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Setting and general problem
e distributed process: communication, computation, flow constrained by
given graph

e examples: distributed consensus, distributed resource allocation,
distributed estimation, Markov chains, coordination/control of
autonomous agents, iterative solution of equations, . . .

e weights on edges affect convergence behavior

e simple results known (e.g., convergence with small, positive weights)

how do we choose weights to yield fastest possible convergence?
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Example: distributed average consensus

e compute average T = = > x; (using local communication, iteration)

e each node takes a weighted average of its own and neighbors’ values:

JEN;

e how do we choose I/ to make convergence as fast as possible?
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Example: distributed resource allocation

e resource allocation on a network

minimize 2?21 fi(z;)

subject to >, x; =c

e distributed weighted gradient method:

zi(t +1) = D Wiy (filwi®)) — fi(z;(1))

JEN;

(exchange resources proportional to differences of marginal costs)

e how do we choose I/ to make convergence as fast as possible?
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Example: Markov chain on a graph

e random walk on graph with symmetric transition probabilities P;;
e (under simple conditions) distribution converges to uniform

e what edge transition probabilities give fastest mixing?
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Typical results

e using SDP, we can optimize convergence rate (or a bound on it)
e by exploiting structure, associated SDPs can be efficiently solved

e SDP duality yields bounds, insight, . . .
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Fast distributed average consensus



Distributed average consensus

- 1 ) . . . . .
e compute average T = -~ ) . x; (using local communication, iteration)

e each node takes a weighted average of its own and neighbors’ values:

JEN;

e vector form: z(t + 1) = Wx(t); W has sparsity pattern constraint given
by graph
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Convergence conditions and rate

e convergence <= lim;_,,o Wi =111 /n <
1'w =17, Wi=1, p(W-11"/n)< 1
— sum (and therefore average) preserved at each step
— 1 is fixed point of iteration x(t + 1) = Wax(t)
— iteration dynamics are stable on 1+

e asymptotic convergence rate given by p(W — 1171 /n)

e for symmetric W, same as [|[W — 117 /n)|
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Fastest distributed linear averaging

minimize p(W — 111 /n)
subjectto W eSS, 1'wW=1" Wi=1

optimization variable is W; problem data is graph (sparsity pattern S)

e hard problem when W is not symmetric
e can minimize convex upper bound [|[W — 117 /n||

e for symmetric W, these two coincide
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Semidefinite programming formulation

(for symmetric weights)

introduce scalar variable s to bound spectral norm

minimize S
subject to —sI < W — 111 /n < sI
WeS, W=w!' wWi=1

an SDP, hence, efficiently solved, duality theory, . . .

can also pose problem of minimizing ||W — 117 /n||, with nonsymmetric

W . as SDP
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Constant weights

constant weight on all edges:

ri(t+1) = z,(t) + Y alw;(t) — z:(t))

JEN;

e maximum-degree weight: a = 1/ max; d;
d; is degree (number of neighbors) of node i

e best constant weight: a* = 2/(A (L) + A\p—1(L))
L is Laplacian of graph; L. = diag(d) — A, A is adjacency matrix

e sometimes give reasonably fast convergence
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Metropolis weights

Metropolis-Hastings weights:

1
max{di, Clj}’

Wi; = {t,51 €&

(self-weights given by W;; =1 — Zje/\fi Wij;)

e adapted from Metropolis algorithms in Markov chain Monte Carlo
e Metropolis weights based on local information

e often gives reasonable convergence
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A small example

convergence factors and convergence times:

max degree | Metropolis | optimal symm.
p(W — 117 /n) 0.746 0.743 0.600
T =1/log(1/p) 3.413 3.366 1.958
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Optimal symmetric weights

(note: some weights are negative!)
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A larger example

50 nodes, 200 edges
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max degree | Metropolis | best constant | optimal
p(W — 111 /n) 0.971 0.949 0.947 0.902
T =1/log(1/p) 33.980 19.104 18.363 9.696
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Eigenvalue distributions
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Optimal weights
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Application: Data fusion in sensor networks

e estimate a vector of unknown, fixed parameters x € R™

e 1 sensors; each makes noisy measurement y; = A;x + v; € R™
independent noises v; have zero mean, covariance »;;

e aggregate measurement

Ay U1
y=Axr+v = 42 4|
A, | Un |
v has covariance ¥ = diag(>1,...,%,)
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e maximum likelihood estimate of x is weighted least-squares (WLS)
solution

Tgis = (ATSTTA) T ATE Yy
n —1 n

= (D Als7'A | ) ATsy,
=1 =1

e centralized data fusion: fusion center collects all measurements,
computes WLS solution
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A simple distributed scheme for sensor fusion

e cach sensor initializes

Pi(0) = ATS71A;,  qi(0) = ATS 1y,

e use distributed average consensus to compute (entrywise)

1 1 —
P=— E ATE_lAZ = — E ATZ-_l i
n < v ’ 4 n ‘= i =i Y

e then locally compute the WLS estimate z,1s = P~ !¢

e Metropolis weights yield simple, isotropic protocol for sensor nodes
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Fastest mixing Markov chain on a graph



Markov chain on a graph

random walk on connected graph G = (V, £)
V=1{1,...,n}, E={(i,7) | ¢ and j connected}

we'll assume each vertex has self-loop, i.e., (i,i) € £

define Markov chain on vertices X (t) € {1,...,n}, with transition
probabilities on edges

we'll focus on symmetric transition probability matrices P

all results can be extended to reversible Markov chains
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Example

self-loop transition probabilities not shown, given by

Py=1-) P

J7#i
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Stationary distribution
e probability distribution m;(¢) = Prob(X (¢) = i) satisfies
m(t+ 1) =n@t)t'P

e since P = P! and P1 = 1, uniform distribution m = 1/n is stationary,
i.e., (11 /n)P =11 /n

e (assuming irreducible, aperiodic)

tlim |7(t) —1/n||=0

1.e., distribution converges to uniform
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Second largest eigenvalue modulus (SLEM)

e since P = PT all eigenvalues are real; can order as

l=M2X 2> 2A 2> -1

e second largest eigenvalue modulus (SLEM):

uw(P) = max |X\(P)| = max{Aa(P), —An(P)}

1=2,...,n

e asymptotic rate of convergence to mgy = 1/n determined by SLEM, e.g.,

sup [|m(t) — 1/nllev < (V/2) pf

7(0)
e associated mixing time is 7 = 1/log(1/u)
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Example

1

1= 0.86 T =
log(1/ )
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Convexity of mixing rate

u(P) is convex function of P
u(P) is spectral norm of P on 1+ = {v | 1Tv = 0}:

wP) = ||(I-(1/n)11")P (I - (1/n)11")
= P (/mu],

I

(I — (1/n)117) is projection matrix onto subspace 1+

another proof:

e for general symmetric X, A\(X) 4+ A2(X) and —\,,(X) are convex

e here A\ = 1, so max{\a(X), —A,(X)} is convex
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Fastest mixing Markov chain (FMMC) problem

minimize  p(P) = ||P — (1/n)11TH2
subjectto P >0, Pl1=1, P=P"
Pii =0, (i,j)¢¢&

e variable is matrix P; problem data is graph

e convex optimization problem, hence efficiently solved, duality theory,
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SDP formulation of FMMC

introduce scalar variable s to bound norm of P — (1/n)117

minimize S
subject to —sI < P — (1/n)11% < sI
P>0, Pl1=1, P=P*"

Pi; =0, (i,j)¢¢€

an SDP in variables P, s
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Example

1
p*=0.72 T

" log(1/u*)
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Two common suboptimal schemes

let d; be degree of vertex ¢ (not counting self-loops)

e maximum degree chain: with d,.x = max;cy d;

m 1 . S,
Pijd:d ) (Z7J>Eg7 7’#]7
e Metropolis-Hastings chain
th: ! ) (iaj)ega 7’#]
* max{dz-,dj}

diagonal entries determined by P;; =1 — Zj;éi P;;
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Example

max-degree
1/4
1/4
1/4
pmd = 0.78
™ = 4,02
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1/3
1/4
1/4
1/4
g =077
o — 391

30



Fastest mixing to nonuniform distribution

e given desired equilibrium distribution m = (71, ..., 7,)
e we consider P with same sparsity pattern as graph, but not symmetric

e we require reversible chain: m;FP;; = m;P;;, the detailed balance
equation

e detailed balance is equivalent to IIP = P*TI, where II = diag(r)
e the matrix II'/2PII~1/2 is symmetric, with same eigenvalues as P

e eigenvector of II'/2PII~1/2 associated with eigenvalue one is

q:(\/ﬂ_b“'?\/ﬂ_n)
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e asymptotic rate of convergence of distribution to m determined by
u(P) = HH”QPH_”2 - quH
2

which is convex in P
e SDP formulation of fastest mixing reversible Markov chain:
minimize S
subject to —sI < IIV2PII-1/2 — ¢¢T < sI
P>0,  Pl1=1, IIP=P'II

variables are s, P; problem data are m and graph
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Distributed resource allocation

e resource allocation on a network

minimize 2?21 fi(x:)

subject to Y x; =c

e distributed weighted gradient method:

i(t +1) = D Wi (filwi®) — fi(z;(1))

jEN;

exchange resources proportional to differences of marginal costs

e how do we choose I/ to make convergence as fast as possible?
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Guaranteed convergence rate

e weighted gradient update: z(t+ 1) = x(t) — WV f(x)
e must have 17W =0, W1 =0
e can show

f() = f* < n'(f(=(0)) = f*)

where

n=1= Xy (LW +WT = WTUW)LY?)
L =diag(ly,...,1l,), U =diag(uy,...,un), l; < fI'(x;) < uy

e hence, n gives guaranteed convergence rate
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Optimal guaranteed convergence rate

optimize guaranteed convergence rate:

maximize  A,_1 (LY2(W + W71 — WTUW)LY/?)
subjectto W eSS, 1TW=0 W1=0

(can impose W = W or not)
... can show this is convex problem; can formulate as SDP
maximize S

subjectto W eSS, 1'W =0, W1=0

W4+Wwr—s(L7t—@q/a'c-1)L-11'-Y wt
W U1
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Simple weight selection methods

e constant weight on all edges: W;; = a for (i,j) € £, © # j

self-weights given by Wi = — 7.\ Wi
e max-degree weights: o = —1/(max;cn d;u;)

e Metropolis weights:

1 1

diui’ dej

self-weights given by Wi; = — 7.\ Wi
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Example

1
o filz;) = 5%(%’ —¢;)* 4 log (1 + 6bi(mi_di)>

coefficients a; > 0, b;, ¢;, d; generated randomly

e bounds on second derivatives:

1
Li=a; < fi'(x;) < a;+ be = U;

e resource constraint 17z =0

e randomly generated regular graph with 20 nodes, degree 3
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Example

| max-degree | Metropolis | best constant | SDP symm. | SDP nonsymm.

n| 0950 | 0924 | 092 | 0875 | 0.873
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““““ max-degree
102 D - - Metropolis I
W best constant
N - -- SDP symmetric
NN — SDP nonsymm.
x 10° |
Q\
|
= 1078}
=
S—
107}
-6
10
0

e (in this case) n predicts the convergence rate well

e this is frequently, but not always, the case
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Computational methods



Computational methods

e interior-point methods:

— exploit sparsity and graph structure

— can solve problems with a few thousand edges
e subgradient methods:

— compute subgradient efficiently with Lanczos method
— can solve problems with 10° edges
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Exploiting structure in interior-point methods

consider interior-point method for solving SDP

minimize S
subject to —sI < W — (1/n)111 < sI
Wi=1, W=w*% WeS

forming search direction equations involves frequent computing of

(s — W + 117 /n)~1, (s + W — 111 /n)~1

can efficiently evaluate, exploiting sparse + rank-one structure

still have to solve dense m x m system to find search direction

order m?>
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Weighted Laplacian formulation

we'll consider averaging problem with symmetric weights

minimize  ||W — 111 /n)|
subjectto W eSS, W=W! Wi=1

other problems a little more complicated, but similar

we'll use weighted Laplacian formulation
minimize ¢(w) = ||[I — Adiag(w)A? — 111 /n||

with w € R™ (vector of edge weights); A is (node-edge) incidence matrix
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Subgradient method
fork=1,2,...
compute a subgradient g € d¢(w)
update weights: w := w — agg
e subgradient (by definition) satisfies

o(2) > d(w) + ¢* (z —w) forall 2

e step lengths satisfy diminishing rule:

©. @)
ap > 0, klirgloozk:(), E ap = 00
—
k=1

Workshop on Large Scale Nonlinear and Semidefinite Programming, Waterloo

43



Subgradient of ¢

e Z=W —111/n =1 - Adiag(w)A? — 111 /n

o if ||Z]| =M(2), Zu = A (2)u, ||ul| =1, then a subgradient is
9iig) = —(wi —wy)*,  (i,)) €€

o if ||Z|| =—-\u(Z), Zu = \o(Z)u, ||u|| =1, then a subgradient is
9ig) = (wi =), (i,§) €E

e can compute A\ (Z), \,(Z), associated eigenvectors very efficiently by
Lanczos method
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Example

e random graph with 10* vertices, 10° edges
o step size o, = 1/(4Vk); started at Metropolis weights
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Fastest Mixing Continuous-time Markov Chain
and

Maximum Variance Unfolding



Continuous-time Markov chain

e continuous-time Markov chain with rate matrix Q = Q7

e cigenvalues of () ordered as

0=X(Q) > A(Q) > - > A(Q)

e distribution 7(¢) converges to uniform with rate determined by A

I7(t) — 1/nle < (Vn/2)e?2(@)

e )\, is positive homogenous function of ()
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Continuous-time FMMC

primal CT-FMMC

minimize Z d?jQij
{i,j}e€
subject to Q@ =Q7, Q1=0, Q;; >0 fori#j,

A2(Q) > 1

dual CT-FMMC

maximize Tr X

QeSS

subject to Xm + ij — Xij — ij' < d2 {Z,j} c&

177

X1=0 X0
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Maximum-variance unfolding

geometric interpretation of dual CT-FMMC problem
(Sun, Boyd, Xiao, Diaconis 2004)

e use variables z1,...,z,, with X = I NP RRRy

e dual problem becomes maximum-variance unfolding problem

maximize > . ||xi])?

subject to Zz x; = 0, ||33Z — SCJH < dij7 {Z,]} e &

e position n points in R" to maximize variance, respecting local distance
constraints
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Maximum-variance unfolding

e similar to semidefinite embedding for unsupervised learning of
manifolds (L. Saul et al 2003)
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e surprise: duality between CT-FMMC and max-variance unfolding
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