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Summary
The recent finding of a role for the recA gene in DNA
replication restart doesnotnegatepreviousdatashowing
the existence of recA-dependent recombinational DNA
repair, which occurs when there are two DNA duplexes
present, as in the case for recA-dependent excision
repair, for postreplication repair (i.e., the repair of DNA
daughter-strand gaps), and for the repair of DNA double-
strand breaks. Recombinational DNA repair is critical for
the survival of damaged cells. BioEssays 26:1322–
1326, 2004. � 2004 Wiley Periodicals, Inc.

Introduction

Currently there is much interest in the repair of damaged DNA

replication forks, because of recent observations that some of

the bacterial genes that participate in homologous recombina-

tion may also be involved in the reinitiation of DNA synthesis

after ultraviolet (UV) irradiation (e.g. 1,2). Finding a new

function for an old protein (i.e. RecA) is exciting, however, it

does not negate the original observations that RecA functions

in recombinational repair processes that require two DNA

duplexes to complete DNA repair, and where strand ex-

changes occur (see below).

Such statements as ‘‘It has recently become clear that the

recombinational repair of stalled replication forks is theprimary

function of homologous recombination systems in bacteria’’

(1), totally ignore the problems that a cell faces when its DNA

that was replicated prior to UV irradiation is damaged, where

twoDNAduplexes exist, andwhere replication restart has little

or no relevance (Fig. 1).

A cell has many different DNA-repair systems, but the

sheer volume of publications on ‘‘cut and patch’’ nucleotide

excision repair (e.g. 3) has seemingly generated the impres-

sion that cells possess only this repair system. Furthermore,

an essay has been published denying the existence of

recombination repair, but the authors were very selective with

their literature citations.(4)

There are many incorrect statements in the literature about

recombinational repair. For example, ‘‘We now know that

several of the processes that interact with or are controlled by

recA, such as excision repair and translesion synthesis,

operate to ensure that DNA replication occurs processively

without strand exchanges.’’(4) Yet, a publication from the same

laboratory,(5) and by others,(6–8) have all demonstrated that

strand exchanges occur after UV irradiation.

‘‘From a practical point of view, these results demonstrate

that, in theabsenceof nucleotide excision repair, recA function

does not contribute significantly to cellular viability.’’(4) This

statement is inconsistent with the data of Howard-Flanders

and Boyce,(9) which these authors even reproduce in their

paper.(4) If the statement by these authors(4) were true, one

would expect that a mutation blocking recA function would

have no effect on the survival of UV-irradiated uvr-deficient

cells. However, the data of Howard-Flanders and Boyce(9)

show that theadditional presenceof a recAmutationhasavery

significant sensitizing effect on the survival of UV-irradiated

uvr-deficient cells. In view of the results of Howard-Flanders

and Boyce,(9) the statement that ‘‘. . . the ability of recA to

promote recombination is virtually useless for cellular

survival . . .’’(10) is without merit.

Recombination repair requires many more gene products

than does excision repair; it also requires two DNA duplexes,

not just one, and there aremultiple pathways of recombination

repair (see below). The sheer complexity of recombination

repair has apparently resulted in it being largely ignored by the

general scientific community. However, recombination re-

pair(11) is an important set of repair systems that should not be

ignored.

Multiple pathways of DNA repair

The first indication that nucleotide excision repair (‘‘cut and

patch’’) is NOT the only mechanism by which cells repair

damage to their DNA, was the observation that bacterial cells

deficient in nucleotide excision repair (i.e. uvrA) or in genetic

recombination (i.e. recA) are very sensitive to UV radiation,

and show a similar level of survival after UV irradiation. A

double mutant (uvrA recA) is very much more sensitive to UV

irradiation.(9) From the most fundamental principles of radia-

tion biology and genetics, these data argue that, (a) these two

systems, i.e. coded by the uvrA and the recA genes, function

largely independently of each other, and (b) they are of about
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equal importance to the survival of UV-irradiated cells ofE. coli

K-12.

Second, although ignored in most reviews on DNA repair,

there is a pathway of nucleotide excision repair that is

dependent upon recombination (see below). This occurs

when lesions are produced in the portion of the chromosome

thatwas replicatedPRIOR toUV irradiation, and therefore, two

DNA duplexes are present in the region of the lesion (Fig. 1).

Third, statements such as, ‘‘. . . replication also fails to

recover in uvr mutants . . .’’,(12) ignore the fact that photo-

products such as pyrimidine dimers do NOT permanently

stop DNA synthesis in cells that are deficient in nucleotide

excision repair.(13,14) Therefore, cells must have repair

system(s) in addition to excision repair, otherwise excision-

repair-deficient cells would not survive UV irradiation. One

such system is postreplication repair, and it requires homo-

logous recombination.

Postreplication repair

The DNA synthesized immediately after UV irradiation in

excision-repair-deficient cells (and also wild-type cells; see

below) of E. coli K-12 has discontinuities when assayed

in alkaline sucrose gradients. The mean length of newly

synthesized DNA approximates the distance between pyrimi-

dine dimers in the parental strand. With further incubation of

the cells, however, these discontinuities disappear, and the

DNAapproximates themolecular size of that fromunirradiated

control cells.(13,15) The exchanges envisioned by this type of

repair resemble those involved in genetic recombination.(6,13)

This prediction has been verified by demonstrating that recA

cells are deficient in the production of normal-length DNA

from the small pieces synthesized immediately after UV

irradiation.(16,17)

WhenDNAsynthesis proceedsalongadamaged template,

synthesis halts at the site of a non-coding lesion, and then

resumes downstream from the lesion, leaving gaps in the

newly synthesized daughter strand opposite the UV radiation-

induced lesion in the parental strand.(13) The fact that photo-

reactivation after UV irradiation in a uvrA strain stimulated gap

filling is taken as further evidence that a large proportion of the

DNAdaughter-strand gaps are opposite pyrimidine dimers.(18)

The dimers that are opposite DNA daughter-strand gaps

are no longer subject to excision, since this process requires

an intact complementary strand.(19,20) Only after the gaps are

filled by sister-strand exchanges will the dimers again be

subject to excision repair.

These gaps in the daughter strands, which average 1000

nucleotides in length,(21) are subsequently repaired in recom-

bination-proficient strains by transferring the appropriate

sections of DNA from the parental strands into the daughter

strands. This transfer of parental strands into daughter strands

has been confirmed by direct measurement.(5–8) Although

most studies on postreplication repair have been performed

in excision-repair-deficient cells, this type of repair is fully

operative in wild-type cells.(16,22,23)

Although postreplication repair (i.e. the repair of DNA

daughter-strand gaps) is completely dependent upon the recA

gene, mutations in the recB and recC genes do NOT cause a

deficiency in the repair of DNA daughter-strand gaps.(16)

However, the recB gene is known to function in the repair of

DNA double-strand breaks that are formedmetabolically after

UV irradiation in E. coli.(24) In fact, unrepaired DNA double-

strand breaks appear to be the major cause of lethality in UV-

irradiated wild-type bacteria.(25,26) The repair of metabolically

produced DNA double-strand breaks constitutes a second

type of recombination repair that is distinct from the repair of

DNA daughter-strand gaps, i.e. it is recBC-dependent.(24,27)

Multiple pathways of postreplication repair

Three pathways are known for the repair of DNA daughter-

strand gaps, i.e. the recF-dependent, the recF-independent

and theumuCD-dependent pathways.Much of postreplication

repair is constitutive,(17,28) but a portion (i.e. umuCD) is

inducible by UV radiation and is responsible for UV radiation

mutagenesis (see below). Each of these pathways is recBC-

independent.(16)

RecF pathway
About half of the DNA daughter-strand gaps are repaired

by a recF-dependent process.(24,29–31) The involvement of the

recF gene suggests that the recF pathway of homologous

recombination may be involved in this repair process. The

RecFprotein is oneof at least three single-strandDNA-binding

proteins, along with the RecA and Ssb proteins.(32)

The repair of daughter-strand gaps by the recF-dependent

and the recF-independent process (see below) is accompa-

nied by the transfer of DNA lesions from the parental strand to

the daughter strand.(5,8) This occurs about 50% of the time in

E. coli,(5) and appears to be due to the random resolution of the

Holliday junction (e.g. 33), an intermediate in recombination.

Figure 1. Schematic of DNA replicationwith lesions (*) both

in theDNA that was replicated prior toUV irradiation, where two

DNAduplexesexist, and in thatportionof the chromosomeprior

to replication, where only oneDNAduplex exists. Theproblems

and opportunity for recombinational DNA repair and replication

restart in these two regions of the chromosome are markedly

different.
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RecF-independent pathway
The fact that a uvrB recF stain is not as deficient in the repair of

daughter-strand gaps as is a uvrB recA strain suggested that a

second pathway must exist for the repair of daughter-strand

gaps.(24) This conclusion was supported by studies using an

insertion mutation of recF (recF332:Tn3) to ensure that the

earlier results were not due to leakiness in the original recF143

mutation. The recF-independent pathway is also independent

of the recBC genes and is constitutive.(34) Studies usingDpolA
mutants indicate that the polA gene (DNA polymerase I) plays

amajor role in the recF-independent repair of daughter-strand

gaps. Studies on different polA mutants (i.e. polA1, polAex2,

DpolA, etc.) suggest that it is the 50 ! 30 exonuclease activity

of DNA polymerase I that plays a major role in the repair of

daughter-strand gaps.(35)

Furthermore, since DNA polymerase is known to be

involved in the joining of Okazaki fragments synthesized in

the lagging strand of unirradiated cells, this raises the pos-

sibility that the daughter-strand gaps formed in the lagging

strand of UV-irradiated cells may be selectively repaired by

the recF-independent, polA-dependent pathway, while the

daughter-strand gaps formed in the leading strand (i.e. pre-

sumably longer gaps) may be repaired by the recF-dependent

pathway.(36)

UmuC pathway
Since a uvrA DpolA recF strain is not quite as deficient in the

repair of daughter-strand gaps as is a uvrA recA strain,(35)

it suggests that a third pathway must exist for the repair of

daughter-strand gaps. Consistent with this observation, a

small fraction of the repair of daughter-strand gaps is

dependent upon the umuC gene, but is independent of the

recF and recBC genes.(37) A uvrADpolA recF umuC strain has

not yet been tested to see if it is as deficient as a uvrA recA

strain in the repair of daughter-strand gaps.

TheUmuCandUmuDproteins combine, after the selective

cleavage of the UmuD protein by RecA, to form an error-prone

polymerase (UmuD0
2UmuC), polV(38,39) which can synthesize

past lesions in DNA. This is consistent with the fact that umuC

controls all of UV radiation mutagenesis.(40) A umuC muta-

tion, however, has only a partial effect on spontaneous

mutagenesis,(41) and on X-ray mutagenesis.(42)

Some authors (e.g. 43) think only in terms of polV as

assisting replication restart by synthesizing past a pyrimidine

dimer. An additional function for polVmay be the repair of rare

lesions such as overlapping daughter-strand gaps, perhaps

facilitating translesion DNA synthesis to repair one of the

daughter-strand gaps, after which the other daughter-strand

gap could be repaired by the recombination pathways

described above.

It is interesting to note that UV radiation mutagenesis is

largely a two-hit process, i.e. two lesions are required.(44,45)

Replication restart using polV to bypass a pyrimidine dimer

could account for one-hit mutagenesis, but the repair of over-

lapping DNA daughter-strand gaps would seem a more

probable explanation for two-hit mutagenesis.

Nucleotide excision repair

There are two pathways of nucleotide excision repair. One

pathway is DNA polymerase I dependent, growth medium

independent (i.e., macromolecular synthesis is not required),

and produces short repair patches (about 20 nucleotides

long). This pathway requires only one DNA duplex.(3)

The second excision-repair process, long-patch excision

repair, which requires two DNA duplexes, is largely ignored by

reviewers (e.g. 46). Nevertheless, this excision-repair path-

way does exist, and it has been confirmed by other authors

(e.g. 47). It is dependent upon the recA gene, it is growth

medium dependent (i.e. macromolecular synthesis is required)

and it produces long repair patches (1500–9000 nucleotides

long).(48–50) Long-patch excision repair also requires the recF

gene,(51) but does NOT require the recBC genes.(52)

When wild-type cells are allowed to repair their DNA after

UV irradiation in the presence of chloramphenicol to inhibit the

synthesis of induced proteins, only about 80% of the dimers

are excised.(53) Similarly, a recA mutant, which is deficient in

the induction of proteins after UV irradiation, only excises

about 80% of the dimers compared to a wild-type strain.(54)

Theearly repair seems tobeshort-patch excision repair,which

occurs immediately after UV irradiation and is controlled by

DNA polymerase I,(48) while the induced repair appears to be

the long-patch system that is controlled by recA.(50) Additional

copies of the UvrA protein(55) and the UvrB protein(56) are

synthesized after UV irradiation, and may be relevant to the

inducible long-patch excision-repair process.

The excision repair that occurs in cells that contain com-

pletely replicated chromosomes, i.e. where only one DNA

duplex is present per chromosome, is not dependent upon

recA. In this situation, classical nucleotide excision repair

occurs, i.e. without strand exchanges. The excision repair that

functions in the part of the chromosome that was replicated

before UV irradiation (i.e. where two DNA duplexes exist,

Fig. 1), is recA dependent.(57)

The similarities between the genetic requirements for long-

patch excision repair and the repair of DNA daughter-strand

gaps, i.e. the requirement for recA and recF, but not recBC,

and the requirement for sister DNA duplexes, suggests that

the mechanisms for these two repair processes are similar,

i.e. requiring strand exchanges. The only significant difference

between these two processes is the manner in which the

gaps in the sister duplexes are formed, i.e. by excision or by

replication bypass.(57)

Summary and conclusions

It is unfortunate that the older DNA-repair literature, which

clearly shows the importance of recombinational DNA repair,
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is being ignored. Furthermore, most reviewers make no

distinction between the repair events that take place in the

two different parts of the chromosome, i.e. the part of the

chromosome that was replicated before UV irradiation,

where two DNA duplexes exist, and the part of the chromo-

some that contains only one DNA duplex, and is replicated

after UV irradiation. Clearly the problems and the oppor-

tunities for recombination repair and replication restart are

different in these two regions of the chromosome.

It is exciting to find a new use for an old protein, i.e. the

involvement of the RecA protein in translesion synthesis for

replication restart, but this doesnotmean that recA-dependent

recombination repair of DNA damage no longer exists. As

documented by data from a number of laboratories (see

above), it does exist and includes the recA-dependent

branch of excision repair, the recA-dependent repair of DNA

daughter-strandgaps (i.e. postreplication repair), and the recA

recB-dependent repair of DNA double-strand breaks.
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