), 997–1007.

uterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

ockafellar, R. T. (1970). Convex analysis: Vol. 11, Princeton University Press.
challer, M., Banjac, G., Diamond, S., Agrawal, A., Stellato, B., & Boyd, S. (2022).

Embedded code generation with CVXPY. IEEE Control Systems Letters, 6, 2653–2658.
chulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal

policy optimization algorithms. arXiv preprint arXiv:1707.06347.
utton, R. S. (1988). Learning to predict by the methods of temporal differences.
Machine Learning, 3, 9–44.

utton, R. S. (1990). Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Machine learning proceedings (pp.
216–224). Elsevier.

utton, R. S., & Barto, A. G. (2018). Reinforcement learning: an introduction. MIT Press.
ikhonov, A. N., & Arsenin, V. I. (1977). Solutions of ill-posed problems. Wiley.
sitsiklis, J. N., & Van Roy, B. (1996). Feature-based methods for large scale dynamic

programming. Machine Learning, 22(1), 59–94.
ang, Y., & Boyd, S. (2009). Performance bounds for linear stochastic control. Systems
& Control Letters, 58(3), 178–182.

ang, Y., & Boyd, S. (2010). Fast evaluation of quadratic control-Lyapunov policy.
IEEE Transactions on Control Systems Technology, 19(4), 939–946.

ang, Y., O’Donoghue, B., & Boyd, S. (2015). Approximate dynamic programming via
iterated Bellman inequalities. International Journal of Robust and Nonlinear Control,
25(10), 1472–1496.

atkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279–292.
erbos, P. J. (1990). Backpropagation through time: What it does and how to do it.
Proceedings of the IEEE, 78(10), 1550–1560.

erbos, P. J. (1999). Stable adaptive control using new critic designs. In Ninth workshop
on virtual intelligence/dynamic neural networks, Vol. 3728 (pp. 510–579). SPIE.

hite, D. J. (1969). Dynamic programming. Vol. 1. Oliver & Boyd Edinburgh.
ou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic

net. Journal Of the Royal Statistical Society: Series B (Statistical Methodology), 67(2),
301–320.

http://refhub.elsevier.com/S1367-5788(23)00081-0/sb10
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb10
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb10
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb11
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb11
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb11
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb12
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb12
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb12
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb13
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb13
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb13
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb14
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb14
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb14
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb15
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb16
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb16
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb16
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb16
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb16
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb17
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb17
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb17
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb18
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb18
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb18
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb19
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb20
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb20
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb20
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb21
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb21
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb21
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb22
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb22
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb22
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb23
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb23
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb23
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb24
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb24
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb24
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb24
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb24
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb25
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb25
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb25
http://arxiv.org/abs/0803.3539
http://arxiv.org/abs/0803.3539
http://arxiv.org/abs/0803.3539
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb27
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb27
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb27
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb28
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb28
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb28
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb28
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb28
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb29
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb29
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb29
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb30
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb30
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb30
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb31
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb31
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb31
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb31
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb31
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb32
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb32
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb32
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb33
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb33
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb33
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb33
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb33
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb34
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb34
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb34
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb34
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb34
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb35
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb36
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb36
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb36
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb36
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb36
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb37
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb37
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb37
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb38
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb38
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb38
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb39
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb39
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb39
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb40
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb40
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb40
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb40
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb40
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb41
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb41
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb41
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb42
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb42
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb42
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb42
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb42
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb43
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb44
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb44
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb44
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb45
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb45
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb45
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb46
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb46
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb46
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb47
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb48
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb48
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb48
http://arxiv.org/abs/1707.06347
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb50
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb50
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb50
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb51
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb51
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb51
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb51
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb51
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb52
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb53
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb54
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb54
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb54
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb55
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb55
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb55
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb56
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb56
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb56
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb57
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb57
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb57
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb57
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb57
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb58
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb59
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb59
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb59
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb60
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb60
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb60
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb61
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb62
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb62
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb62
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb62
http://refhub.elsevier.com/S1367-5788(23)00081-0/sb62

	Value-gradient iteration with quadratic approximate value functions
	Introduction
	Related work
	Outline

	Convex stochastic control
	Average-cost convex stochastic control problem
	Dynamic programming
	Certainty-equivalent steady-state optimal state-input pair
	Certainty-equivalent model predictive control

	Quadratic approximate dynamic programming
	Approximate dynamic programming
	Quadratic approximate value functions
	Properties of QADP policies

	Value-gradient iteration
	Fitted value iteration
	Value-gradient iteration
	Regularization, constraints, and lower bounds

	Extensions and variations
	Input-affine dynamics
	Alternative cost functions
	Parallel simulations

	Numerical examples
	Box-constrained linear quadratic regulator
	Commitments in an alternative investments fund
	Supply chain optimization

	Comparison with other methods
	Results

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Expectation of quadratic functions
	Appendix B. Lower bounds on quadratic functions
	Appendix C. Lower bound from certainty equivalence
	References

