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ABSTRACT

We consider the operation of a wind turbine and a connected local battery or other electrical storage device, taking into

account varying wind speed, with the goal of maximizing the total energy generated while respecting limits on the time

derivative (gradient) of power delivered to the grid. We use the turbine inertia as an additional energy storage device, by

varying its speed over time, and coordinate the flows of energy to achieve the goal. The control variables are turbine pitch,

generator torque, and charge/discharge rates for the storage device, each of which can be varied over given ranges. The

system dynamics are quite nonlinear, and the constraints and objectives are not convex functions of the control inputs,

so the resulting optimal control problem is difficult to solve globally. In this paper, we show that by a novel change

of variables, which focuses on power flows, we can transform the problem to one with linear dynamics and convex

constraints. Thus, the problem can be globally solved, using robust, fast solvers tailored for embedded control applications.

We implement the optimal control problem in a receding horizon manner and provide extensive closed-loop tests with real

wind data and modern wind forecasting methods. The simulation results using real wind data demonstrate the ability to

reject the disturbances from fast changes in wind speed, ensuring certain power gradients, with an insignificant loss in

energy production. Copyright c© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Today, wind power is the most important renewable energy source. For the years to come, many countries have set goals

for further reduction of CO2 emission, increased utilization of renewable energy, and phase out of fossil fuels. In Denmark

one of the means to achieve this is to increase the share of wind power to 50% of electricity consumption by 2020 (in 2012

this number was 30%) and to fully cover the energy supply by renewable energies in general by 2050 [1]. Installing this

massive amount of wind turbine capacity introduces several challenges to reliable operation of power systems due to the

fluctuating nature of wind power. Thus, modern wind power plants (WPP) are interfaced with power electronic converters

that are required and designed to fulfill grid codes (see, e.g.[2, 3]).

The Grid Code (GC) is a technical document setting out the rules, responsibilities and procedures governing the

operation, maintenance and development of the power system. It is a public document periodically updated with new

requirements and it differs from operator to operator. Countries with large amounts of wind power have issued dedicated

GCs for its connection to transmission and distribution levels, focused mainly on power controllability, power quality and

fault ride-through capability [4, 5]. In general, wind power plants at transmission level shall act as close as possible to

conventional power plants, providing a wide range of power output control based on transmission system operator (TSO)

instructions. For instance, Denmark, Ireland and Britain establish some of the most demanding requirements regarding

active power control [6]. One of the regulation functions required is a power gradient constraint that limits the maximum

rate-of-change of non-commanded variations in the power output from the WPP to the grid. The reason for such grid codes
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is that if large WPPs are allowed to produce power as the wind blows, other units on the grid must compensate for the

power fluctuations. This can lead to very high power prices as well as stand in the way for phasing out the conventional

power sources. As of today, this constraint is softened if the power production in the WPP drops due to the lack of wind.

This is merely out of necessity and the GCs are expected to tighten further regarding this requirement. Ensuring slow

power gradients reduces the risk of instability on the grid, allows the TSO time for counteracting the change, and improves

the predictability of power output, enabling the WPP owner to put less conservative bids on the power market. In Europe,

the ENTSO-E Network Codes for all types of Generators [7], published in June 2012, aims to establish a coherent set of

non-discriminatory requirements applicable to all types of generators.

Energy storage addresses the major problems of wind power and joining energy storage with WPPs to smooth variations

and improve the power quality is not a new idea. In, e.g., [8, 9, 10, 11] the benefits, economics, and challenges of using

different means of storage, i.e., batteries, hydrogen, flywheels etc., in combination with wind power are investigated.

[12] uses a Lithium-iron-phosphate battery to achieve power forecast improvement and output power gradient reduction.

However, the additional cost of batteries or other energy storages is usually the showstopper, at least as the market is today.

In our previous works, we have shown how thermal capacity, e.g., in supermarket refrigeration, can be utilized for flexible

power consumption [13, 14]. It is very likely that such techniques (where the capacity is a bi-product of fulfilling another

need) can play a major role instead of adding expensive technologies which have storage as their sole purpose. In the rest of

this paper, we consider energy storage in general without distinguishing actual storage from flexible power consumption.

Traditionally, the rotor speed of modern wind turbines is controlled such that it tracks the tip-speed ratio (TSR = angular

rotor speed × rotor radius / wind speed) that extracts the maximum amount of power from the wind and is below the

maximum allowed rotor speed. However, due to the inertia of the rotating masses in the turbine, there is a potential for

improving the quality of the power output by actively letting the rotor speed deviate from the optimal setting. This might

of course come at a cost of slightly reduced power output. In, e.g., [15, 16] turbine inertia is used for frequency response

and power oscillation damping. In these papers, the goal is to enable the wind turbines to offer ancillary services to the

grid, whereas in this paper, we focus on maximizing the power output while observing strict grid codes. In addition, a vast

amount of work exists that address power optimization, fatigue load reduction and pitch control for individual turbines

in the more traditional sense, e.g., [17, 18, 19, 20, 21]. Some of these take optimization and model predictive control

approaches to solve the problems and many rely on a known operating point (e.g., local wind speed and power set-point)

for deriving linearized models. Other works consider the control of large wind farms where the power extracted by upwind

turbines reduces the power that is available from the wind and increases the turbulence intensity in the wake reaching other

turbines (see, e.g., [22, 23, 24, 25, 26]).

The key contributions in this paper are: 1) A convex reformulation of the wind turbine model to a convex problem, 2)

a fast solution algorithm for this problem, and 3) demonstration of the application by simulation using real wind speed

data. We demonstrate how model predictive control (MPC) using forecasts of the wind speed can ensure very low power

gradients (e.g., less than 3% of the rated power per minute) to effectively limit the ramping up or down of power production

even when such power ramps would be caused by sudden lack of wind speed. We do this with a central energy storage

added to the WPP and show how we can utilize the inertia in the individual turbines to further improve this and minimize

the extra storage capacity needed. In [27], we present a sequential convex programming approach to solve the optimal

control problem for the same wind turbine problem as in this paper. The main novelties in this paper are the convex

reformulation, the fast algorithm, and the demonstrations with real wind data, as mentioned above. During the last 30 years,

MPC for constrained systems has emerged as one of the most successful methodologies for control of industrial processes

[28, 29, 30]. Traditionally, MPC is designed using objective functions penalizing deviations from a given set-point. MPC

based on economic performance functions that directly address minimization of the operational costs is an emerging

methodology known as economic optimizing MPC [31, 32, 33, 34, 35]. The potential usefulness of Economic MPC has

been demonstrated for a number of smart energy systems in, e.g., [14, 36, 37]. Economic MPC addresses the concerns of

controlling a system influenced by a number of disturbances which we can predict (with some uncertainty) over a time

horizon into the future, obeying certain constraints, while minimizing the cost (or maximizing the profit) of operation.

MPC is applied to wind turbine control in, e.g., [38, 39] and in particular with focus on convex optimization in [40, 41].

[42, 43] consider convex optimization for a network of electrical devices, such as generators, fixed loads, deferrable loads,

and storage devices. [44, 45, 46, 47] describe methods for improving the speed of MPC, using online optimization. These

custom methods exploit the particular structure of the MPC. Embedded convex optimization applications have recently

become more available to non-experts by the introduction of the automatic code generator CVXGEN [48]. Remarkable

speed-ups achieved using tailored QP-solvers exported from CVXGEN have been reported in, e.g., [42, 49] and in this

paper, we use the same type of custom, embedded solvers. In a recent paper [50] a splitting technique to a generic

linear-convex optimal control problem is introduced and computation times faster than what is obtained by CVXGEN

are reported.
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1.1. Outline

In §2, we introduce the dynamic model for a wind turbine along with the constraints from both physical/mechanical

limitations and the constraints we impose in order to fulfill certain requirements to the operation. We specify and explain

the individual terms in the composite objective function for the optimal control problem in §2.2. In §3, we show how the

optimal control problem can be formulated as a convex optimal control problem, i.e., one with linear dynamics convex

constraints, and a concave objective functional (to be maximized). We provide a novel change of variables and justify

the necessary approximations. §4 gives a numerical simulation of the open-loop optimization for a constructed scenario

and we evaluate the performance of our proposed method. Finally, in §5, we propose an economic MPC based on the

convex optimal control formulation and demonstrate the capability in closed-loop on three different scenarios with real

wind measurement series and their corresponding forecasts using modern wind predictors. We give concluding remarks in

§6.

2. SYSTEM MODEL

2.1. Dynamics and constraints

We model the turbine, transmission, and generator as a single rotational system, with generator speed ωg(t) in rad/s, and

rotor speed ωr(t) = ωg(t)/N in rad/s, where N is the gear ratio of the transmission. We let Jg and Jr denote the inertias

of the generator and rotor, respectively, and we let J = Jg + Jr/N
2 denote the equivalent inertia at the generator shaft.

Neglecting losses, the dynamics is given by

Jω̇g(t) = Tr(t)/N − Tg(t), (1)

where Tg(t) is the generator (back) torque and Tr(t) is the rotor torque from the wind, in Nm. The generator speed and

torque must lie within given bounds:

ωg,min ≤ ωg(t) ≤ ωg,max,

0 ≤ Tg(t) ≤ Tg,max.

The rotor torque Tr(t) is a function of rotor speed ωr(t), wind speed v(t) (in m/s), and the blade pitch angle, denoted

β(t) (by convention in degrees), which must satisfy

βmin ≤ β(t) ≤ βmax.

The mechanical power extracted from the wind, denoted Pw, is

Pw(t) = ωr(t)Tr(t) =
1

2
ρACP(v(t), ωr(t), β(t))v(t)

3,

where ρ is the air density, A is the swept rotor area, and CP is the coefficient of power, which is a function of wind speed,

rotor speed, and blade pitch, typically given by a lookup table, found from aerodynamic simulations or tests. We write this

in the form

Tr(t) = Φ(v(t), ωr(t), β(t))v(t)
3/ωr(t),

where we combine several terms into one function

Φ(v(t), ωr(t), β(t)) = (1/2)ρACP(v(t), ωr(t), β(t)).

The generator produces power Pg(t), given by

Pg(t) = ηgTg(t)ωg(t),

where ηg ∈ [0, 1] is the generator efficiency. This power is constrained by

Pmin ≤ Pg(t) ≤ Prated,

where Prated is the rated power of the generator.

Let Q(t) denote the state-of-charge of the energy storage device, in J. With a small charge and discharge loss, the

dynamics of Q(t) is

Q̇(t) = Pchg(t)− ηloss |Pchg(t)| , (2)
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where Pchg(t) is the charge rate, in W. (Negative Pchg(t) means decharging.) ηloss ∈ [0, 1] is the loss in per cent. Charge

rate and state-of-charge are limited by

Pchg,min ≤ Pchg(t) ≤ Pg(t),

and

0 ≤ Q(t) ≤ Qmax.

The limits on state-of-charge are considered as logical charge levels, and need not correspond to actual charge levels of the

battery: Q(t) = 0 simply means that the storage is at its minimum allowed charge state. Finally, the power supplied to the

grid is

Pgrid(t) = Pg(t)− Pchg(t).

2.2. Optimization

We assume that the limits on quantities, data such as N and J , the function Φ (and therefore the functions ω⋆
r and β⋆

r ), are

known, along with the initial rotor speed and state of charge. We assume that the wind speed v(t) is known (or estimated)

over the time interval 0 ≤ t ≤ T . Our goal is to choose the blade pitch β(t), generator torque Tg(t), and charge rate

Pchg(t), over the time interval 0 ≤ t ≤ T , subject to all the constraints described above.

We have several objectives to consider. The first is the total energy E over the period,

E =

∫ T

0

Pgrid(t) dt,

which we want to maximize. The second is a penalty (which we wish to minimize) for violating a target maximum value

of power rate of change, G (in W/s):

Rpen =

∫ T

0

(|Ṗgrid(t)| −G)+ dt,

where (b)+ = max(b, 0). The third objective, which we want to minimize, is a measure of variation of delivered power

over time:

Rvar =

∫ T

0

Ṗgrid(t)
2 dt.

The forth objective is a penalty (which we will minimize) on rotational speeds above the rated speed ωg,rated:

Rspeed =

∫ T

0

(ωg(t)− ωg,rated)+ dt,

so over-speed is limited when it is not needed for storing kinetic energy. Finally, the fifth objective is to reduce the generator

torque by increasing rotational speed to the rated speed when more power is available in the wind than what the generator

is able to extract. This is achieved by maximizing

RΦ =

∫ T

0

Φ(v(t), ωr(t), β(t)) dt.

We handle these objectives by maximizing the composite objective

E − λRpen − µRvar − ρRspeed + γRΦ,

where λ, µ, ρ, and γ are positive constants that determine the tradeoffs among the objectives. We are to choose β(t), Tg(t),
and Pchg(t) to maximize the composite objective, subject to the constraints given above, and the final charge constraint

Q(T ) = Q(0), which says that the net energy from the storage device over the period is zero.

This is a classical continuous-time optimal control problem, with nonlinear dynamics and nonlinear objective functional.

3. CONVEX FORMULATION

In this section, we show how the optimal control problem described above can be formulated as a convex optimal control

problem, i.e., one with linear dynamics, convex constraints, and a concave objective functional (to be maximized). This

implies that the problem can be solved globally, with great efficiency and also great reliability [51].
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The trick is to work with power flows and energies, treating β(t) and Tg(t) as variables derived from the powers. In our

formulation we choose the quantities

Pg(t), Pgrid(t), Pchg(t), Pw(t), Q(t), K(t),

over the time interval 0 ≤ t ≤ T , where K(t) = (J/2)ωg(t)
2 is the kinetic energy stored in the rotational motion and

Pw(t) = Tr(t)ωr(t) is the power extracted from the wind. Note that the rotor speed can be expressed in terms of the

kinetic energy as

ωr(t) = (1/N)
√

(2/J)K(t)

(which shows how we reconstruct it from the variables above).

The objective E is a linear function of the variables, hence concave. The minimization objectives Rpen and Rvar are

convex functions of the variables, and Rspeed translates directly to:

Rspeed =

∫ T

0

(K(t)− (J/2)ω2
g,rated)+ dt,

which is a convex function of K. So the over all objective E − λRpen − µRvar − ρRspeed + γRΦ, which is to be

maximized, is concave if RΦ is concave. We will come back to this shortly.

Many of the constraints are immediately convex. For example, limits on the quantities above are simple linear inequality

constraints. The charge state dynamics, Q̇(t) = Pchg(t)− ηloss |Pchg(t)|, is a linear differential equation. We now turn to

the other constraints, and show how they can be expressed as convex constraints on the variables listed above.

We can express the dynamics in terms of the kinetic energy as

K̇(t) = Jωg(t)ω̇g(t) = ωg(t)

(

Tr(t)

N
− Tg(t)

)

= Pw(t)− Pg(t)/ηg,

which is a linear differential equation relating K, Pw, and Pg(t). The limits on rotor speed can be expressed as limits on

kinetic energy, as

(J/2)ω2
g,min ≤ K(t) ≤ (J/2)ω2

g,max.

These are simple linear (convex) inequalities.

The generator torque is

Tg(t) =
Pg(t)

ηg
√

(2/J)K(t)

(which shows how we can reconstruct it from the variables above), so the generator torque constraints translate into

0 ≤ Pg(t) ≤ ηg
√

(2/J)K(t)Tg,max,

which is a convex constraint on Pg(t) and K(t), since
√

(2/J)K(t) is a concave function of K(t).
Finally, we explain how to reconstruct the blade pitch β(t) from the variables listed above. We define the available wind

power, as a function of wind speed and kinetic energy,

Pav(v,K) = max
βmin≤β≤βmax

Φ(v, (1/N)
√

(2/J)K,β)v3.

This function is readily found (or tabulated in lookup table form) from Φ. By definition, we have

Pw(t) ≤ Pav(v(t),K(t)), (3)

which states that the extracted wind power cannot exceed the maximum available power.

Now we use a property of the function Φ: As β varies over its range, the extracted power varies from 0 to Pav. In other

words, by blade pitch control, we can vary the extracted power from 0 up to the maximum available power. We disregard

the effects of dynamic inflow of the wind during fast pitching events, described in, e.g., [52, 53, 54]. In these papers, the

transient time of the dynamic inflow is observed to be in the range of 8-20 s. Thus, with a sample rate of 10 s, such effects

are not relevant to this study. We define the function Ψ(v,K, Pw) as the value of β that gives the extracted power Pw.

(This is how we will extract the blade pitch angle from the variables above.)

Now finally we turn to convexity of the constraint (3) and concavity of the objective term RΦ. The latter readily translates

into

RΦ =

∫ T

0

Pav(v(t),K(t)) dt.

What is needed to satisfy both is that, for each wind speed v, Pav is a concave function of K. Amazingly, this is the case

with realistic coefficient of power models. (This is discussed below in §3.1.)
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Figure 1. Pav(v,K) normalized by v3 plotted for a number of different wind speeds evenly distributed between 2.5m/s and 25m/s.

The dotted vertical lines show the minimum and maximum speeds and the dashed vertical line is the rated speed.

3.1. Concavity of the available power function

The concavity of the available power Pav(v,K) is not a mathematical fact. However, as we illustrate in Figure 1, the

available power is nearly a concave function of K for each wind speed. Consequently, we can approximate each of these

with a concave function which is very accurate. Let, P̂av,vi(K) be the approximation of Pav(v,K) (concave of K) at the

wind speed vi. We fit piecewise linear (PWL) functions to express this as

P̂av,vi(K(t)) = min {a1K(t) + b1, . . . , akK(t) + bk} v
3,

with k affine functions (see, e.g., [55]). We compute P̂av,vi(K) for a number of discrete values vi of the wind speed.

For any given wind speed, we find the concave approximation P̂av(v,K) of the available power Pav(v,K) by linear

interpolation of the two neighboring functions P̂av,vi(K), e.g.,

P̂av(v(t),K(t)) = (1−Θ)P̂av,v1(K(t)) + ΘP̂av,v2(K(t)),

with Θ = v(t)−v1
v2−v1

. P̂av(v,K) is a concave function of K as it is the linear interpolation of concave functions.

We validate the approximation by showing the error in P̂av(v,K) vs. Pav(v,K) for the valid range of v and K. We test

with much smaller steps in v than what we have used for the PWL functions. See Figure 2. Our simple interpolated PWL

fit has maximum error of a few percent, and typical error well under one percent.

4. NUMERICAL SIMULATION

We provide careful numerical simulations using the parameters for the NREL 5MW wind turbine model. The model is

openly available and is described in detail in, e.g., [56, 57]. For this turbine, the rated power is Prated = 5 MW which is

reached at wind speeds above 11.4 m/s. The turbine cuts in at 3 m/s and out at 25 m/s. In this and in the following section,

we present simulation results as normalized values using the per unit (pu) system throughout. We define this in Table I.

We solve the optimal control problem for a single turbine using our convex formulation:

maximize E − λRpen − µRvar − ρRspeed + γRΦ,
subject to constraints and dynamics given in §3,

(4)

where the variables are Pg, Pgrid, Pchg, Pw, Q, and K (all functions of time). The optimization uses an initial state of

the dynamic variables K(t) and Q(t) as well as known wind speeds for the interval. Instead of (4) we solve a discretized

version with Np steps over the time interval [0, T ] using the sample time Ts.
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Figure 2. P̂av(v,K) error in percentage.

QUANTITY FACTOR INTERPRETATION

Power P 1/Prated 1 pu = rated turbine power

Kinetic energy K 1/Krated 1 pu = kinetic energy at rated speed

Storage capacity Q 1/Prated 1 pu = energy produced by the turbine at rated power in 1 s

Speed ωg 1/ωg,rated 1 pu = rated generator speed

Table I. Nomenclature for the pu system.

λ 1 · 102

µ 1 · 10−5

ρ 1 · 10−2

γ 1 · 10−2

Np 200

Ts 10 s

ηloss 2 %

G 2.5 kW/s

Table II. Parameters for numerical simulation.

In addition to the parameters given by the model, we must choose values for the introduced dimensionless tuning

parameters, for the target maximum value of power rate of change, for the charge/discharge loss, the sample time and the

length of the interval. We let the maximum power gradient G be rather tight by allowing only a rate of change less than 3%

of the maximum rated power per minute. We choose λ sufficiently high to enforce this maximum power gradient whenever

possible. We want µ, ρ, and γ to be as small as possible and we adjust these by trial and error to give the desired behavior,

i.e., infrequent violation of the power gradient constraint, little variation in the power output, and limited use of overspeed.

The method seems to be quite robust to changes in these values as the performance is merely dependent on the mutual

relative size of the parameters. In this study we use a charge/discharge loss which is almost neglectable but still sufficient

to avoid excessive charging and discharging over the interval. Table II gives the values used in the simulation. To put the

kinetic energy in the rotational motion into play we allow over-speed up to 150% of the rated speed. The objective term

Rspeed keeps the turbine from over-speed when running in steady-state operation. The maximum storage capacity is varied

in order to produce the trade-off plot in Figure 4. We formulate and solve this problem using CVX [58, 59].
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Figure 3. Test of power gradient satisfaction with open-loop optimization using perfect knowledge. We use pu as the unit for all

quantities and let the wind speed drop from 12 m/s to 10 m/s linearly from sample 99 to 101. Note how the power signal decays before

the drop in wind speed. Due to the predicted drop in available power the controller prepares for this in advance
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Figure 4. Energy delivered to the grid for varying storage capacity. We show two cases with a power drop of 0.3 pu over 20 s starting

from v0 above rated speed and below rated speed, respectively. We show this with and without kinetic energy storage K. The two grey

dash-dot lines illustrate the dependency on the enforced power gradient as the upper curve comes from doubling the allowed gradient

(loosening the constraint) while the lower curve is the result of allowing only half the power gradient (tightening the constraint). Both

curves correspond to the v0 = 12 m/s: w/ K curve (dashed blue). The lower curve reaches 1 at a storage level of approx. 40 pu.

Figure 3 shows the output from the optimizer for a selected scenario where the wind speed drops from 12 m/s to 10 m/s

over a period of 20 s (2 samples). This equals a drop in available power (given in per unit (pu), i.e., normalized by Prated)

from around 1.2 pu to 0.7 pu. Qmax is 18 pu in this case. The difference between Pw and Pg that is noted in the figure in

steady operation is due to the generator efficiency.

Figure 4 shows the accumulated power delivered to the grid over the interval as a function of available storage capacity.

We demonstrate a drop in available power of 0.3 pu over 20 s for two different cases. One where the initial wind speed

contains more power than Prated and one where the available power is below Prated for the entire interval. The figure

shows both cases with and without the use of rotor inertia as additional energy storage. From Figure 4 we see how the

active use of rotor inertia as energy storage can reduce the needed extra storage capacity by up to 30% without reducing

the power output (when the initial wind speed is above rated). When no extra storage is available the power output can

be increased around 2% in both cases by use of kinetic energy storage. In addition, Figure 4 can be used to evaluate the

efficiency (in per cent of available wind power) of applying different amounts of external storage. In this case, the power

gradient constraint is considered as hard, i.e., something that must be fulfilled.
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SCENARIO # 1 b 2 2b 3 3b

Mean wind, v̄ 8.03 - 9.92/8.26 - 13.96/11.19 - m/s

Max wind, max(v) 9.88 - 12.31/9.47 - 15.59/13.18 - m/s

Nominal vs. MPC, ∆Pgrid 0.57 4.79 0.42 10.75 -0.93 2.97 %

Accumulated charge/discharge loss 0.21 - 0.23 - 0.04 - %

Max storage, Qmax 15.34 - 50 - 31.86 - pu

Mean storage, Q̄ 5.45 - 16.60 - 8.31 - pu

Max speed
max(wg)

wg,rated
0.95 0.95 1.43 1.00 1.36 1.00 pu

Mean speed
w̄g

wg,rated
0.77 0.79 0.89 0.83 0.99 0.95 pu

Gradient violation time 1.05 21.15 1.54 28.04 1.27 14.41 %

Table III. Selected figures from the three closed-loop simulations. For scenario 2 and 3, the wind speed is given separately for the

intervals before and after the drop in mean wind speed. To compare the performance of the controllers, ∆Pgrid gives the difference

in total delivered energy to the grid in per cent 100
∑

Pgrid,nominal−
∑

Pgrid,MPC∑
Pgrid,nominal

. For each scenario, the column denoted with ’b’

provides the lost energy and the amount of power gradient violations for the same scenario but without the extra storage and

overspeed capabilities.

5. MODEL PREDICTIVE CONTROL

In this section, we show simulations with real wind data series measured at the Danish wind turbine test site Høvsøre

in 2004. The controller bases its decisions on a prediction of future wind speeds. We use the predictions generated in

[60, 61] by modern continuous time formulations of the predictors together with spline basis expansions. The predictors

use upstream wind speed information from other turbines or measurements located several hundred meters in front of the

turbine. For the simulations in this section, we implement an economic optimizing model predictive controller to address

the closed-loop control of a single wind turbine. Like in traditional MPC, we implement the controller in a receding horizon

manner, where an optimization problem over N time steps (the control and prediction horizon) is solved at each step. The

result is an optimal input sequence for the entire horizon, out of which only the first step is implemented. Our controller

repeatedly solves the optimal control problem in (4). Consequently, the aim is to maximize the power delivered to the grid

while obeying the strict requirements to power gradient constraints. This objective function relates to maximizing the profit

within the limits of mechanical as well as regulated constraints, and we do not focus on tracking certain set-points as tend

to be the trend in standard MPC.

We use the parameters for the optimal control problem given in Table II and present three different wind scenarios. Each

scenario contains a number of 10-second averages of measured wind speed and their corresponding predictions. Scenario

1 covers 86 minutes with a quite constant mean wind speed while both scenario 2 and 3 show examples of significant drops

in mean wind speed. Scenario 2 and 3 cover 215 minutes and 175 minutes, respectively. Figures 5–7 illustrate the wind

scenario (measurement and prediction), the wind speed prediction error, power delivered to the grid, and the distribution

of power gradients for each of the three scenarios. In each case, we compare our controller to the nominal controller in the

full Simulink model for the NREL 5MW wind turbine [56, 57]. This turbine delivers all the power it produces directly to

the grid and the pitch and generator torque control is based on gain-scheduled PI controllers that track optimal set-points

given as look-up tables. This approach is standard in controlling wind turbines today. In addition to the figures, Table III

provides a summary of interesting results from the simulations.

In all three scenarios, we note how the heavy fluctuations in power delivered to the grid almost disappear with our MPC

controller. We see a much smoother power signal which is supported by the histograms that clearly show how the rate of

change of the power (with a few exceptions) is limited to the ±3%/minute range that we allow in the problem formulation.

For scenario 1 and 2 the total amount of energy delivered to the grid is reduced by 0.57% and 0.42%, respectively. This

reduction is due to a total accumulated charge/discharge loss of around 0.2% and some periods with suboptimal operation

since we change the rotor speed. Note that this lost energy production should be seen in relation to the much higher losses

incurred when no storage is available (columns denoted ’b’ in Table III), as the power gradient is regarded as a strictly

enforced grid code. In scenario 3, the wind speed is above the rated speed most of the time and our MPC controller

increases the amount of energy delivered to the grid in this case. This increase comes from the improved power coefficient

during overspeed. Table III provide further results regarding maximum and mean utilization of external storage capacity,

maximum and mean rotor speed, etc.
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6. CONCLUSION

In this paper, we have presented an approach to power gradient reduction for fulfilling future, tighter grid codes and for

improving the quality of power delivered to the grid from wind power plants. We utilize turbine inertia as a resource of

distributed energy storage, limited by the rotational speed, in addition to a central storage unit which is associated with an

extra cost. We have demonstrated that by a novel change of variables we can transform the quite nonlinear system dynamics

to a model with linear dynamics and convex constraints. Thus, the problem can be solved for its global optimum using very

efficient and reliable algorithms. Simulations on realistic models reveal a significant ability to reject the disturbances from

fast changes in wind speed, ensuring certain power gradients, while keeping the amount of produced power very close to

nominal.
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Figure 5. Closed-loop simulation of MPC controller with wind scenario 1.
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(f) MPC controller: Power gradient in per cent of rated power per minute.

Figure 6. Closed-loop simulation of MPC controller with wind scenario 2.
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Figure 7. Closed-loop simulation of MPC controller with wind scenario 3.
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