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I. Introduction

Spontaneous mutations are mutations that arise
by mechanisms that have yet to be identified. An
early explanation for spontaneous mutagenesis was
that it resulted from background radiation. How-
ever, Muller and Mott-Smith (1930) showed that
only a very small fraction of spontaneous muta-

genesis could result from the known levels of
background radiation. Other studies (reviewed by
von Borstel, 1969) have supported this evaluation.
It is now generally accepted that intracellular
mechanisms are the cause of spontaneous muta-
genesis (reviewed by von Borstel, 1969; Cox, 1976;
Loeb and Kunkel, 1982; Lawrence, 1982; Drake et
al., 1983). In this review, we will use a genetic
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approach to discuss the role of DNA replication,
recombination and repair in spontaneous muta-
genesis (see also Kondo et al., 1970; Kondo, 1973).
While we will discuss the major hypotheses for
spontaneous mutagenesis, our main objective is to
emphasize an area that has been minimized in the
earlier reviews, that is, the role of DNA damage
and of DNA repair genes in spontaneous muta-
genesis.

In earlier work on the involvement of error-
prone DNA repair in spontaneous mutagenesis
(Sargentini and Smith, 1981), the uvrA, uvrB, uvrD,
recA, recB, lexA, and wumuC mutations in
Escherichia coli were studied, and it was shown
that mutations that enhance error-prone repair
also enhance spontaneous mutagenesis, and that
mutations that reduce error-prone repair also re-
duce spontaneous mutagenesis. It was concluded,
therefore, that much of spontaneous mutagenesis
in E. coli is the result of error-prone repair. The
questions that we wish to address here are the
following: (1) What kinds of mutations are pro-
duced spontaneously, and what do these kinds of
mutations suggest about the relative importance of
various mechanisms for spontaneous mutagenesis?
(2) If one surveys the literature on spontaneous
mutagenesis in several species, can one demon-
strate a major involvement of error-prone repair
and of error-free repair in spontaneous mutagene-
sis? (3) From data for bacteria, can one predict
mechanisms of spontaneous mutagenesis in higher
organisms? We have attempted in this review not
only to provide answers to these questions, but
also to provide a conceptual basis for future work
on the mechanisms for spontaneous mutagenesis.

I1. Types of spontaneous mutations

A. Bacteria

What kinds of mutations occur spontaneously?
In one of the few studies performed to quantitate
the general classes of mutations that occur sponta-
neously, Hartman et al. (1971) classified 83 spon-
taneous histidine auxotrophs of Salmonella
typhimurium and obtained the following distribu-
tion: 53% were caused by base substitution (either
transitions or transversions), 11% were caused by
frameshifts (i.e., insertions or deletions of one or a
few base pairs), 23% were caused by deletions (i.e.,

deletions of more than a few base pairs), and 13%
were apparently caused by insertions (i.e., inser-
tions of large DNA elements) *. Since studies of
this sort only detect mutations that inactivate a
gene product (otherwise there would be no easy
way to detect the mutants), one can presume that
many missense mutations are overlooked in such
studies because they have little or no effect on the
measured phenotype (i.e., they are silent muta-
tions). Thus, the listed proportion for base sub-
stitutions is most likely an underestimate, while
those listed for the other classes of mutations are
most likely overestimates. Also, these data of
Hartman et al. (1971) are given only for the pur-
pose of discussion, since the mutational spectrum
observed at any given locus can certainly be differ-
ent. For example, Farabaugh et al. (1978) showed
that 67% of the spontaneous mutations detected
by inactivation of the lacI gene were attributable
to frameshift or small deletion mutations, and that
these mutations all occurred at only one or two
sites in the JacI gene. Similarly, Bukhari and
Khatoon (1982) found that virtually all mutations
selected for strong polarity in the /ac gene were the
result of the introduction of insertion sequences.
Such “hotspots™, if they are not the result of
general phenomena, can severely affect one’s per-
ception of what is a general mutational spectrum.
Since deletions and insertions were detectable in
the aforementioned data of Hartman et al. (1971),
but they comprised only about one-third of the
mutagenesis, we favor the conclusion that, in gen-
eral, base substitution is the most common form of
spontaneous mutation in bacteria.

B. Fungi

Base substitutions also seem to be the most
common type of spontaneous mutations in yeast.
Whelan (cited in Lemontt, 1977) found that about
35% of spontaneous canavanine-resistant mutants
of Saccharomyces cerevisiae arise by base substitu-

* The last category of mutations was originally classified as
frameshifts that reverted spontaneously, but were not af-
fected by N-methyl-N’-nitro-N-nitrosoguanidine or ICR191
compounds. In light of work by Malamy (1966) and others
(reviewed in Starlinger and Saedler, 1972), we have interpre-
ted this group of “frameshift mutants” to be insertion
mutants.



tion. Sherman et al. (1974) characterized 41 spon-
taneous mutants defective in iso-1-cytochrome ¢
and found 5 nonreverting mutants (probably in-
sertion or small deletion mutants), 2 initiation
mutants, and 12 nonsense mutants. The remaining
22 mutants were able to revert with mutagens such
as ethyl methanesulfonate, and were thought not
to be frameshift mutants. Thus, the latter can
tentatively be labeled as missense mutants. There-
fore, more than 80% of the 41 spontaneous cycl
mutants studied by Sherman et al. (1974) were
most likely the result of base substitution.

One can conclude, in general, that base sub-
stitution is the most common type of spontaneous
mutation in bacteria and fungi, This is fortunate
since most of the data that were available for this
review resulted from base-substitution assays. It is
important to note that each kind of mutation (e.g.,
base substitution, frameshift, etc.) probably has a
unique set of mechanisms for its induction (e.g.,
reviewed in Drake et al., 1983), and thus one needs
to be aware of the molecular basis of the mutation
assay before trying to apply its results to a given
model for mutagenesis.

II1. Replication errors

One difficulty in discussing the roles of repli-
cation, recombination, and repair in spontaneous
mutagenesis, is that these three processes overlap
each other. Thus, we will define what sort of
material each section will include. This section on
replication errors is meant to focus on the DNA
replication that is part of the normal process of
cell division. In this context, damage in the DNA
template must not block DNA replication, ie., it
must be miscoding damage rather than noncoding
damage. Popular relevant mechanisms for muta-
genesis that will be discussed here include: (1) base
tautomerization, (2) miscoding DNA damage, (3)
polymerase errors, and (4) mutators, antimutators
and mismatch repair.

A. Base tautomerization

From their model for the double-helical struc-
ture of DNA, Watson and Crick (1953) postulated
that transition mutagenesis (A © G, or Ce T)
occurred by the production of base tautomers via
proton migration. Similarly, Topal and Fresco

(1976) used tautomerization and base rotation to
explain transversion mutagenesis (A or G Cor
T). The essence of such models is that at the
moment of replication a base in the DNA tem-
plate develops an inappropriate coding property,
which leads to the incorporation of an incorrect
base in the nascent DNA. Theoretically, base
tautomerization could explain most spontaneous
base substitutions, however, such models are dif-
ficult to verify and seem inconsistent with the data
for the genetic control of spontaneous mutagene-
sis, which will be discussed later.

B. Miscoding base damage

Spontaneously modified bases may code differ-
ently than their normal precursors. Deaminated
5-methylcytosine (i.e., thymine) codes for adenine
and thus, will cause a GC — AT transition. Since
there is a good correlation between the occurrence
of 5-methylcytosine in the /acl gene and the occur-
rence of mutation hotspots (Duncan and Miller,
1980), this suggests that 5-methylcytosine
deamination plays a role in spontaneous mutagen-
esis.

The deamination of cytosine, yielding uracil in
DNA, can also cause GC — AT transitions. The
role of deaminated cytosine in spontaneous muta-
genesis is suggested by the fact that the ung mutant
(deficient in the removal of uracil from DNA)
shows enhanced spontaneous mutagenesis
(Hayakawa and Sekiguchi, 1978; Duncan and
Miller, 1980; Duncan and Weiss, 1982), however,
one would like to know whether an increased
intracellular concentration of uracil N-glycosylase
in an ung” cell would result in a lower rate of
spontaneous mutagenesis. Such a finding would
provide more valid support for the role of cytosine
deamination in spontaneous mutagenesis in wild-
type cells.

Methylated guanine is another modified base
that should occur naturally in DNA and would be
expected to cause GC — AT transitions (Drake et
al., 1983).

C. Polymerase errors

Loeb and Kunkel (1982) have reviewed abun-
dant data showing that DNA polymerases occa-
sionally incorporate incorrect bases. The poly-
merase error rate is affected by the base sequence
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of the template, the nature of the misincorporated
base, and the nature and source of the DNA
polymerase (Loeb and Kunkel, 1982). The poly-
merase error rate is also affected by perturbations
in the relative sizes of the pools of nucleoside
triphosphates (Fersht, 1979; Kunkel et al., 1981,
1982; reviewed by Kunz, 1982), and of divalent
cations such as Mg?* and Mn?* (Sirover and
Loeb, 1976; Goodman et al., 1983; Hillebrand and
Beattie, 1984).

The role of polymerase errors in spontaneous
mutagenesis is most strongly supported by studies
with bacteriophage T4 mutants. That is, antimu-
tator derivatives of phage T4 have been isolated
and shown to be mutant at the gene for DNA
polymerase (gene 43; Drake and Allen, 1968;
Drake et al., 1969). Thus, a mutation that makes
the phage DNA polymerase more accurate reduces
the level of spontaneous mutations.

While the base sequence of the template clearly
has an effect on misincorporation, i.e., base-
substitution errors (reviewed in Loeb and Kunkel,
1982; also see Patten et al., 1984), it seems also to
be an important factor in small and large ad-
dition/deletion mutations. In a model for mis-
alignment mutagenesis, Streisinger et al. (1966)
described how the occurrence of short, redundant
base sequences in DNA were correlated with the
sites of frameshift mutations and of mutations
involving large additions or deletions of DNA. In
a related fashion, Ripley (1982) and Ripley and
Glickman (1982) have correlated the occurrence of
DNA palindromes with the occurrence of
frameshift and deletion mutations that are not
easily explained by the Streisinger model. Such
models of misalignment mutagenesis, and data to
support them, have recently been reviewed by
Drake et al. (1983). These models seem valid be-
cause of the good correlation between their predic-
tions and the occurrence of spontaneous addition/
deletion mutations at certain chromosomal sites.

D. Mutators, antimutators and mismatch repair
The mutator and antimutator mutations to be
discussed in this section on DNA replication er-
rors were selected either because (1) they are known
to affect the normal replication process, (ii) they
do not sensitize cells to killing by DNA damage,
or (iii) their effect on mutagenesis is independent

of the recA gene, i.e., the gene that controls most
mutagenesis after DNA damage induction (re-
viewed in Witkin, 1976). Mismatch repair is gener-
ally regarded as a postreplication proof-reading
process (Wildenberg and Meselson, 1975), rather
than a repair process for DNA damage.

The main purpose of this section is simply to
indicate the ubiquity and complexity of genes as-
sumed to be involved in mutation avoidance, i.e.,
mutations in these genes produce mutator strains.
The isolation and characterization of mutator
mutants in such organisms as bacteriophage,
bacteria, yeast, Drosophila, and maize (reviewed in
Mohn and Wiurgler, 1972; E.C. Cox, 1976) have
been valuable in understanding how spontaneous
mutations can occur, but have been much less
informative as to how spontaneous mutations do
occur. Answers to the latter question come directly
from the study and understanding of antimutator
mutants. However, only a few antimutator mutants
have been found. We will discuss mutators, anti-
mutators, and strains deficient in mismatch repair
according to the organisms in which they appear.

1. Bacteriophage. Mutations affecting the
gene-43-coded DNA polymerase of phage T4 re-
sult in enhanced transition (Speyer et al., 1966)
and transversion (Hall and Lehman, 1968) muta-
tions. Antimutator phage T4 DNA polymerase
mutants have also been described (Drake and Al-
len, 1968; Drake et al., 1969). Muzyczka et al.
(1972) concluded that spontaneous mutagenesis in
phage T4 is the result of the antagonistic interac-
tion of the polymerase misfunction (to insert in-
correct nucleotides) and the 3’-5 exonuclease
function (to remove incorrect nucleotides).

Other support for the involvement of repli-
cation errors in spontaneous mutagenesis comes
from the mutator or antimutator phenotypes (de-
pending on the reversion assay, i.e., type of transi-
tion or frameshift) of phage T4 gyrase (gene 32)
and deoxycytidylate hydroxymethylase mutants
(reviewed in Drake, 1973). However, the latter
mutant also shows enhanced recombination
(Bernstein, 1967).

2. Bacteria. Bacterial mutator and antimutator
mutations are listed in Table 1, according to the
criteria that these mutations affect spontaneous
mutagenesis, but have no known effect on DNA
repair or experimentally induced mutagenesis.



However, 3 mutants, uorD, dnaE( polC), and lig,
have defects in DNA repair (reviewed in Hamelin
et al., 1976; van der Schueren et al., 1977; Youngs
and Smith, 1977) and/or radiation mutagenesis
(reviewed in Bridges, 1980; Sargentini and Smith,
1980), and they are listed in Table 1 because they
show recA-independent mutator activity. This
recA-independent phenotype has generally been
considered as diagnostic for the involvement of
replication errors in spontaneous mutagenesis (e.g.,
E.C. Cox, 1976). The spontaneous mutation rates
of the other mutants listed in Table 1 are also recA
independent, however, this was tested in only a
few of the mutagenesis assays listed in Table 1.

The possible role in spontaneous mutagenesis
of the dnaE mutants, which have altered DNA
replication polymerases, is logically related to the
fidelity of DNA replication. One might also con-
sider that dnaE mutants, and more likely the lig
mutant, may enhance spontaneous mutagenesis by
blocking the replication fork or the resealing of
DNA strand breaks, respectively. Both of these
actions appear to result in the induction of the
SOS phenomenon (reviewed in Witkin, 1976;
Walker, 1984), which can lead to enhanced sponta-
neous mutagenesis, as evidenced by data for the tif
(Witkin, 1974, 1975b; Mount, 1977) and dnaB
(Witkin, 1975¢) strains. If the SOS phenomenon is
involved, one would expect to find a rec4-depen-
dent mutator effect with some of the mutagenesis
assays that have yet to be tested for a recA4 in-
volvement in these strains.

Besides DNA polymerase III (the dnaE gene
product), another component of the DNA poly-
merase III holoenzyme also affects replication er-
rors. The e-subunit is now known to be de-
termined by the mutator gene mutD (also known
as dnaQ) (Erlich and Cox, 1980; Scheuerman et
al., 1983; Horiuchi et al., 1978; Maruyama et al.,
1983).

The availability of substrates for DNA synthe-
sis may indirectly affect spontaneous mutagenesis.
The purB (purine auxotrophy) mutant (Geiger
and Speyer, 1977) would seem to exhibit its anti-
mutator effect by increasing the fidelity of DNA
replication via changes in the relative pool sizes of
DNA precursors (reviewed in Kunz, 1982). DNA
precursor pool sizes are also relevant to the regu-
lation of the mutD (Erlich and Cox, 1980) and tif
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(Witkin, 1974) mutator effects, which suggest that
altered deoxynucleoside triphosphate selection can
be an important mechanism of spontaneous muta-
genesis.

After an incorrect nucleotide has been incor-
porated into DNA, the cell still can use mismatch
repair to correct the error. The mutS, mutH, mutL,
and worD mutations (Table 1), and the dam muta-
tion (Table 5) are known to affect mismatch repair
(Nevers and Spatz, 1975; Glickman and Radman,
1980). These mutators are analogous to the phage
T4 mutators described earlier in that, in both
cases, reduced DNA fidelity is thought to result
from a relative reduction in “proof-reading” func-
tion.

If the muuD, mwH, mwtL, mutS, uvrD, and
dnaE mutations all enhance spontaneous muta-
genesis by decreasing the accuracy of DNA repli-
cation, then the muwtT and ruuB mutations must
operate at a different level or pathway because,
unlike the former mutators, they do not seem to
generally enhance spontaneous frameshift muta-
genesis (Table 1). The specificity of the mutT
mutator for AT — CG transversions argues that
this strain may be specifically deficient in the
repair of altered thymine or adenine residues much
like the ung mutant which yields GC — AT transi-
tions due to unrepaired deaminated cytosine le-
sions (Duncan and Weiss, 1982). The mutB muta-
tor has not yet been tested for a base-substitution
specificity.

3. Fungi. Mutations in fungi that act as muta-
tors are listed in Table 2, again according to the
criteria that they have no known effect on DNA
repair or experimentally induced mutagenesis.
Compared with bacteria, much less is known about
these mutators, but one can comment on their
mutational specificy. The gam2, gam4, mtml, and
mtm2 mutators all show a specificity for
mitochondrial DNA relative to nuclear DNA even
though the mutators are nuclear genes (Foury and
Goffeau, 1979; Johnston and Johnson, 1983;
Johnston, 1979). The mtm3 mutator and the LB,
antimutator affect both mitochondrial and nuclear
DNA. The other 6 mutators listed in Table 2 have
been tested only for their effects on nuclear DNA.
Of these 6 mutators, only the mut/ and mut2
genes have thus far been shown to exhibit specific
mutator effects, but this may reflect the greater



TABLE 1
MUTATOR AND ANTIMUTATOR MUTATIONS IN BACTERIA @

Mutant ® Mutagenesis assay ° Mutagenesis References ©
compared
to wild type
mutT Str'(ms), trpA(AT — CG), arg, AsusP3, Enhanced 3,31,32
AsusN7, Cap', Fv’, T1°, T3H', T4", TS",
Amp', argE3
lacZ(fs), trpA54((fs), T2' Normal 26
mutB hisG46(ms), Nal", Rif'(ms), gal6(ms) Enhanced 20
hisD3052(fs) Normal 20
mutD rpA(AT o GC, AT © CG, AT« TA, GC - CG), Enhanced 4,6,7,12,16,18

Str'(ms), Nal*, Rif'(ms), Chl", leuB6,
his-4(oc), argE(oc), Azi', tfrA, trpA(fs)
mutH hisG46(ms), Nal', Rif"(ms), gal6(ms), Enhanced 10,11,20,27
Str', trpE65(oc), Strf, Azi", T17, T2",
auxotrophy, hisD3052(fs), leu(fs), argA(fs),
his(fs)trp(fs), trpE9777(fs), ilv(fs),

lacZ(fs)
trpA2] Reduced 27
mutL Str'(ms), Spc'(fs), T17, T7", trpA(AT < GC), Enhanced 1,11,15,20,25--27

T3', T2, T6", hisG46(ms), Nal", Rif"(ms),
gal6(ms), lacZ(fs), trpA(fs), hisD3052(fs),
trpE9777(fs), trpD(de)
mutS T1%, T3, T7", Pen', Str'(ms), Cys', Azi", Enhanced 5,11,20,23,24,26,27
Kan', T2, Van', irpA, his, thr, leu, lys )
(AT & GC), hisG46(ms), Nal", Rif', gal6(ms),
lacZ(fs), trpA(fs), hisD3052(fs), trpE9777(fs),
lacU118(oc), lac X9 oc)

uvrD Str'(ms), T7", leu-6, ilvD188, T4, trp, Enhanced 14,20-22,26-30
T6", trpA46(ms), Val', trp(oc), trpA
(AT & GCQ), his, hisG46(ms), Nal", Rif'(ms),
gal6(ms), Spc', lacZ(fs), trpA(fs),
hisD305X(fs), trpE9777(fs)

Phage genes, trpA4 (AT — CG, GC — TA), his-4 Normal 14,21,30
dnaE9 lacYA482, Rif"(ms) Enhanced 13
dnaE486 rpA(TA & AT, CG - GC, GC < TA), Aza', Enhanced 9,27

trpE9777(fs), trpAS540(fs)

trpA540(fs), trpA(AT — GC), trpA981 3(fs), Normal 9,27

trpA21(fs)
dnaE511 trpA(AT > TA, CG - GC, GC > TA), Aza', Enhanced 9,27

trpE9777(fs), trpA21(fs)

trpA540(fs), trpA(AT - GC), trpA981 3(fs) Normal 9,27
dnaE672 leu-6, Val', Amp’, Aza", Rif'(ms) Enhanced 19
1lig(40°C) trpE9777(fs), Val', Rif'(ms), SMT", Ac Enhanced 2*17,27
purB Val', metE, his, trp Reduced 8

T7", Rif'(ms) Normal 8

* Data for both Escherichia coli and Salmonella typhimurium are presented. The mutB mutant has thus far only been found in S.
typhimurium. Relevant alternate nomenclature for mutators, from Bachmann (1983) and references therein: mutH = mutR;
mutL = mut-25; uorD = muwtU, worE, recL, and wwr502; dnak = polC. dnaQ = mutD (Scheuermann et al., 1983; Maruyama et al.,
1983). The mutants here were selected primarily because their rates of spontaneous mutagenesis were not affected by an additional
recA mutation. However, this criterion of rec4 independence was not tested with all of the listed mutagenesis assays, and in the case
of the dnaFE alleles, only dnaE9 was tested.



TABLE 2
FUNGAL MUTANTS WITH ALTERED SPONTANEOUS MUTAGENESIS BUT NORMAL SENSITIVITY TO DNA DAMAGE

Mutant Mutagenesis assay * Spontaneous mutagenesis References ®
compared to wild type
MUTSs lysl-1(oc) Enhanced 5
MICI2 can” Enhanced 8
gam2 rho™ (de), Ery®, Oli", Diu’, Enhanced 2
his, met2, Normal 2
gam4 rho™ (de), Ery", Oli", Diu' Enhanced 2
his, met2, can® Normal 2
reml can”, trp5-2(oc, 1), trp5-2 Enhanced 3
ade? - 1{(oc, SS)
mtml Ery’, Spi, rho™ (de) Enhanced 6.7
hisl -7(oc), lys2, hisl Normal 6
mtm?2 Ery", Spi*, rho™ (de) Enhanced 6.7
his!-7(oc), lys2, hisl Normal 6
mtm3 Ery", Spi*, hisl-7(ms), can' Enhanced 7
rho™ (de) Normal 7
mut8 lysl -1(oc) Enhanced 9
mutl lysl -1(oc, SS), hisl -7(ms), arg4-17(oc, SS) Enhanced 4,5.9.10
lysi-1(oc, 1), arg4-17(oc, 1) Reduced 4,10
hom3-10(fs) Normal 4,10
mut2 lysl -1(oc, SS, 1), hisl-7(ms), hom3-10(fs) Enhanced 410"
LB Ery", Olif, Diu’, can', CHX", his Reduced 1

® Mutation assay nomenclature: oc, ochre nonsense mutation; de, deletion mutation; 1, oc site; SS, oc supersuppressor; ms, missense
mutation; fs, frameshift mutation. The rho™, Ery", Oli", Diu", and Spi’ mutations all occur in mitochondrial DNA. All other
mutations listed occur in nuclear DNA.

b Refer to footnote e, Table 3 for an explanation of notated references. References: 1, Bianchi and Foury, 1982; 2. Foury and
Goffeau, 1979; 3, Golin and Esposito, 1977; 4, Gottlieb and von Borstel, 1976; 5, Hastings et al., 1976; 6, Johnston, 1979; 7,
Johnston and Johnson, 1983; 8, Maloney and Fogel, 1980; 9, Nasim and Brychcy, 1979; 10, von Borstel et al., 1973.

number of mutation assays used to evaluate these of S. cerevisiae, since this strain seems totally
two mutators (Table 2). One would like to know if deficient in UV radiation mutability (Lawrence
these fungal mutations sensitize cells to DNA- and Christensen, 1976), and would be expected to
damaging agents, and whether each mutation re- be deficient in the mutagenesis caused by most
tains its mutator phenotype in a rad6 rev3 strain chemicals (Prakash, 1974). Also, the mur! and LB,

® Mutation assay nomenclature: ms, missense; fs, frameshift; de, deletion; oc, ochre nonsense mutation. Str’, Spc” and Rif " mutants
have been classified by us as missense mutants on the basis of studies of such mutants (e.g., Silengo et al., 1967; Austin et al., 1971).

¢ Refer to footnote e, Table 3 for an explanation of notated references. References: 1, Balbinder et al., 1983; 2, Condra and Pauling,
1982; 3, E.C. Cox, 1973; 4. E.C. Cox, 1976; 5, E.C. Cox et al., 1972; 6, Degnen and Cox, 1974; 7, Fowler et al., 1974; 8, Geiger and
Speyer, 1977; 9, Hall and Brammer, 1973; 10, Hill, 1968; 11, Hoess and Herman, 1975; 12, Horiuchi et al., 1978; 13, Konrad, 1978;
14, Kushner et al,, 1978; 15, Liberfarb and Bryson, 1970; 16, Maruyama et al., 1983; 17, Morse and Pauling, 1975; 18, Scheuermann
et al., 1983; 19, Sevastopoulos and Glaser, 1977; 20, Shanabruch et al., 1981, 21, Siegel, 1973; 22, Siegel, 1981; 23, Siegel and
Bryson, 1964; 24, Siegel and Bryson, 1967; 25, Siegel and Ivers, 1975; 26, Siegel and Kamel, 1974; 27, Siegel and Vaccaro, 1978; 28,
Smirnov et al., 1972; 29, Smirnov et al., 1973a; 30, Smirnov et al., 1973b; 31, Treffers et al., 1954; 32, Yanofsky et al., 1966.



mutations should be given a higher priority for
study, because at least in some instances they
exhibit an antimutator phenotype (Table 2).
Therefore, an understanding of the biological
function of these two genes would be very helpful
towards understanding spontaneous mutagenesis
in yeast.

4. Higher eukaryotes. Mutator lines of
Drosophila, which are not radiation sensitive, have
been reported (reviewed in M.M. Green, 1973).
Although the insertion of mobile elements seems
to play a large role in spontaneous mutagenesis in
Drosophila (Rubin et al., 1982; Modollel et al.,
1983; Leigh Brown, 1983), this finding may reflect
the fact that only gene-inactivating mutations are
detected with the assays that have generally been
used to study spontaneous mutagenesis in
Drosophila.

Mutator lines of mammalian cells have been
reported. Meuth et al. (1979) described 3 thymi-
dine-auxotrophic lines of Chinese hamster ovary
cells that exhibit enhanced spontaneous reversion
to thymidine prototrophy, and enhanced sponta-
neous frequencies of 6-thioguanine and ouabain
resistance. Weinberg et al. (1981) described 3 lines
of murine T-lymphosarcoma cells that show al-
tered deoxynucleoside triphosphate pools, and en-
hanced frequencies of spontaneous dexamethasone
and 6-thioguanine resistance. Both groups of
workers concluded that abnormal deoxycytidine
triphosphate pools were responsible for the en-
hanced rates of spontaneous mutagenesis that they
observed (reviewed in Meuth, 1984).

IV. Recombination errors

Perhaps the first evidence for a role of genetic
recombination in spontaneous mutagenesis came
from an analysis of the meiotic effect in S. cere-
visiae (reviewed in von Borstel, 1969). That is,
certain spontaneous addition/ deletion-type rever-
sions are much enhanced during meiosis relative to
mitosis (Magni, 1963; Machida and Nakai, 1980).
This fact can be correlated to the notion that
spontaneous recombination is also enhanced dur-
ing meiosis relative to mitosis (e.g., Maloney and
Fogel, 1980). However, two points detract from
the meiotic effect as a demonstration that recom-
bination errors play a role in spontaneous muta-

genesis. First, there are data that suggest that
recombination events are not really more frequent
during meiosis (see Lawrence, 1982). Second, even
if the meiotic effect i1s a real example of recom-
bination errors, such a mechanism can only ex-
plain a small portion of spontaneous mutagenesis,
since base-substitution reversions and other ad-
dition / deletion-type reversions do not seem to be
enhanced during meiosis (von Borstel et al., 1964;
Whelan et al., 1979; Machida and Nakai, 1980;
reviewed in Lawrence, 1982). One way to resolve
this question i1s to compare the genetic control of
recombination with that for spontaneous mutagen-
esis. This has been done intentionally in only a few
studies, which will be discussed below. We have
compared the available data on the genetic control
of spontaneous recombination and of spontaneous
mutagenesis in bacteria (Table 3) and fungi (Table
4), and conclude, in general, that recombination
errors do not play a major role in spontaneous
mutagenesis (see below).

A. Bacteria

Table 3 compares recombination ability and
spontaneous mutagenesis in bacteria in order to
see if some correlation exists. The data are arranged
such that mutations that have similar effects on
recombination ability and on spontaneous muta-
genesis are generally grouped together, and they
can be discussed in these groupings.

The dam, mutH, mutL, mutS, wworD and prob-
ably polAexl mutants are all deficient in mis-
match repair (Wildenberg and Meselson, 1975;
Nevers and Spatz, 1975; Glickman and Radman,
1980) and show enhanced recombination and
spontaneous mutagenesis (Table 3). It seems most
likely that their mutator effects are the result of
decreased proof-reading of replication errors, and
that their hyper-recombination phenotype is not
directly the cause of the mutator effect.

Three mutants (recA, lexA and the recB recC
double mutant) show both reduced recombination
and reduced spontaneous mutagenesis. Since the
recA gene controls both transductional and conju-
gational recombination (Clark and Margulies,
1965; Howard-Flanders and Theriot, 1966) and a
portion of spontaneous mutagenesis (Kondo et al.,
1970; Sargentini and Smith, 1981), it has been
suggested that much of spontaneous mutagenesis



TABLE 3
RECOMBINATION PROFICIENCY VERSUS SPONTANEOUS MUTABILITY IN BACTERIA?

Mutant ? Recombination Spontaneous mutagenesis References ©

- ¢
proficiency Compared Assay ¢ Recomb. Spont. mutagenesis

to wild type

dam Enhanced Enhanced bs,fs 5,13,36,67 5,12,13,15,37-39,41

mutH Enhanced Enhanced bs,fs 13 13,18,19,45,52
Reduced fs 52

mutL Enhanced Enhanced bs,fs 13 13,19,34,45,50-52

mutS Enhanced Enhanced bs,fs 13 8,13,19,45,48,49,51,52
Normal fs 52

polAex] Enhanced Enhanced fs 31 52,59

polAl Normal Normal fs 14 22
Enhanced bs,fs,de 7,22,24,30,33,44,59,66*
Reduced fs 52

uorD Enhanced Enhanced bs,fs 67 13,32,45-47,51,53-55
Normal bs,de 23,32

recA Reduced Reduced bs,fs,de 6 1,17,25,30,33,43,60,63
Normal de,bs 3,10,23-25,56

lexA Reduced Reduced bs 65,67 43,61%,63

recB Reduced Normal bs,de 21 3,43,56

recC Reduced Normal de 21 3

recB recC Reduced Reduced bs 20 297,63

recF Normal Enhanced bs 20 29%.56,63

recB recF Reduced Normal bs 20 29

umuC Normal Reduced bs,de 43 27* 285,43

tdi Normal Reduced bs 58 58

uvrA, B Normal Normal bs,fs,de 21,67§ 23,24,29*,30,42
Enhanced bs,fs 2,405,42,43,56*
Reduced fs,de 2,33

ssb Reduced Enhanced bs 11 163,35

muc” Reduced Normal bs,fs,de 64 9,33,42
Enhanced bs,fs 9,33,42,62,63
Reduced de 4*

mutR1 Reduced Enhanced bs 26 26

a

b

Bacteria are Escherichia coli except in a few cases where data for the very similar bacterium, Salmonella typhimurium, are used, and
in the case of mutR1 data, which are for Neisseria meningitidis.

Relevant alternate nomenclature from Bachmann (1983) and references therein: muwtH = mutR; mutL = mut-25; uorD = mutU,
wrE and wwr502; lexA = exrA. muc™ is the mutator gene carried on plasmid R46 and its derivative pKM101 (Shanabruch and
Walker, 1980).

Recombination ability relative to a wild-type strain was measured by procedures that rely on recA-dependent recombination, e.g., a
conjugation procedure.

Mutation assay nomenclature: bs, base substitution; fs, frameshift; de, deletion.

Occasionally, the referenced work made no conclusion regarding how the mutant strain compared with the wild-type strain for the
phenomenon in question. When this occurred (*), we interpreted the data on the basis of whether the mean of the data for one
strain was within 1 S.D. of the mean of the data for the strain being compared, i.e., within = Normal; without = Enhanced or
Reduced. In some cases (¥), a statistical evaluation was not possible and our evaluation is simply our interpretation of the published
data. In some cases our statistical evaluation, described above, gave an interpretation (7) that differed from that of the referenced
authors. References: 1, Albertini et al., 1982; 2, Ames, 1971; 3, Anderson, 1970; 4, Balbinder et al., 1983; 5, Bale et al.,, 1979; 6,
Clark and Margulies, 1965; 7, Coukell and Yanofsky, 1970; 8, E.C. Cox et al.,, 1972; 9, Fowler et al.,, 1979; 10, Franklin, 1967; 11,
Glassberg et al., 1979; 12, Glickman, 1979; 13, Glickman and Radman, 1980; 14, Glickman and Rutgers, 1979; 15, Glickman et al.,
1978; 16, Greenberg et al., 1975; 17, Hartman et al., 1984; 18, Hill, 1968; 19, Hoess and Herman, 1975; 20, Horii and Clark, 1973;
21, Howard-Flanders and Boyce, 1966; 22, Imray and MacPhee, 1976; 23, Inselburg, 1967; 24, Ishii and Kondo, 1972; 25, Jones et
al., 1982; 26, Jyssum, 1968; 27, Kato and Nakano, 1981; 28, Kato and Shinoura, 1977; 29, Kato et al., 1977; 30, Kondo et al., 1970;
31, Konrad and Lehman, 1974; 32, Kushner et al., 1978; 33, Levine et al., 1984; 34, Liberfarb and Bryson, 1970; 35, Lieberman and
Witkin, 1983; 36, Marinus and Konrad, 1976; 37, Marinus and Morris, 1974; 38, Marinus and Morris, 1975; 39, Marinus et al.,
1983: 40, McCann et al., 1975; 41, Mohn et al., 1980; 42, Mortelmans and Stocker, 1976; 43, Sargentini and Smith, 1981; 44, Savic
and Romac, 1982; 45, Shanabruch et al., 1981; 46, Siegel, 1973; 47, Siegel, 1981; 48, Siegel and Bryson, 1964; 49, Siegel and Bryson,
1967; 50, Siegel and Ivers, 1975; 51, Siegel and Kamel, 1974; 52, Siegel and Vaccaro, 1978; 53, Smirnov et al., 1972; 54, Smirnov et
al., 1973a; 55, Smirnov et al., 1973b; 56, Southworth and Bridges, 1984; 57, Spudich et al., 1970; 58, Stacey and Oliver, 1977; 59,
Vaccaro and Siegel, 1975; 60, Vaccaro and Siegel, 1977; 61, Volkert et al., 1976; 62, Waleh and Stocker, 1979; 63, Walker, 1977; 64,
Walker, 1978b; 65, Witkin, 1969b; 66, Witkin, 1975a; 67, Zieg et al., 1978.
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is due to errors made during genetic recombina-
tion (Kondo et al., 1970), and a similar suggestion
could have been made by considering such data
for the lexA mutant and the recB recC double
mutant. However, since the rec4 and lexA genes
also control error-prone DNA repair (reviewed in
Witkin, 1976; Walker, 1984), and the recB gene
exerts a partial role (Sargentini and Smith, 1980),
one can also conclude that a deficiency in error-
prone repair is the basis for the antimutator alleles
of the recA and JlexA genes and of the antimutator
effect seen in the recB recC double mutant. This
conclusion is supported by the knowledge that the
recB recF double mutant, which seems totally defi-
cient in recombination, is normal for spontaneous
mutagenesis (Kato et al., 1977). Similarly, the
umuC mutation, which causes a major reduction
in the spontaneous mutagenesis observed in a wwrB
strain, has no effect on recombination ability in
that strain (Sargentini and Smith, 1981).

Table 3 also lists several mutants showing an
inverse correlation between their levels of recombi-
nation and spontaneous mutagenesis. Some muta-
tions reduce spontaneous mutagenesis while show-
ing normal or enhanced recombination (mutH,
poldl, umuC, tdi, and uvrA,B), and some muta-
tions show reduced recombination, but normal or
enhanced spontaneous mutagenesis (recB, recC,
the recB recF double mutant, ssb, muc*, and
mutR1). Some of these inverse correlations are for
frameshift as well as for base-substitution muta-
tion assays.

From these data we conclude that recombina-
tion events play little role in spontaneous muta-
genesis in bacteria. This conclusion certainly seems
valid from the base-substitution data presented in
Table 3. The frameshift data in Table 3 are more
difficult to interpret. One complication is that only
a few strains were tested for spontaneous
frameshift mutagenesis. Another complication is
that a strain such as pol4l may only show its
frameshift-mutator phenotype in assays that rely
on the reversion of plus-type frameshift mutations
(Siegel and Vaccaro, 1978; Savic and Romac,
1982). Deletion data were available for only a few
strains, notably recA, and even in this case the
data were contradictory on the ability of a recA
mutant to produce spontaneous deletions. It is
most likely that these contradictions are based on

the fact that each worker used a different assay for
the detection of deletions. Probably both recA4-de-
pendent and rec4-independent mechanisms exist
for spontaneous deletion formation. While the
former mechanism presumably results from a re-
combination error, possible explanations of the
latter mechanism include the imprecise excision of
insertion elements to form deletions, which occurs
in bacteria in a rec4-independent manner (re-
viewed in Kleckner, 1977), and the possibility of
recombination events between nonhomologous
DNA segments (Franklin, 1967).

B. Fungi

Table 4 compares recombination ability (spon-
taneous mitotic heteroallelic recombination in this
case) and spontaneous mutagenesis in fungi to see
if some correlation exists. Most of the listed strains
show hyper-recombination ability, and in most
cases they show enhanced spontaneous mutagene-
sis with at least one mutation assay. These data,
like those for the meiotic effect, might superficially
argue that hyper-recombination leads to enhanced
spontaneous mutagenesis, however, this correla-
tion is only suggestive in terms of the source of the
normal level of spontaneous mutagenesis. As stated
earlier, antimutator data suggest more direct con-
clusions regarding mechanisms of spontaneous
mutagenesis than do mutator data. The 2 fungal
mutations listed in Table 4 that reduce sponta-
neous recombination show increased spontaneous
mutagenesis (rad5] and rad52), while the 5 muta-
tions that reduce spontaneous mutagenesis show
normal or enhanced spontaneous recombination
(rad53, mms3, rad2, rad6, and radl8). These re-
sults seem to argue that there may be an inverse
correlation between spontaneous recombination
and spontaneous mutagenesis, but since so many
other fungal mutants show both enhanced levels of
spontaneous recombination and mutagenesis, it
seems more likely that these two phenomena are
not intrinsically related. However, essentially all of
these spontaneous mutagenesis data are derived
from base-substitution assays and perhaps, as was
suggested by the meiotic effect, frameshift assays
might provide a valid correlation. In the case of
spontaneous deletion formation, fungi do show a
mechanism that is independent of spontaneous
mitotic recombination. The Tyl and 8§ transposa-
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TABLE 4
SPONTANEOUS RECOMBINATION VERSUS SPONTANEOUS MUTABILITY IN FUNG1

Mutant * Recombination Spontaneous mutagenesis References ¢
frequency ® Compared to Assay © Recomb. Spont. mut.
wild type
MIC! Enhanced Enhanced can” 11 11
MICS Enhanced Enhanced can® 11 11
MIC8 Enhanced Enhanced can” 11 11
MIC9 Enhanced Enhanced can® 11 11
MICI2 Enhanced Enhanced can’ 1 11
MICIS Enhanced Enhanced can” 11 11
MICI9 Enhanced Enhanced can® 11 11
rad3 Enhanced Enhanced bs 6,18" 2,6
reml Enhanced Enhanced bs 3 3
rads3 Normal Normal bs 17 19
Reduced bs 19
mms3 Normal Reduced bs 12 128
MIC23 Enhanced Normal can’ 11 11
mms8 Enhanced Normal bs 13 13
radl Normal Normal bs.de 18 2,15
Enhanced bs 21,8815
rad? Normal Normal bs 7,18 2,19
Reduced bs 19
Enhanced bs 2t 20
rad4 Normal Normal bs 18 2
Enhanced bs 2f
rad5 Normal Enhanced Auxotrophy 9,18 9
rad6 Enhanced Enhanced bs,de 6,14 4,14
Normal bs 6,14
Reduced bs 14
radl8 Enhanced Enhanced bs 1,12.5 16,19
Reduced bs 16%,19*
radsl Reduced Enhanced bs 17 4,16
rads2 Reduced Enhanced bs 10,17 19
rec-1 Enhanced Enhanced ad, pan 5 5

®

All strains are Saccharomyces cerevisiae except rec-1 which is Ustilago maydis. Genetic nomenclature: radl = uvs-9, uvs,;
rad2 = uvs-8; rad3 = uvs-4; radd4 = uvs5; rad5 = uvs-10, rev2-1; radl4 = uvs-11 (Game and Cox, 1971); rad52 = xrsi-1; rad53 =
xrs2-1, xrs2-2 (Game and Mortimer, 1974). Data for spontaneous recombination in other mutants are available, but they are not
presented since spontaneous mutagenesis data were not available. These mutants are the following: mms9, mmsi3, and mms21 (S.
Prakash and Prakash, 1977); r; and rad9 (Kowalski and Laskowski, 1975); radl/4 (Snow, 1968); spo8 (Baker et al., 1976); rec3 and
rec4 (Rodarte-Ramon, 1972; Rodarte-Ramon and Mortimer, 1972); rad50, rad54, rad55, rad56, rad57 (Saeki et al., 1980); cdc9
(Fabre and Roman, 1979; Game et al., 1979) (cdc9 is an allele of mms8, Montelone et al., 1981a); rev! (Lemontt, 1971b).

The interpretation of recombination frequency is based on data for spontaneous mitotic recombination or gene conversion
(spontaneous mitotic heteroallelic recombination).

Assays: de, deletion mutation assay; bs, base-substitution mutation assay (either missense or nonsense reversion); the marker
employed in the mutation assay (e.g., can” and auxotrophy) was listed when the general type of mutation (e.g., de, bs, etc.) involved
was not known.

Refer to footnote e, Table 3 for an explanation of notated references. References: 1, Boram and Roman, 1976; 2, Brychcy and von
Borstel, 1977; 3, Golin and Esposito, 1977; 4, Hastings et al., 1976; 5, Holliday et al., 1976; 6, Kern and Zimmermann, 1978; 7,
Kowalski and Laskowski, 1975; 8, Lawrence and Christensen, 1982; 9, Lemontt, 1972; 10, Malone and Esposito, 1980; 11, Maloney
and Fogel, 1980; 12, Martin et al,, 1981; 12.5, Mayer and Goin, 1984; 13, Montelone et al., 1981a, 14, Montelone et al., 1981b; 15,
Moustacchi, 1969; 16, Quah et al., 1980; 17, Saeki et al., 1980; 18, Snow, 1968; 19, von Borstel et al., 1971; 20, Zakharov et al.,
1970.
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ble sequences have been described in yeast
(Cameron et al., 1979), and the § sequence has
been implicated in the formation of deletions at
the sup4 locus (Rothstein, 1979). The DELI muta-
tor gene enhances the deletion of adjacent genes
by a mechanism thought to involve transposable
elements, and this deletion formation occurs in a
rads2 strain, which is recombination deficient
(Liebman and Downs, 1980).

V. Repair errors

Mutations that sensitize cells to DNA-damag-
ing agents have generally been shown to do so by
reducing cellular capacity for DNA repair. In this
section, mutations that affect DNA repair will be
evaluated for their effect on spontaneous and ex-
perimentally induced mutagenesis. The point is to
see if the direct correlation noted for lacZ53(am-
ber) reversion in E. coli uorB cells (Sargentini and
Smith, 1981) can be found in other organisms and
with other mutation assays.

A. Mechanisms of DNA repair

In order to appreciate the discussion of DNA
repair mutants that follows, it is helpful to have
some concept of error-free and error-prone DNA
repair. The wvrA, uvrB, and wwvrC genes, which
determine the UV “excinuclease” of E. coli and,
presumably of the closely related bacterium S.
typhimurium, are required for the incision and
excision steps in the excision repair process for
certain lesions (e.g., UV radiation-induced
pyrimidine dimers) in DNA (Sancar and Rupp,
1983). In general, DNA excision repair is consid-
ered to be largely error-free relative to the other
major dark-repair process, postreplication repair
(Witkin, 1966). This conclusion stems from the
fact that wvrd, worB, and wworC strains show en-
hanced mutability compared to wild-type strains
of E. coli when given the same dose of UV
radiation (e.g., Witkin, 1966; M.H.L. Green et al.,
1972).

The concept of error-prone repair resulted from
the finding by Witkin (1967) that a lexA(exrA)
strain was not only deficient in the ability to
survive UV irradiation, but was also deficient in
UV radiation mutagenesis. The /ex4 gene product
is a repressor of the recA gene, a gene required for

UV radiation mutagenesis, and the classical lexA4
mutant is one in which the repressor protein is not
removed under conditions that would normally
cause derepression (reviewed in Witkin, 1976;
Walker, 1984).

B. Bacteriophage T4

Some phage T4 mutant strains show similar
results when studied for spontaneous and experi-
mentally induced mutagenesis. The px strain is
similar to the recA strain of E. coli in that it shows
increased sensitivity to UV radiation, but reduced
UYV radiation mutagenesis, spontaneous mutagene-
sis, and recombination (Drake, 1973). The px
strain seems to be deficient at the X gene and at
some unknown gene(s) (Conkling and Drake,
1984). The im mutation causes both enhanced UV
radiation and spontaneous mutagenesis (Drake,
1973). Unlike these mutations, which show a direct
correlation between their effects on UV radiation-
induced and spontaneous mutagenesis, the v mu-
tation, which causes a deficiency in the pyrimidine
dimer-specific endonuclease (Friedberg and King,
1971), does not seem to cause an enhanced rate of
spontaneous mutagenesis (Drake, 1973). However,
this mutation only causes a 2-fold enhancement of
UV radiation mutagenesis (Meistrich and Drake,
1972).

C. Bacteria

Mutations that sensitize bacteria or fungi to
DNA-damaging agents are compared for their ef-
fects on spontaneous and experimentally induced
mutagenesis in Tables 5 and 6, respectively. The
mutations listed in these tables have been grouped
on the basis of showing similar effects on sponta-
neous and experimentally induced mutagenesis.
Mutations that appear to have no effect on spon-
taneous mutagenesis (Normal) are grouped where
more careful testing may eventually place them.
With this consideration in mind for the bacterial
data (Table 5), almost all of the mutants show a
direct or potentially direct correlation between
their ability for spontaneous and for experimen-
tally induced mutagenesis. While the S.
typhimurium uorB mutant shows an inverse corre-
lation for certain frameshift mutation assays, the
other uvr4 and wvrB strains, which are hypermu-
table by UV radiation, more often show enhanced



spontaneous mutagenesis (Ames, 1971; McCann et
al.,, 1975; Mortelmans and Stocker, 1976;
Sargentini and Smith, 1981), i.e., they are mutators
(uvrC strains have not been tested). This enhance-
ment of spontaneous mutagenesis was demon-
strated in one study (Sargentini and Smith, 1981)
using both wvrA and wvrB strains, and using a
frameshift mutation assay and several base-sub-
stitution assays. Depending upon the assay used,
the spontaneous mutation rate per bacterium per
cell division ranged from 1.9- to 6.2-fold greater
for worA and wvrB strains than for isogenic wild-
type strains. Such data suggest that excisable,
cryptic lesions exist in the DNA, and, if not ex-
cised, they induce mutations with increased prob-
ability.

Mutations that inhibit error-prone repair in
UV-irradiated cells also inhibit the enhanced
spontaneous mutagenesis seen in uvrB strains.
Specifically, wuvrB strains carrying lexA, recA,
umuC, or the wworD and recB mutations in combi-
nation, have spontaneous mutation rates about
10-fold lower than the wwrB control strains
(Sargentini and Smith, 1981). Mutations at recA
and JexA reduce the spontaneous mutation rate by
about 2-fold in wor™ strains (Kondo, 1968; Kondo
et al., 1970; Sargentini and Smith, 1981), suggest-
ing that about half of the spontaneous base sub-
stitutions in a DNA repair-proficient strain are the
result of error-prone repair. Other, less quantitated
examples of mutations that reduce spontaneous
mutagenesis by presumably reducing error-prone
repaif are: wvrD3, tsl, umuAd, umuB, umuC, tdi,
polC, NTG1, NTG2, supX, and, in combination,
recB and recC (Table 5). The notion that error-
prone repair acts on DNA damage, and is not
merely affecting replication or recombination, is
supported by two pieces of data. (1) Replication-
error processes have generally been categorized by
their recA independence (reviewed in E.C. Cox,
1976), yet, as noted above, about half of sponta-
neous mutagenesis is recA-dependent. (2) A re-
combination-error process seems to be ruled out
for base-substitution data because the umuC anti-
mutator is recombination-proficient (Sargentini
and Smith, 1981), and the recombination-deficient
recB recF strain shows normal spontaneous muta-
genesis (Kato et al., 1977).

Error-prone repair in E. coli is not thought to
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be fully activated in normal cells, rather its full
activation depends on DNA damage or a block to
DNA replication (reviewed in Witkin, 1976;
Walker, 1984). Once it has been activated, it en-
hances spontaneous mutagenesis as seen in the tif
(Witkin, 1974; Mount, 1977) and draB (Witkin,
1975¢) strains. Some mutants listed in Table 5 that
clearly exhibit their mutator effects through the
induction of error-prone repair include the tif
(conditionally activated recA protein), muc* [ana-
logues of the umuDC genes carried on the plasmid
pKM101 (Elledge and Walker, 1983)] and R-
Utrecht (muc*) strains. Mutants listed in Table 5
whose mutator effects may result from an associa-
tion of impaired DNA replication with the induc-
tion of error-prone repair may include the pol4
(DNA polymerase I), /ig (polynucleotide ligase),
dnaB (protein essential for DNA synthesis), mutU
(uvrD) (helicase 1I), gyr4 and gyrB(K-12) (sub-
units of topoisomerase II) strains. Hypermutability
associated with enhanced error-prone repair can
be explained either as nontargeted mutagenesis
(Witkin and Wermundsen, 1979) or as mutagene-
sis targeted at DNA damage of unknown origin
(Miller and Low, 1984). The induction of error-
prone repair should not be expected to enhance
spontaneous mutagenesis at all sites. This conclu-
sion follows from work with the most studied
system for genetically enhancing error-prone re-
pair, muc*. The presence of the muc* plasmid,
pKM101, is known to enhance spontaneous muta-
genesis only at certain sites (Mortelmans and
Stocker, 1976; Fowler et al.,, 1979; Miller and
Low, 1984).

The effect of the ung mutation (Table 5) is
difficult to assess. The ung and wurg (B. subtilis
analog of ung) mutants do, in fact, show enhanced
levels of spontaneous base substitution (Duncan
and Weiss, 1982; Hayakawa and Sekiguchi, 1978),
but such mutagenesis assays do not show any
difference between ung and wild-type cells after
sodium bisulfite treatment. Presumably, the uracil
N-glycosylase in the wild-type cells is inactivated
by the bisulfite treatment such that these cells are
effectively Ung ™ (Duncan and Weiss, 1982).

The ssb mutant provides the only data in Table
5 that clearly contradict the notion that the genetic
control of spontaneous mutagenesis is the same as
that for experimentally induced mutagenesis.



TABLE 5

SPONTANEOUS AND EXPERIMENTALLY INDUCED MUTATIONS IN DNA-DAMAGE-SENSITIVE BACTERIAL
MUTANTS ?

Mutant Mutagenesis assay " Mutation rate compared to wild type

Spontaneous © Induced Reference ¢

Escherichia coli

uvrA trpE65(0c), lacZ53(am) Enhanced UV, enhanced 12,30,32*,35
argF(am), his-4(oc), Normal UV, enhanced 16*,17,22* 32,40
Lac™, Str'(ms)
uvrB lacZ53(am), trpE65(oc), Enhanced UV, enhanced 29,30,35
trpE9777(fs)
ColB"(de) Normal UV, enhanced 13
polA trpE65(oc), ColB'(de) Enhanced UV, enhanced 13,42*
argF(am) Enhanced UV, normal © 17
lig Ac Enhanced UV, enhanced 4*23
recF his -4(oc) Enhanced UV, enhanced 161,32
muc® argE3(oc), leuB19(ms), Enhanced UV, enhanced 34,37,38
lacZ53(am) his -4(oc), his-4
argE3(oc,S)
trpE9777(fs) Normal UV, enhanced 8.9
uf trpE65(oc), his-4(oc) Enhanced UV, enhanced 41
dnaB trpE65(oc) Enhanced UV, enhanced 43
gyrA Rif "(ms) Enhanced UV, enhanced 58
ung Ac Normal SB, enhanced 78
trpA446(ms) Enhanced SB, normal 7
mutU D188, T6" Enhanced UV, enhanced 31
uvrD3 lacZ53(am), leuB19(ms) Reduced UV, reduced 30,375
gyrB(K-12) Rif "(ms) Enhanced UV, enhanced 58
nalC,D Rif "(ms) Normal UV, enhanced 58
gyrB(B/r) Rif "(ms), trpE65(oc) Normal UV, reduced 3
recA argF(am), lacZ53(am), Ac Reduced UV, reduced 17,22*,30
ColB*(de), Lac™ Normal UV, reduced 13,22*
tsl his -4(oc), Str(ms) Reduced UV, reduced 26%
lexA lacZ53(am), trpE65(oc) Reduced UV, reduced 30,368
ramA trp E65(0c) Normal UV, reduced 36%
umuA ColB(de) Reduced UV, reduced 158
umuB ColB"(de) Reduced UV, reduced 158
umuC lacZ53(am), his-4(oc) Reduced UV, reduced 14*,15%,30
ColB'(de)
tdi his, pro Reduced UV, reduced 33
polC (42°C) trpE65(oc) Reduced UV, reduced 2
NTG1,2 Azi" Reduced MNNG, reduced 44
recB recC his-4(oc) Reduced UV, reduced 16F
recB lacZ53(am) Normal UV, normal 30
uorD recB lacZ53(am) Reduced UV, reduced 30
inm Ara’ Normal UV, normal 28
Normal MNNG, reduced 28
dam Val', argE3(oc), lacZ608(am), Enhanced UV, normal 10,20
his -4 (oc)
ssb trpE65(oc), argF(am) Enhanced UV, reduced 118,18

Salmonella typhimurium

uvrB hisG46(ms) Enhanced UV, enhanced 1,21524
hisC207(fs), hisC3076(fs) Normal UV, enhanced 24
hisC207(fs), hisC3076(fs) Reduced UV, enhanced 1,24
muc* 15 his(oc, am, or UGA), Enhanced UV, enhanced 24
hisC3076(fs, in uvrB)
S his(fs), P22¢ Normal UV, enhanced 24,39
R-Utrecht hisC527(am) Enhanced UV, enhanced 19
trpD1(ms) Normal UV, enhanced 19

supX leuD1 Normal UV, reduced 27




However, since the ssb protein is required for
DNA replication (Meyer et al., 1979) and is in-
volved in the fidelity of DNA synthesis (Kunkel et
al., 1979), we would offer that the ssb mutation
affects both replication and repair, and that
whatever effect it has on the contribution of
error-prone repair to spontaneous mutagenesis is
overshadowed by its effect to reduce the fidelity of
normal DNA replication.

D. Fungi

The effect of DNA repair mutations on sponta-
neous and experimentally induced mutagenesis in
fungi is presented in Table 6, following the same
criteria used for the bacterial data in Table 5 (see
also Haynes and Kunz, 1981; Lawrence, 1982).
Again, as for bacteria, many of these putative
DNA repair mutations generally produce the same
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effect on spontaneous and on experimentally in-
duced mutagenesis. The mutations in S. cerevisiae
that prevent UV radiation-induced pyrimidine di-
mer excision are radl, rad2, rad3, rad4, rad7, radl0,
radld, radl6, and mmsl9 (reviewed in Wilcox and
Prakash, 1981). The wws-2, wvs-3, and upr-I
mutants of N. crassa are similarly deficient (de
Serres et al., 1980). Of these mutations, radl, rad3,
mmsl9, and uvs-3 enhance both spontaneous and
UV radiation mutagenesis (Table 6), and are thus
reminiscent of the effect of the wor4 and wwrB
mutations in E. coli (reviewed in Sargentini and
Smith, 1981). The rad2, radl4, uvs-2, and upr-1
mutations enhance UV radiation mutagenesis, but
reduce or have no effect on spontaneous mutagen-
esis (Table 6). The remaining mutations affecting
excision repair (rad4, rad7, radl0, and radl6) also
enhance UV radiation mutagenesis (reviewed in L.

 In fact, some mutants are included that are more resistant than a wild-type strain. The NTG1.2 and inm mutants are resistant to
MNNG. Cells carrying plasmid R46 or its derivative pKM101 have the plasmid mutator gene, muc® (Shanabruch and Walker,
1980), and, like cells carrying the N group plasmids, exhibit UV radiation resistance.

b Abbreviations: ColB', Rif", Val", T6", Str", Azi", Ara", resistance to colicin B, rifampicin, valine, bacteriophage T6, streptomycin,
azide, and L-arabinose, respectively. Ac and P22¢, clear plaque mutants of bacteriophages A and P22, respectively. oc, ochre
nonsense mutation; am, amber nonsense mutation; fs, frameshift mutation; de, deletion; S, intergenic nonsense suppressor
mutation; ms, missense mutation; UV, ultraviolet radiation; SB, sodium bisulfite; MNNG, N-methyl-N’-nitro-N-nitrosoguanidine.

¢ UV radiation mutagenesis may be enhanced if lower doses are tested (Witkin, 1975a).

9 For an explanation of reference notations, refer to footnote e, Table 3. References: 1, Ames, 1971; 2, Bridges and Mottershead,

1978; 3, Bridges et al., 1983; 4, Condra and Pauling, 1982; 5, Crumplin, 1981; 6, Diver and MacPhee, 1981; 7, Duncan and Weiss,

1982; 8, Fowler et al., 1979; 9, Fowler et al., 1981; 10, Glickman et al., 1978, 11, Greenberg et al., 1975; 12, Hill, 1965; 13, Ishii and

Kondo, 1972; 14, Kato and Nakano, 1981; 15, Kato and Shinoura, 1977; 16, Kato et al.,, 1977; 17, Kondo et al., 1970; 18,

Lieberman and Witkin, 1983; 19, MacPhee, 1977; 20, Marinus and Morris, 1975; 21, McCann et al., 1975; 22, Miura and

Tomizawa, 1968; 23, Morse and Pauling, 1975; 24, Mortelmans and Stocker, 1976; 25, Mount, 1977; 26, Mount and Kosel, 1975;

27, Overbye and Margolin, 1981; 28, Ruiz-Vazquez and Cerda-Olmedo, 1980; 29, Sargentini, 1979; 30, Sargentini and Smith, 1981;

31, Siegel, 1973; 32, Southworth and Bridges, 1984; 33, Stacey and Oliver, 1977; 34, Todd and Glickman, 1979; 35, This paper (data

not shown); 36, Volkert et al., 1976; 37, Waleh and Stocker, 1979; 38, Walker, 1977; 39, Walker, 1978a; 40, Witkin, 1966; 41,

Witkin, 1974; 42, Witkin, 1975a; 43, Witkin, 1975c; 44, Zamenbhof et al., 1966.

Other data for the genetic control of spontaneous mutagenesis are available, but they are not presented here because there were no

experimentally induced mutagenesis data to correlate with them. These data are for the following mutants and mutation assays: /ig:

trpE9777(fs) (Siegel and Vaccaro, 1978), Val’, Rif "(ms), and SMT" (Morse and Pauling, 1975); recF: Rif "(ms) (Southworth and

Bridges, 1984); ung: trpA3, trpAll, trpA23, trpAS58, trpA223, (Duncan and Weiss, 1982), lac/ (Duncan and Miller, 1980); urg

( Bacillus subtilis): Rif* (Hayakawa and Sekiguchi, 1978); rag: Rif "(ms), Amp® (Karran et al., 1980); alkB: Rif "(ms) (Kataoka et

al., 1983); ada: Rif "(ms) (Jeggo, 1979); dam: lacl, trpE9777(fs) (Glickman, 1979), Rif "(ms), Nal” (Bale et al., 1979), leu-6, proA2,

lacY1, Str'(ms), Rif "(ms) (Marinus and Morris, 1974); mut-8: phoR,S, lacl, Nal*, leu-6, his-4 (Hombrecher and Vielmetter, 1979);

mum: met (Mohn, 1968); mutRIl (Neisseria meningitidis): Str", pro, arg, his, hom, gly, and cys (Jyssum, 1968); recA:

lacZ(ICR36)(fs) (Vaccaro and Siegel, 1977) ton (trp) (de) (Franklin, 1967), ColB(trp) (de) (Inselburg, 1967), T7" ( pro) (de), ColB’

(trp) (de) (Anderson, 1970), T1"(trp) (de) (Spudich et al., 1970), lacI(de) (Albertini et al., 1982), Tc"(de) (Jones et al., 1982),

hisG(de) (Levine et al., 1984; Z. Hartman et al., 1984), hisG(ms) (Z. Harman et al., 1984); recB: ColB"(trp) (de) (Anderson, 1970),

T1" (trp) (de) (Spudich et al., 1970); spr: his-4 (Mount, 1977); tif: his-4 (George et al., 1975); plasmids R205 and R144drd3: trp

(Diver and MacPhee, 1981); uvrB, pold, muc*: hisG(de) (Levine et al., 1984).

Other data for the genetic control of experimentally induced mutagenesis are available, but they are not presented here because

there were no corresponding data for spontaneous mutagenesis. These data are for the following mutants: uorC (M.H.L. Green et

al., 1972); alkA (Yamamoto and Sekiguchi, 1979); alkB (Kataoka et al., 1983); ada (Jeggo, 1979; Kataoka et al., 1983); spr

(Mount, 1977); wvrD (Todd and Glickman, 1979); gyrB (Bridges et al., 1983); recA, recC (Witkin, 1969a).

a

-



TABLE 6

SPONTANEOUS AND RADIATION MUTAGENESIS IN RADIATION-SENSITIVE FUNGAL MUTANTS

Mutant ? Mutagenesis assay " Mutagenesis compared to wild type
Spontaneous © UV radiation f Reference
Saccharomyces cerevisiae
radl hisl, leu2, adel, Enhanced Enhanced 16
rho” (de) Normal Normal 16
rad?-17 lysl-1 (oc: ] and SS) Normal Enhanced 22,23
rad3 trps Enhanced Enhanced 9
uvspS rho~ (de) Enhanced Enhanced 17
hisl(ms) Normal Normal 17
mmsl9 lys2-1 (oc), arg4-17(oc) Enhanced Enhanced 208
trp2 Normal Enhanced 208
radé6 -1 trp5, cyel-91 Reduced Reduced 98,108
umul can’ Reduced Reduced 13%
umus$ can’ Reduced Reduced 138
umu? can” Reduced Reduced 138
psol hisl(ms) Reduced Reduced 1
mms3 arg4-17(oc) Reduced Reduced 158
rev3-1 arg4-17(oc: 1) Reduced Reduced 11,21
arg4-17(oc: SS) Normal Reduced 11,21
umu?2 can” Normal Reduced 138
umul3 can” Normal Reduced 13%
umud can’ Normal Reduced 138
cde7-1 arg4-17(oc), lysl - 1(oc), Normal Reduced 19
' ilvl -92(ms), lys2, ural
adeX, tyr]
pso2 his!(ms) Normal Reduced 1
pso3 hisl(ms) Normal Reduced 1
gam3 rho~ (de) Normal Normal © S
gaml rho~ (de) Enhanced Normal ¢ 5
gamS$ rho” (de) Enhanced Normal ¢ 5
rad5 ade Enhanced Normal 12
Auxotrophy Enhanced Reduced 12
antl lysl-1{oc:SS), hisl -7(ms) Reduced Normal 21
spo7 lys2-1(oc: SS) Reduced Normal 4
lys2-1(oc:]) Normal Normal 4
MICi can" Enhanced Reduced 14
radl4 arg4-17(oc), his5-2(oc) Reduced Enhanced 208
Neurospora crassa
uvs-3 ad-3A, ad-3B Enhanced Enhanced 37
upr-1 ad-3A, ad-3B Normal Enhanced 3,7
uvs -2 ad-3A, ad-3B Normal Enhanced 37
mus8 mir Reduced Reduced 8
uvs -1 ad-34, ad-3B Normal Reduced 2,3
uvs-4 ad-34, ad-3B Normal Reduced 2,3
ws-5 ad-3A, ad-3B Normal Reduced 2,3
uvs -6 ad-3A, ad-3B Normal Normal 37
mus7 mtr Normal Normal 8
musl0 mitr Normal Normal 8
nuh -4 mir Enhanced Reduced 8
mus9 mutr, cyh Enhanced Reduced 8
musi | mtr, cyh Enhanced Reduced 8
Ustilago maydis
rec-1 adl -1 Enhanced Reduced 6
Schizosaccharomyces pombe
rad3 ade7 Reduced Reduced 188




Prakash and Prakash, 1979), but have not been
tested with the same assay for spontaneous muta-
genesis.

Of the mutations already mentioned, most cause
similar effects on both experimentally induced and
spontaneous mutagenesis. Only a few mutations
listed in Table 6 (rad5, MICI, nuh-4, mus9, musll,
and rec-1) have opposite effects on experimentally
induced and spontaneous mutagenesis when mea-
sured with the same mutation assay. Hastings et
al. (1976) originally noted this incongruity for the
rad6 and rad5] mutations. While these mutations
blocked most forms of experimentally induced
mutagenesis, they enhanced spontaneous mutagen-
esis (although measured with other mutation as-
says than were used to monitor induced mutagene-
sis). The lesion-channeling concept was offered
(Hastings et al., 1976) to explain this incongruity.
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That is, if multiple pathways of error-prone repair
exist, and one pathway is blocked by a mutation,
spontaneous mutations can be enhanced if the
lesions that are normally repaired via the blocked
pathway are able to be “channeled” into another
error-prone pathway (presumably this pathway is
more error-prone than the blocked pathway). Some
support for this concept came from studying the
antl rev3 double mutant, which shows a greater
deficiency in spontaneous mutagenesis (90%) then
either single mutant (Quah et al., 1980). Unfor-
tunately, while the ant/ mutation made cells UV
radiation sensitive, it had no effect on UV radia-
tion mutagenesis (data not shown in Quah et al.,
1980). If such data are forthcoming, then they
would suggest that 90% of spontaneous base-sub-
stitution mutagenesis in S. cerevisiae is the result
of error-prone DNA repair. If the channeling con-

a

Alternate genetic nomenclature: rad2 = uvs|, rad2-17 = uvs9-3, rad5 = rev2-1, radl = uvs, (Game and Cox, 1971).

b Abbreviations: de, deletion; oc, ochre: I, locus reversion; SS, supersuppressor; ms, missense.

<

Gamma mutagenesis data.

d Refer to footnote e, Table 3 for an explanation of notated references. References: 1, Cassier et al., 1980: 2, de Serres, 1971; 3, de

Serres et al., 1980; 4, Esposito et al., 1975; 5, Foury and Goffeau, 1979; 6, Holliday et al., 1976; 7. Inoue et al., 1981; 8, Kafer, 1981;
9, Kern and Zimmermann, 1978; 10, Lawrence and Christensen, 1982; 11, Lemontt, 1971a; 12, Lemontt, 1972; 13, Lemontt, 1977,
14, Maloney and Fogel, 1980; 15, Martin et al., 1981; 16, Moustacchi, 1969; 17, Moustacchi et al., 1976; 18, Nasim and Hannan,
1977; 19, Njagi and Kilbey, 1982; 20, L. Prakash and Prakash, 1979; 21, Quah et al., 1980; 22, Resnick. 1969; 23, von Borstel et al.,
1971.

¢ Other data for the genetic control of spontaneous mutagenesis are available, but they are not presented here because there were no

—

corresponding experimentally induced mutagenesis data to correlate with them. These data are for the following mutants and
mutation assays: radl -1: lysl-1(oc) and his!-7(ms) (Brychcy and von Borstel, 1977); rad2: ser’ (Zakharov et al., 1970); rad2-16:
lysl-1(oc) (von Borstel et al., 1971); rad2-2: lysl-1(oc) and hisl -7(ms) (Brychcy and von Borstel, 1977). rad3-12: Iysl-1(oc) and
hisi-7(ms) (Brychcy and von Borstel, 1977); rad3: ilvl-92 (Kern and Zimmermann, 1978); rad4-3: lysl-I(oc) and hisl-7(ms)
(Brychcy and von Borstel, 1977); rad6-1: hisl-1, hisl-315, trp5-48, trp5-2, lysl-1(oc), and ilvl-92 (Montelone et al., 1981b;
Hastings et al., 1976; Kern and Zimmermann, 1978); rad6-3: hisl-1, hisl-315, trp5-48, and trp5-2 (Montelone et al., 1981b);
radl8: lysi-1(oc), ura4-11(fs) (von Borstel et al., 1971); radi8-3: lysl-1(oc), and his!-7(ms) (Quah et al., 1980); rad5!-1:
lysl-1(oc), and his-7(ms) (Hastings et al., 1976; Quah et al., 1980); rad52-1: lysl-1(oc), ura4-11(fs), and rhr3-10(fs) (von Borstel
et al., 1971); rad53: lysl - 1(oc) (von Borstel et al., 1971); rev3-1. lysl-1(oc) and hisl -7(ms) (Quah et al.. 1980); xrs3-1: lysi-1(oc)
(von Borstel et al, 1971); rna3-3: can® (Johnston and Thomas, 1982); dbf6: can’ (Johnston and Thomas, 1982); dbf2: can'
(Johnston and Thomas, 1982); rna6: lys2 (Johnston and Thomas, 1982); mmgl: rho~; mmg2: rho~; mmg3: rho™; mmgd: rho™
(Devin and Koltovaya, 1981); mms8: ade2 - 1(oc), lys2-1(oc), lys2-2, trp5-¢, trp5-r, tyrl -1, tyrl-2; ura3-1, ura3-313 (Montelone et
al., 1981a); mus(SC15): mir; mus(SC10): mtr; mus(SC25): mtr, mus(SC29): mtr: mus(SC3): mtr; mus(SC13): mtr (DeLange and
Mishra, 1982); MICS, MIC8, MIC9, MICI5, MICI19: can" (Maloney and Fogel, 1980); gaml: Ery", OlLi", his, met2; gam3. Oli";
gam5: Ery" (Foury and Goffeau, 1979); xrs-3: lysl-1(oc); xrs-1: lysl-1(oc), ura4-11(fs), thr3-10(fs); xrs-2: lysl-I1{oc), rho™
(von Borstel et al., 1971); mue3: lysl - 1(oc); mutd: lysl-1(oc); mut5: lysl-1(oc); mur9: lysl-1(oc); mutlQ: lysl-1(oc) (Hastings et
al., 1976); mut7: lysl -1(oc) (Nasim and Brychcy, 1979); LB,, LB,, LB,, LB,, LBs, LB,, LBg, LBy, LBy: Ery", Oli", Diu’, can',
CX', his, met (Bianchi and Foury, 1982); cdc8, cdc2i: rho~, lys2, ural, his7, tyrl, cyh2, RIB (Newlon et al., 1979); spo7: ade2 - (oc)
(Esposito et al., 1975); rev3: hisl-7(ms), lysl-1(oc) (Quah et al.,, 1980); uvs,: ser’ (Zakharov et al., 1970).

Other data for the genetic control of experimentally induced mutagenesis are available but they are not presented here because there
were no corresponding data for spontaneous mutagenesis. These data are for the following mutants: rad?, rad8, radl3, radl5, radlé,
radl7, radl8, rad22, rad50, and rad52 (Lawrence and Christensen, 1976); radl8 (Lawrence et al., 1974); rad50, rad51, rad52, rad53,
rad54, rad55, rad56, and rad57 (McKee and Lawrence, 1979); rad50 (B.S. Cox and Parry, 1968); ri (Averbeck et al., 1970; Eckardt
et al,, 1975); rev! (Lemontt, 1971a, 1972; Lawrence and Chistensen, 1976, 1978, 1979); rev3 (Lemontt, 1971a, 1972; Lawrence and
Christensen, 1976, 1979; McKee and Lawrence, 1979).
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cept could be validated, it would help to explain
the other fungal mutations (in Table 6) that clearly
show opposite effects on spontaneous and experi-
mentally induced mutagenesis. Otherwise, it seems
more reasonable to offer the same explanation as
was used in a similar situation for the ssb muta-
tion (Table 5). That is, such mutations, while they
may reduce error-prone repair might also reduce
the fidelity of DNA replication. If so, then the
reduction of DNA fidelity would overshadow the
effect of such a mutation on reducing spontaneous
mutagenesis resulting from error-prone repair (see
also Lawrence, 1982).

E. Mammalian cells

Few data on spontaneous mutagenesis are
available for DNA-damage-sensitive lines of mam-
malian cells. Liu et al. (1982a, 1983) described a
line of Chinese hamster ovary cells that has a
mutant form of DNA polymerase a. These cells
exhibit enhanced UV radiation sensitivity and
mutagenesis and enhanced rates of spontaneous
mutagenesis, with several forward mutation assays.
These cells are not thought to be deficient in
excision repair, but only preliminary results are
available (Liu et al., 1982b).

One prediction from the conclusion that wuvrd
and wvrB strains of E. coli are mutators was that
cells from individuals with xeroderma pigmento-
sum (XP) should show a higher rate of sponta-
neous mutagenesis (Sargentini and Smith, 1981)
because such cells are deficient in nucleotide exci-
sion repair (reviewed in Friedberg et al., 1979). It
was also predicted, because of the correlations
between mutagenesis and carcinogenesis (e.g., Mc-
Cann et al., 1975), that individuals with XP would
show a higher rate of spontaneous carcinogenesis.
While the spontaneous mutation rate data for XP
cells are not yet available, it is of interest to note
that XP individuals have recently been shown to
be prone to certain forms of cancer that would not
be predicted from their sensitivity to light (Kraemer
et al., 1984).

F. Spontaneous DNA damage

What could be the source of the “spontaneous”
mutagenic DNA damage postulated to explain the
enhanced spontaneous mutagenesis in excision-de-
ficient strains of bacteria and fungi? One source

includes factors present in any mutation assay
procedure. The growth rate of the cells, the aera-
tion rate of the culture, the pH and the tempera-
ture of the culture medium all have effects on
spontaneous mutagenesis (Savva, 1982; for other
physiological effects, see Clarke and Shankel,
1975). The near-UV radiation component of am-
bient light is known to be mutagenic, either di-
rectly (Webb, 1977) or indirectly through its ef-
fects on growth media (Webb and Lorenz, 1972).
Oxygen apparently induces DNA damage
(Morimyo, 1982) and is mutagenic (discussed in
Hartman et al., 1984), it causes chromosomal aber-
rations in Fanconi’s anemia cells (Joenje et al.,
1981), and has been implicated in spontaneous
carcinogenesis (Totter, 1980). Ames (1983) has
listed numerous mutagens that are present in a
wide variety of foods, and these mutagens may
also be present in culture media.

The normal metabolism of DNA can result in
mutations. Convincing evidence has been pre-
sented that base-substitution hotspots result from
the spontaneous deamination of 5-methylcytosine
residues to yield thymine residues, thus causing
GC — AT transitions (Coulondre et al., 1978;
Wang et al, 1982). Spontaneous depurination
(Greer and Zamenhof, 1962; Lindahl and Nyberg,
1972) and targeted DNA N-glycosylase action (re-
viewed in Lindahl, 1982) should induce mutations
because of the preferential insertion of purines
(especially adenine) opposite apurinic or apyrimi-
dinic sites (Sagher and Strauss, 1983). That is,
apurinic or apyrimidinic sites should preferentially
induce transversion or transition mutations, re-
spectively, if they are encountered by a replication
fork. The bypass of such lesions requires protein
synthesis, i.e., it is an inducible process, and it is
associated with mutagenesis, i.e., the bypass pro-
cess is error-prone (Schaaper et al., 1982, 1983).

Mutagenic damage in DNA may also result
from the metabolism of non-DNA cellular compo-
nents. The oxidation of cellular fatty acids could
be an important source of “spontaneous” muta-
gens (reviewed by Ames, 1983). Growth in the
presence of phenylalanine, but not other common
amino acids, produces excisable, DNA damage
that produces mutations in E. coli via error-prone
repair (Sargentini and Smith, 1983). Similarly, cy-
steine (as well as glutathione) is mutagenic in the



Ames tester strains if mammalian subcellular pre-
parations are included in the assay (Glatt et al.,
1983). As a more general example, a model system
exists, using horseradish peroxidase and aromatic
pyruvates, for an enzymatic reaction that requires
oxygen to produce excited-state molecules (i.e.,
“UV-like”) that can damage DNA (Cilento, 1980).

There is also evidence with mammalian cells for
the metabolic production of chemical spectes that
damage DNA. Fibroblasts from patients with
Bloom’s syndrome produce a clastogenic factor
that causes chromosomal aberrations in normal
human blood lymphocytes, while fibroblasts from
normal individuals had no such effect (Emerit and
Cerutti, 1981). Bloom’s syndrome cells also show
enhanced frequencies of spontaneous chro-
mosomal aberrations and sister-chromatid ex-
changes (Chaganti et al., 1974), and enhanced
spontaneous mutagenesis (Warren et al., 1981).
Such metabolic damage to DNA has also been
postulated to explain the characteristics of some
other autosomal recessive diseases that are defi-
cient in DNA repair (Lytle et al., 1983).

In addition, since it appears that DNA can be
damaged by normal metabolic reactions such that
the damage is recognized by error-prone repair
systems (see above), it seems reasonable that
damage could also be produced that causes coding
errors during replication. For example, although
recA strains are nonmutable by X- or UV radia-
tion, they are mutable by certain chemicals (e.g.,
ethyl methanesulfonate and N-methyl-N’-nitro-
N-nitrosoguanidine) that produce damage that is
presumed to cause miscoding errors during repli-
cation (Kondo et al., 1970). Therefore, normal
metabolic damage to DNA may also contribute to
spontaneous mutagenesis by causing errors in
DNA replication.

V1. Summary and conclusions

There appears to be no dearth of mechanisms
to explain spontaneous mutagenesis. In the case of
base substitutions, data for bacteriophage T4 and
especially for E. coli and S. cerevisiae suggest
important roles in spontaneous mutagenesis for
the error-prone repair of DNA damage (to pro-
duce mutations) and for error-free repair of DNA
damage (to avoid mutagenesis). Data from the

19

very limited number of studies on the subject
suggest that about 50% of the spontaneous base
substitutions in E. coli, and perhaps 90% in S.
cerevisiae are due to error-prone DNA repair. On
the other hand, spontaneous frameshifts and dele-
tions seem to result from mechanisms involving
recombination and replication. Spontaneous inser-
tions have been shown to be important in the
strongly polar inactivation of certain loci, but it is
less important at other loci. Perhaps with con-
tinued study, the term “spontaneous mutagenesis”
will be replaced by more specific terms such as
S-methylcytosine deamination mutagenesis, fatty
acid oxidation mutagenesis, phenylalanine muta-
genesis, and imprecise-recombination mutagenesis.

While most studies have concentrated on muta-
tor mutations, the most conclusive data for the
actual source of spontaneous mutations have come
from the study of antimutator mutations. Further
study in this area, perhaps along with an under-
standing of chemical antimutagens, should be in-
valuable in clarifying the bases of spontaneous
mutagenesis.
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